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Abstract

Let G = GL(n, q), the group of n × n invertible matrices over Fq, the field of q elements.
A theorem of A. A. Klyachko [5] gives a collection of subgroups {Gd | 0 ≤ 2d ≤ n } of G,
and for each d a degree 1 complex character λd of Gd, such that the induced characters
λG

d are all multiplicity free, pairwise disjoint, and between them contain as constituents
all irreducible complex characters of G.

In this paper we derive, for each g ∈ G, a formula relating numbers of g-invariant

bilinear forms of certain kinds with values of the Gel’fand-Graev character, and show that

Klyachko’s theorem follows as a corollary of this.†

§1 Introduction

Let g ∈ G and let U be a g-invariant subspace of V = Fn
q , the space of n-component

column vectors over Fq. We shall say that a bilinear form f :U × U → Fq is
symmetric modulo g if f(x, y) = f(gy, x) for all x, y ∈ U , and we let Sym(U, g)
be the set of all such forms. We denote by sg(U) the number f ∈ Sym(U, g) that
are non-degenerate. We also let Alt(U, g) be the set of all g-invariant alternating
bilinear forms U × U → Fq, and write Sg(U) for the number of nondegenerate
elements of Alt(U, g).

Let ψ be a fixed nontrivial homomorphism from the additive group of Fq

to C×, the multiplicative group of C. The Gel’fand-Graev character of G, to be
discussed in more detail below, is the character Γ of G induced from the degree 1
character λ ofX, the group of all upper unitriangular matrices, given by the formula

λ(x) = ψ
(n−1∑

i=1

xi,i+1

)
for all x ∈ X (where we use the notation xi,j for the (i, j)-entry of a matrix x).
For each g-invariant subspace U of V we denote by Γ(g, V/U) the value of the
Gel’fand-Graev character of GL(V/U) on the transformation of V/U induced by g.
Our main result is as follows.

(1.1) Theorem. If g is any element of G then sg(V ) =
∑

U Γ(g, V/U)Sg(U),
where the sum is over all g-invariant subspaces U of V .

For any matrix g, let gt denote the transpose of g. For each positive integer d
with 0 ≤ 2d ≤ n choose a nonsingular skew-symmetric 2d × 2d matrix jd over Fq,
and define

Sd = { g ∈ GL(2d, q) | gtjdg = jd },

† This is a slightly streamlined account of the second author’s PhD thesis (University
of Sydney, 1993).
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a realization of the symplectic group Sp(2d, q). Let Xd be the group of all upper
unitriangular (n− 2d)× (n− 2d) matrices. Define

Gd =
{ (

g h
0 x

) ∣∣ g ∈ Sd, x ∈ Xd

}
,

which is clearly a subgroup of G, and define a character λd of Gd by

λd

(
g h
0 x

)
= ψ

(n−2d−1∑
i=1

xi,i+1

)
.

Observe that λG
0 is the Gel’fand-Graev character.

Klyachko’s Theorem can be stated as follows.

(1.2) Theorem. With the notation as above,

[n/2]∑
d=0

λG
d =

∑
χ∈Irr(G)

χ.

(Here Irr(G) denotes the set of all irreducible complex characters of G.)
Klyachko’s proof of this proceeded by analysing endomorphism algebras of the

relevant induced modules, and homomorphisms between them. Another proof was
given by Inglis and Saxl [3], who used the classification of the irreducible characters
of GL(n, q) and identified the constituents of each λG

d . Our proof uses properties of
the twisted indicator function ε of Kawanaka and Matsuyama [4] (a generalization of
the indicator function of Frobenius and Schur [1]) to show that

∑
χ∈Irr(G) ε(χ)χ(g)

equals sg(V ). Combined with Theorem (1.1) and the straightforward fact (also
proved below) that

[n/2]∑
d=0

λG
d (g) =

∑
U

Γ(g, V/U)Sg(U),

this shows that ε(χ) is the multiplicity of χ in
∑[n/2]

d=0 λG
d . Hence ε(χ) ≥ 0 for all χ.

However, the only possible values for ε(χ) (in any case) are 0, 1 and −1, and it is
easy to show that in this case 0 does not occur. Hence Klyachko’s Theorem follows.

§2 The twisted indicator function

In order to make this work self-contained we include an account of the twisted
indicator function. It is assumed that G is a finite group and σ:G → G an
anti-automorphism of G of order 2. In the case considered by Frobenius and Schur,
σ is taken to be the anti-automorphism given by g 7→ g−1 for g ∈ G. We shall
apply the theory in the case G = GL(n, q), with σ defined by gσ = gt.

Let R:G → GL(d,C) be an irreducible matrix representation of G. Then
R∗: g 7→ R(gσ)t is obviously also an irreducible representation of G. We are inter-
ested in whether or not R∗ is equivalent to R. Suppose that R∗ is, in fact, equivalent
to R; that is, there is some X ∈ GL(d,C) such that X−1R(g)X = R(gσ)t for all
g ∈ G. Replacing g by gσ, taking transposes of both sides, and using the fact that
σ has order 2, now yields XtR(gσ)t(Xt)−1 = R(g), whence

(Xt)−1R(g)Xt = R(gσ)t = X−1R(g)X for all g ∈ G.
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Hence XtX−1 commutes with R(g) for all g ∈ G. Schur’s Lemma now yields that
XtX−1 = λI for some λ ∈ C, and we conclude that X is either a symmetric or a
skew-symmetric matrix.

Suppose now that G has s conjugacy classes, and for each irreducible character
χk of G (for 1 ≤ k ≤ s) choose a fixed matrix representation R(k) that is unitary (so
that R(k)(g)t = R(k)(g−1) for each g ∈ G, where here the overline denotes complex
conjugation). For each g ∈ G, let R(k)(g) have (i, j)-entry R

(k)
i,j (g), and let the

degree of R(k) be dk. There are
∑s

k=1 dk
2 = |G| coordinate functions g 7→ R

(k)
i,j (g),

parametrized by the set I consisting of all triples (k, i, j) with k ∈ {1, 2, . . . , s} and
i, j ∈ {1, 2, . . . , dk}. We place the numbers R(k)

i,j (g) in a |G| × |G| matrix T whose
rows are indexed by I and whose columns are indexed by the elements of G.

Orthogonality of coordinate functions and the assumption that each R(k) is
unitary gives ∑

g∈G

R
(m)
s,j (g)R(l)

r,i(g) =
|G|δlmδijδrs

dl
.

Since this shows that T (T )t is diagonal, with nonzero diagonal entries, we conclude
that T is nonsingular.

Let k 7→ k∗ be the permutation of {1, 2, . . . , s} such that R(k∗) is equivalent
to R(k)∗ for each k, and for each k choose a matrix X(k) such that

R(k)∗(g) = X(k)−1
R(k∗)(g)X(k)

for all g ∈ G. We define a function ε: {1, 2, . . . , s} → {−1, 0, 1} as follows:

ε(k) =

 +1 if k∗ = k and X(k) is symmetric,
−1 if k∗ = k and X(k) is skew-symmetric,

0 if k∗ 6= k.

Now fix g ∈ G, and let P denote the permutation matrix corresponding to
the permutation of G given by x 7→ xσg for x ∈ G. Thus the rows and columns of
P are indexed by elements of G, the (x, y)-entry Px,y of P being given by

Px,y =
{ 1 if x = yσg,

0 otherwise.

Observe that the general entry of TP , in the ((k, i, j), y)-position, is given by

[TP ](k,i,j),y =
∑
x∈G

T(k,i,j),xPx,y =
∑
x∈G

R
(k)
i,j (x)Px,y

= R
(k)
i,j (yσg) =

∑
l

R
(k)
i,l (yσ)R(k)

l,j (g).

But now R(k)∗(y) = R(k)(yσ)
t
; hence R(k)

i,l (yσ) = R
(k)
l,i

∗
(y). Thus

R
(k)
i,l (yσ) = [X(k)−1

R(k∗)(y)X(k)]l,i =
∑
m,n

[X(k)−1
]l,mR

(k∗)
m,n(y) [X(k)]n,i,
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and so the ((k, i, j), y)-entry of TP is

[TP ](k,i,j),y =
∑
m,n

(∑
l

[X(k)−1
]l,m [X(k)]n,iR

(k)
l,j (g)

)
R(k∗)

m,n(y).

However, the right hand side of this formula is also the ((k, i, j), y)-entry of QT ,
where Q is the matrix whose rows and columns are indexed by I, and whose general
entry, in the ((k, i, j), (r,m, n))-position, is given by

Q(k,i,j),(r,m,n) = δrk∗

(∑
l

[X(k)−1
]l,m [X(k)]n,iR

(k)
l,j (g)

)
.

It follows that Q = TPT−1, and, in particular, the trace of Q equals the trace of P .

Since P is simply a permutation matrix, its trace is the number of fixed
points of the permutation, which is the number of elements x ∈ G with xσg = x.
Alternatively put, it is the number of x such that g = (xσ)−1x. As for the trace of
Q, we find that

Trace Q =
∑
k,i,j

δkk∗

(∑
l

[X(k)−1
]l,i [X(k)]j,iR

(k)
l,j (g)

)
=

∑
k,i,j

∑
l

ε(k) [X(k)−1
]l,i[X(k)]i,j R

(k)
l,j (g)

since ε(k)[X(k)]i,j is zero if k 6= k∗, and equals [X(k)]j,i if k = k∗. Thus

Trace Q =
∑
k,j

∑
l

ε(k) δlj R
(k)
l,j (g) =

∑
k,j

ε(k)R(k)
j,j (g) =

∑
k

ε(k)χk(g).

Clearly ε(k) depends only on the character χk, and not on the choice of representa-
tion R(k). So for each irreducible character χk we define εσ(χk) = ε(k); we call εσ

the indicator function corresponding to the antiautomorphism σ. Our calculations
above have established the following result.

(2.1) Theorem. Let g be an arbitrary element of G. Then
∑

χ∈Irr(G)

εσ(χ)χ(g) is

equal to the number of x ∈ G such that g = (xσ)−1x.

Inverting this relationship using orthogonality of characters gives a formula
for εσ(χ), for each irreducible character χ.

(2.2) Theorem. For each χ ∈ Irr(G) we have

εσ(χ) =
1
|G|

∑
x∈G

χ((xσ)−1x).

Furthermore, this quantity is 0, 1 or −1, as described above.
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§3 The Gel’fand Graev character

Continuing our policy of making this paper self-contained, in this section we derive
the formula for the value of the Gel’fand-Graev character of G = GL(n, q) at an
arbitrary element of G. Although the formula is well-known, we were unable to
find an elementary derivation of it in the literature.

We define a based flag in a vector space W to be a chain of subspaces

{0} = W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wk = W,

such that dimWi = i for all i, together with a choice of basis vector in each of the
one-dimensional quotient spaces Wi/Wi−1. An ordered basis w1, w2, . . . , wk of W
determines a based flag, which we denote by B(w1, w2, . . . , wk), and clearly GL(W )
permutes the based flags so that g(B(w1, w2, . . . , wk)) = B(gw1, gw2, . . . , gwk) for
all g ∈ GL(W ) and all bases w1, w2, . . . , wk.

Before restricting our attention to the case d = 0, we consider the character λG
d

for an arbitrary integer d satisfying 0 ≤ 2d ≤ n. Let e1, e2, . . . , em be the standard
basis of V = Fn

q and V0 ⊂ V1 ⊂ · · · ⊂ Vn the corresponding flag of subspaces. Let
Fd be the bilinear form on V2d defined by

Fd(x, y) = xt

(
jd 0
0 0

)
y

for all x, y ∈ V2d, and let E be the based flag in V/V2d given by

E = B(w1, w2, · · · , wn−2d),

where wi = e2d+i + V2d. Then the group Gd consists of all g ∈ G that preserve
the subspace V2d, the form Fd and the based flag E . Note that G acts transitively
on the set of triples (U,F,B) consisting of a 2d-dimensional subspace U of V , a
nondegenerate alternating bilinear form F on U , and a based flag B in V/U ; hence
the left cosets of Gd in G are parametrized by these triples. Let T be a set of
representatives of these cosets.

For each h ∈ G, define hλd:hGdh
−1 → C× by (hλd)(t) = λd(h−1th) for

all t ∈ hGdh
−1. Then for each g ∈ G we have λG

d (g) =
∑

(hλd)(g), summed over
h ∈ T such that g ∈ hGdh

−1. This amounts to summing over triples (U,F,B) fixed
by g.

Now let h ∈ G and g ∈ hGdh
−1. Thus h−1gh =

(
s
0

t
x

)
∈ Gd, where x ∈ Xd

and s ∈ Sd, and for all j ∈ {1, 2, . . . , n− 2d} we have

(h−1gh)wj = wj +
j−1∑
i=1

xi,jwi

since x is upper unitriangular. Writing Wj = V2d+j/V2d, it follows that if j < n−2d
then g − 1 induces a map hWj+1/hWj → hWj/hWj−1 such that

(g − 1)(hwj+1 + hWj) = xj,j+1hwj + hWj−1.

In particular, it follows that the coefficients xj,j+1 depend only on g and the based
flag hE = B(hw1, hw2, . . . , hwn−2d) in V/hV2d. We define

ψhE(g) = ψ
(n−2d−1∑

i=1

xi,i+1

)
–5–



(where ψ is our fixed nontrivial homomorphism F+
q → C×), and note that, by our

definitions,

(hλd)(g) = λd(h−1gh) = ψ
(n−2d−1∑

i=1

xi,i+1

)
= ψhE(g).

Hence we have the following result.

(3.1) Proposition. For all d with 0 ≤ 2d ≤ n and all g ∈ G,

λG
d (g) =

∑
U,F,B

ψB(g),

where the sum is over all g-invariant subspaces U of V of dimension 2d, all nonde-
generate F ∈ Alt(U, g), and all based flags B in V/U fixed by g.

In the case d = 0 this gives Γ(g) =
∑

B ψB(g), summed over based flags in V
fixed by g, where here Γ is the Gel’fand-Graev character. Applying this with V/U
in place of U (where U is any g-invariant subspace) gives Γ(g, V/U) =

∑
B ψB(g)

where B runs over g-fixed based flags in V/U . Combining this with Proposition (3.1)
we obtain the formula

λG
d (g) =

∑
U

Γ(g, V/U)Sg(U)

where U runs through all 2d-dimensional g-invariant subspaces, and since Sg(U) is
zero for odd dimensional subspaces U ,

[n/2]∑
d=0

λG
d (g) =

∑
U

Γ(g, V/U)Sg(U) (1)

where U runs though all g-invariant subspaces.
We turn now to the investigation of the Gel’fand-Graev character. Let F be a

flag in V of the form {0} = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un = V and let g be an element
of G that centralizes F , in the sense that g acts trivially on all the 1-dimensional
quotient spaces. There are (q− 1)n based flags B associated with F , all having the
form B = B(λ1v1, λ2v2, . . . , λnvn), where v1, v2, . . . , vn is a fixed basis of V adapted
to the flag F and the λi are nonzero scalars. We find that

ψB(g) = ψ
(n−1∑

i=1

µi
λi+1
λi

)
= ψ(µ1

λ2
λ1

)ψ(µ2
λ3
λ2

) · · ·ψ(µn−1
λn

λn−1
)

where the scalars µi are such that (g − 1)vi+1 ≡ µivi modulo Ui−1. Summing
over all values of λn, then λn−1, then λn−2, and so on, and using the fact that∑

λi+1
ψ(µiλi+1/λi) is q − 1 if µi = 0 and −1 if µi 6= 0, gives∑

B
ψB(g) = (q − 1)n−c(g,F)(−1)c(g,F)

where B runs through the based flags associated with the fixed flag F , and c(g,F)
is the number of µi that are nonzero. The value of Γ(g) is obtained by summing
over all possibilities for F .
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(3.2) Proposition. For all g ∈ G we have

Γ(g) =
∑
F

(q − 1)n−c(g,F)(−1)c(g,F)

where F runs through all flags centralized by g.

It is of course the case that if g is not unipotent then the sum in Proposi-
tion (3.2) is empty, and hence Γ(g) = 0. We assume henceforth in this section that
g is unipotent.

We shall show that in fact the sum in Proposition (3.2) depends only on the
dimension of the kernel of 1− g. For each 1-dimensional subspace U of this kernel
we define F(U ;V ) to be the set of flags {0} = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un = V
centralized by g such that U1 = U . We define also

∆(g, U ;V ) =
∑

F∈F(U ;V )

(q − 1)n−c(g,F)(−1)c(g,F)

so that Γ(g) =
∑

U ∆(g, U ;V ).

(3.3) Lemma. Let k be the dimension of ker(1−g), and let U be any 1-dimensional
subspace of ker(1− g). Then

∆(g, U ;V ) =
(
(−1)(n−k)(qk−1 − 1)(qk−2 − 1) · · · (q − 1)

)
(q − 1).

Proof. We use induction on n = dimV . If n = 1 we have V = U = ker(1 − g),
and c(g,F) = 0 for the unique flag F . Hence ∆(g, U ;V ) = (q − 1) as required.

WheneverW is a two-dimensional g-invariant subspace of V such that U ⊂W ,
let F(U,W ;V ) be the set of flags F of the form

{0} = V0 ⊂ U ⊂W ⊂ V3 ⊂ · · · ⊂ Vn = V

centralized by g. Note first of all that

∆(g, U ;V ) =
∑

F∈F(U ;V )

(q − 1)n−c(g,F)(−1)c(g,F)

=
∑
W

∑
F∈F(U,W ;V )

(q − 1)n−c(g,F)(−1)c(g,F),

where W runs over all two-dimensional g-invariant subspaces of V which contain U .
So

∆(g, U ;V ) =
∑

W∈S1

∑
F∈F(U,W ;V )

(q − 1)n−c(g,F)(−1)c(g,F)

+
∑

W∈S2

∑
F∈F(U,W ;V )

(q − 1)n−c(g,F)(−1)c(g,F),

where S1 consists of those W such that (1 − g)W = 0 and S2 consists of those W
such that (1− g)W = U .

The natural map V → V/U induces a one-to-one correspondence between
F(U,W ;V ) and F(W/U ;V/U); denote this by F 7→ F ′. Note that, by definition,

∆(g,W/U ;V/U) =
∑

F ′∈F(W/U ;V/U)

(q − 1)n−1−c(g,F ′)(−1)c(g,F ′)
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since V/U has dimension n− 1, and note also that

c(g,F) =
{
c(g,F ′) if (1− g)W = 0
c(g,F ′) + 1 if (1− g)W = U .

We now treat separately the cases U 6⊆ (1−g)V and U ⊆ (1−g)V . If U 6⊆ (1−g)V
then (1− g)W 6= U for any W ⊆ V , and so S2 is empty. Hence

∆(g, U ;V ) =
∑

W∈S1

∑
F∈F(U,W ;V )

(q − 1)n−c(g,F)(−1)c(g,F)

=
∑

W∈S1

∑
F ′∈F(W/U ;V/U)

(q − 1)n−c(g,F ′)(−1)c(g,F ′)

=
∑

W∈S1

(q − 1)∆(g,W/U ;V/U)

since W ∈ S1 implies (1 − g)W = 0, and so c(g,F) = c(g,F ′). Furthermore,
since (1 − g)v ∈ U implies (1 − g)v = 0, the kernel of 1 − g in its action on V/U
is ker(1 − g)/U , which has dimension k − 1. So the inductive hypothesis yields
∆(g,W/U ;V/U) =

(
(−1)(n−1)−(k−1)(qk−2 − 1) · · · (q − 1)

)
(q − 1), and thus

∆(g, U ;V ) =
∑
W

(
(−1)n−k(qk−2 − 1) · · · (q − 1)

)
(q − 1)2.

where the sum is over those W such that W/U is a one-dimensional subspace of
the (k− 1)-dimensional space ker(1− g)/U . Since the number of such W is qk−1−1

q−1
we conclude that

∆(g, U ;V ) =
(
(−1)n−k(qk−1 − 1) · · · (q − 1)

)
(q − 1),

as required.
On the other hand, suppose that U ⊆ (1 − g)V . As before we observe that

if W ∈ S1 then (1 − g)W = 0; hence c(g,F) = c(g,F ′) for all F ∈ F(U,W ;V ). If
W ∈ S2 then (1−g)W = U ; in this case c(g,F) = c(g,F ′)+1 for all F ∈ F(U,W ;V ).
Hence

∆(g, U ;V ) =
∑

W∈S1

∑
F∈F(U,W ;V )

(q − 1)n−c(g,F)(−1)c(g,F)

+
∑

W∈S2

∑
F∈F(U,W ;V )

(q − 1)n−c(g,F)(−1)c(g,F)

=
∑

W∈S1

∑
F ′∈F(W/U ;V/U)

(q − 1)n−c(g,F ′)(−1)c(g,F ′)

+
∑

W∈S2

∑
F ′∈F(W/U ;V/U)

(q − 1)n−(c(g,F ′)+1)(−1)c(g,F ′)+1

=
∑

W∈S1

(q − 1)∆(g,W/U ;V/U) +
∑

W∈S2

(−1)∆(g,W/U ;V/U).

Since U ⊆ (1−g)V it follows that (1−g)(V/U) = (1−g)V/U , and so the dimension
of the kernel of 1− g on V/U equals dimV − dim(1− g)V = dim(ker(1− g)) = k.
So our inductive hypothesis now yields that

∆(g, U ;V ) =
(
(−1)n−1−k(qk−1 − 1) · · · (q − 1)

)
(q − 1)

(
(q − 1)|S1|+ (−1)|S2|

)
.
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Now W ∈ S1 if and only if W/U is a one-dimensional subspace of the (k − 1)-
dimensional space ker(1 − g)/U ; hence |S1| = qk−1−1

q−1 . Similarly W ∈ S2 if and
only if W /∈ S1 and W/U is a one-dimensional subspace of the k-dimensional space
which is the kernel of 1− g on V/U ; hence |S2| = qk−1

q−1 − qk−1−1
q−1 . Thus

(q − 1)|S1|+ (−1)|S2| = (q − 1)
(
qk−1 − 1
q − 1

)
+ (−1)

(
qk − 1
q − 1

− qk−1 − 1
q − 1

)
=
qk − qk−1 − (q − 1)− qk + qk−1

q − 1

=
−(q − 1)
q − 1

= −1;

and so in this case we end up with

∆(g, U ;V ) =
(
(−1)n−k(qk−1 − 1) · · · (q − 1)

)
(q − 1),

which is what we were required to prove. �

As an immediate corollary of Proposition (3.2) we obtain the following formula
for the values of the Gel’fand-Graev character.

(3.4) Theorem. Let g ∈ G and let k = dim(ker(1− g)). Then

Γ(g) =
{

(−1)n−k(qk − 1)(qk−1 − 1) · · · (q − 1) if g is unipotent,
0 otherwise.

Proof. We may assume that g is unipotent, since we have already noted that
Γ(g) = 0 otherwise. Now Γ(g) =

∑
U ∆(g, U ;V ), where U runs through all

1-dimensional subspaces of ker(1− g), and by Lemma (3.3) we have

∆(g, U ;V ) = ((−1)n−k(qk−1 − 1)(qk−2 − 1) · · · (q − 1))(q − 1)

for each of the (qk − 1)/(q − 1) such subspaces U . Hence the result follows. �

§4 Klyachko’s Theorem

Let ε = εt be the indicator function corresponding to the transpose antiautomor-
phism of G = GL(n, q). Let χ be any irreducible complex character of G, choose
a matrix representation R with character χ, and let χ∗ be the character of the
representation R∗: g 7→ R(gt)t. Then for all g ∈ G we have

χ∗(g) = traceR(gt)t = traceR(gt) = χ(gt).

But it is an elementary fact that (over any field) each square matrix is similar to
its transpose; so g and gt are conjugate elements of G, and therefore χ∗ = χ. Thus
the representations R∗ and R are equivalent, and, consequently, ε(χ) = ±1.

By Theorem (2.1), for each g ∈ G the sum
∑

χ ε(χ)χ(g) equals the number
of nonsingular matrices x such that xtg = x. Given such a matrix x, let f be the
bilinear form V × V → Fq defined by

f(u, v) = utx v for all u, v ∈ V ,
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noting that f is nondegenerate since x is nonsingular. For all u, v ∈ V ,

f(u, v) = utx v = utxt(gv) = (gv)txu = f(gv, u)

and so f ∈ Sym(V, g). Conversely, a nondegenerate element of Sym(V, g) gives a
nonsingular x satisfying xtg = x. Thus it follows that

∑
χ ε(χ)χ(g) = sg(V ). Now

once we have proved Theorem (1.1) it will follow, in view of Eq. (1) above, that

[n/2]∑
d=0

λG
d (g) =

∑
χ

ε(χ)χ(g),

showing that each ε(χ) is positive, and hence establishing Klyachko’s Theorem.

(4.1) Lemma. Let f be a g-invariant bilinear form on V , and j a nonnegative
integer. Let Kj and Ij be the subspaces of V defined by Kj = ker(1 − g)j and
Ij = (1−g)jV . Then f(u, v) = 0 = f(v, u) for all u ∈ Kj and v ∈ Ij . Furthermore,
if f is nondegenerate then

Ij = { v ∈ V | f(v, u) = 0 for all u ∈ Kj } = { v ∈ V | f(u, v) = 0 for all u ∈ Kj },

and likewise

Kj = {u ∈ V | f(v, u) = 0 for all v ∈ Ij } = {u ∈ V | f(u, v) = 0 for all v ∈ Ij }.

Proof. Since I0 = V and K0 = {0}, in the case j = 0 it is trivial that f(u, v) = 0
for all u ∈ Kj and v ∈ Ij . Proceeding inductively, let j > 0 and u ∈ Kj , and note
that each element of Ij can be expressed in the form (1− g)v with v ∈ Ij−1. Now

f(u, (1− g)v) = f(u, v)− f(u, gv) = f(gu, gv)− f(u, gv) = −f((1− g)u, v) = 0

by the inductive hypothesis, since (1 − g)u ∈ Kj−1; this completes the induction.
The proof that f(v, u) = 0 for all v ∈ Ij and u ∈ Kj is totally analogous.

The remaining assertions follow immediately by dimension arguments, since
the dimension of Ij is the codimension of Kj . �

Note that if f ∈ Sym(V, g) then f(u, v) = f(gv, u) = f(gu, gv) for all u, v ∈ V ,
and so f is necessarily g-invariant. In particular, Lemma (4.1) applies. Note also
that if f ∈ Sym(V, g) then

{u ∈ V | f(u, v) = 0 for all v ∈ V } = {u ∈ V | f(gv, u) = 0 for all v ∈ V }
= {u ∈ V | f(v, u) = 0 for all v ∈ V }

showing that f is a reflexive form: one whose left and right radicals coincide. (Of
course, alternating forms are also reflexive.) Factoring out the radical yields a
nondegenerate form on the quotient space.

Given a nondegenerate alternating bilinear form F on V , there is a natural way
to associate with each g ∈ GL(V ) that stabilizes F a bilinear form f on the space
(1− g)V . (The form f associated with g plays an important role the classification
of conjugacy classes in symplectic groups: see Wall [6].)
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(4.2) Proposition. Let F be a nondegenerate form in Alt(V, g). Then there is a
nondegenerate f ∈ Sym((1−g)V, g) satisfying f((1−g)v, u) = F (v, u) for all v ∈ V
and u ∈ (1− g)V .

Proof. Restriction of F yields a bilinear map V × (1− g)V → Fq, which induces
a bilinear map (V/ ker(1 − g)) × (1 − g)V → Fq, since by Lemma (4.1) we have
F (u, v) = 0 for all u ∈ ker(1− g) and v ∈ (1− g)V . Identifying V/ ker(1− g) with
(1− g)V in the natural way yields f . Since F is alternating and g-invariant we find
that F (v, (1−g)u) = F (gv−v, gu) = F (gu, (1−g)v) for all u, v ∈ V , from which it
follows that f((1−g)v, (1−g)u) = f((1−g)gu, (1−g)v), and f ∈ Sym((1−g)V, g).
If u ∈ radf then for all v ∈ V we have F (v, u) = f((1− g)v, u) = 0, and this gives
u = 0 since F is nondegenerate. Hence f is nondegenerate. �

By a parallel argument, reversing the roles of alternating forms and forms
that are symmetric modulo g, we obtain the following result.

(4.3) Proposition. Let f be a nondegenerate form in Sym(V, g). Then there is a
nondegenerate F ∈ Alt((1− g)V, g) satisfying F (u, (1− g)v) = f(u, v) for all v ∈ V
and u ∈ (1− g)V .

Observe that combining Propositions (4.2) and (4.3) gives a map from the
g-invariant nondegenerate alternating bilinear forms on V to those on (1 − g)2V .
This map can be described as follows: restrict the given form on V to the subspace
(1 − g)V , and then factor out the radical, which is (1 − g)V ∩ ker(1 − g); the
resulting space is naturally isomorphic to (1 − g)2V . Note also that in the case
that ker(1 − g) = {0}, Propositions (4.2) and (4.3) both yield bijections between
the sets of nondegenerate elements of Alt(V, g) and Sym(V, g). Thus we have the
following fact.

(4.4) Proposition. Let g ∈ G be such that 1 − g is an invertible map V → V .
Then Sg(V ) = sg(V ).

Given any g ∈ G there is an integer p (which is dimV at most) such that
(1− g)pV = (1− g)rV for all r ≥ p. We have V = V1 ⊕ V2, where

V1 = {u ∈ V | (1− g)ku = 0 for some integer k }

(the generalized 1-eigenspace) and V2 = (1− g)pV . By Lemma (4.1) we know that
every g-invariant bilinear form f on V satisfies f(u, v) = 0 = f(v, u) for all u ∈ V1

and v ∈ V2; hence each such form f is determined by its restrictions to V1 and
V2, and is nondegenerate precisely when both these restrictions are nondegenerate.
Furthermore, a form f can be found with any prescribed restrictions to V1 and V2.
As an easy consequence of these considerations we obtain the following result.

(4.5) Proposition. Let g, V1 and V2 be as above. Then Sg(V ) = Sg(V1)Sg(V2)
and sg(V ) = sg(V1)sg(V2).

Propositions (4.5) and (4.4) enable us to reduce the proof of Theorem (1.1)
to the case of unipotent elements g (those for which V2 = 0). For suppose that
Theorem (1.1) holds for such elements g. Since an arbitrary element g is unipotent
on its generalized 1-eigenspace, we have

sg(V1) =
∑

U1⊆V1

Γ(g, V1/U1)Sg(U1).
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If U is a g-invariant subspace of V with V2 ⊆ U then U = (U ∩ V1) ⊕ V2, and
Proposition (4.5) (applied with U in place of V ) together with Proposition (4.4)
yields

Sg(U) = Sg(U ∩ V1)Sg(V2) = Sg(U ∩ V1)sg(V2).

Now U1 7→ U1 + V2 and U 7→ U ∩ V1 are mutually inverse bijections between the
sets of g-invariant subspaces of V1 and g-invariant subspaces of V containing V2.
Furthermore, since

V1/U1 = V1/(U ∩ V1) ∼= (V1 + U)/U = (V1 + V2)/U = V/U

as g-modules, it follows that Γ(g, V1/U1) = Γ(g, V/U). Thus

sg(V ) = sg(V1)sg(V2) =
∑
U

Γ(g, V/U)Sg(U ∩ V1)sg(V2) =
∑
U

Γ(g, V/U)Sg(U)

where U runs through all g-invariant subspaces of V containing V2. However,
Γ(g, V/U) = 0 for g-invariant subspaces U that do not contain V2, since the
Gel’fand-Graev character vanishes on elements that are not unipotent. Hence

sg(V ) =
∑
U

Γ(g, V/U)Sg(U)

with U running through all g-invariant subspaces of V , as required.

Our remaining task is to prove Theorem (1.1) for unipotent g.

Let g ∈ G be unipotent, and write I = (1−g)V and K = ker(1−g). For each
f ∈ Sym(V, g) we define

fK
⊥ = {x ∈ V | f(x, v) = 0 for all v ∈ K },

and note by Proposition (4.1) that I ⊆ fK
⊥, equality holding if f is nondegenerate.

The converse of this is also true.

(4.6) Proposition. Let f ∈ Sym(V, g) be such that I = fK
⊥. Then f is nonde-

generate.

Proof. Let R be the radical of f and V = V/R, and let f ∈ Sym(V , g) be the form
on V induced by f . Noting that R ⊆ fK

⊥ = I, write I = I/R and K = (K+R)/R.
Then

fK
⊥

= {x ∈ V | f(x, v) = 0 for all v ∈ K }

= {x+R | f(x, v) = 0 for all v ∈ K }
= fK

⊥/R = I/R = I,

and since f is nondegenerate it follows that the dimension of K equals the codi-
mension of I. But the codimension of I is the same as the codimension of I, which
equals dimK. So dimK = dim(K +R)/R, whence the sum K +R is direct. But,
since 1 − g is nilpotent, all nonzero (1 − g)-invariant subspaces intersect K, the
kernel of 1− g, nontrivially. Hence R is zero, as required. �
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Consider subspaces Y of V such that I ⊆ Y . (Note that all such subspaces
are g-invariant). For each such Y let RY be the set of all ordered pairs (F, f) such
that F ∈ Alt(Y, g) and f ∈ Sym(V, g), and

f(y, v) = F (y, (1− g)v) for all y ∈ Y and v ∈ V .

Thus F is required to extend the form on I that is derived from f in the manner
described in Proposition (4.3). Note, however, that we do not here require the
forms to be nondegenerate.

(4.7) Proposition. Let r be the codimension of Y in V . For each F ∈ Alt(Y, g)
there are precisely q(

r+1
2 ) forms f ∈ Sym(V, g) such that (F, f) ∈ RY .

Proof. Choose a subspace W such that V = Y ⊕ W , and observe that since
(1− g)W ⊆ Y ,

(w,w′) 7→ F ((1− g)w, (1− g)w′)

defines an alternating bilinear form on W . The number of bilinear forms f0 on W
such that

f0(w,w′)− f0(w′, w) = F ((1− g)w, (1− g)w′)

is the same as the number of symmetric bilinear forms on W , namely q(
r+1
2 ). It is

readily checked that for each such f0,

f(y + w, y′ + w′) = F (y, (1− g)(y′ + w′)) + F (gy′, (1− g)w) + f0(w,w′)

defines an f such that (F, f) ∈ RY , and, conversely, every suitable f has this form
for some such f0. We leave the details to the reader. �

(4.8) Proposition. Let m = dimY/I, and let f ∈ Sym(V, g). The number of

forms F ∈ Alt(Y, g) such that (F, f) ∈ RY is q(
m
2 ) if Y ⊆ fK

⊥, and zero otherwise.

Proof. Let v ∈ K (so that (1 − g)v = 0), and suppose there exists a form F on
Y such that (F, f) ∈ RY . Then for all y ∈ Y ,

0 = F (y, (1− g)v) = f(y, v),

and so Y ⊆ fK
⊥. This proves the second assertion.

For the other, suppose that the condition Y ⊆ fK
⊥ is satisfied, and choose

any space X such that Y = I ⊕ X. If (F, f) ∈ RY and F0 is the restriction of
F to X, then F0 is an alternating bilinear form on X, and for all v, v′ ∈ V and
x, x′ ∈ X,

F ((1− g)v + x, (1− g)v′ + x′) = f((1− g)v + x, v′)− f(x′, v) + F0(x, x′).

Observe that this equals f(x, v′)−f(x′, v)+f(v, v′)−f(v′, v)+F0(x, x′). We leave
it to the reader to check that, conversely, for any alternating bilinear form F0 on
X these formulas yield a well defined F ∈ Alt(Y, g) satisfying (F, f) ∈ RY . Thus
the total number of such forms F is the number of alternating bilinear forms on X,
which is q(

m
2 ). �
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We shall require the following two elementary facts, the proofs of which we
leave to the reader.

(4.9) Lemma. Let V be a finite dimensional vector space over Fq. Then∑
Y

(−1)dim Y q(
1+dim Y

2 ) = (1− q)(1− q2) · · · (1− qdim V )

and ∑
Y

(−1)dim Y q(
dim Y

2 ) =
{

1 if V = 0,
0 otherwise,

where in each case Y runs through all subspaces of V .

We require one further preliminary result before we can complete the proof
of Theorem (1.1).

(4.10) Lemma. Let g be a unipotent element of G, and let Sg(V ) be the total
number of g-invariant alternating bilinear forms on V . Then Sg(V ) =

∑
U Sg(U),

where U runs through all g-invariant subspaces of V .

Proof. Let V ∗ be the dual of V , made into a g-module via the contragredient
action. Since g is unipotent it is clear that g and (g−1)t have the same Jordan
canonical form; so V ∗ and V are isomorphic g-modules. Hence Sg(V ) = Sg(V ∗),
and also Sg(V ) = Sg(V ∗).

If U is a subspace of V , let Ann(U) be the subspace of V ∗ consisting of
those linear functionals that vanish on U . Then U ↔ Ann(U) gives a bijective
correspondence between the g-invariant subspaces of V and those of V ∗, and since
V ∗/Ann(U) ∼= U∗, it follows that∑

U

Sg(U) =
∑
U

Sg(U∗) =
∑
W

Sg(V ∗/W )

where U runs through the g-invariant subspaces of V and W runs through the
g-invariant subspaces of V ∗. But since each F ∈ Alt(V ∗, g) gives rise to a non-
degenerate element of Alt(V ∗/W, g), where W is the radical of F , and conversely
each g-invariant nondegenerate alternating bilinear form on a quotient space V ∗/W
yields an F ∈ Alt(V ∗, g) with radical W , it follows that Sg(V ∗/W ) is the number
of such forms with radical W , and

∑
W Sg(V ∗/W ) = Sg(V ∗) = Sg(V ). �

We are now able to complete the proof of the main theorem. Let g ∈ G
be unipotent, and let U be an arbitrary g-invariant subspace of V . Observe that
Sg(U) = (−1)dim USg(U), since nondegenerate alternating forms exist only on even
dimensional subspaces. Let r be the codimension of U+I in V , where I = (1−g)V ,
and note that r is the dimension of the kernel of the action of g on V/U . Hence by
Theorem (3.4),

Γ(g, V/U)Sg(U) = Γ(g, V/U)(−1)dim USg(U)

= (−1)n−r(qr − 1)(qr−1 − 1) · · · (q − 1)Sg(U)

= (−1)nSg(U)(1− q)(1− q2) · · · (1− qr)

= (−1)nSg(U)
∑
Y

(−1)codim Y q(
1+codim Y

2 )
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where Y runs through all subspaces of V containing U + I, this last step following
from Lemma (4.9). Hence∑

U

Γ(g, V/U)Sg(U) =
∑
Y⊇I

(−1)dim Y q(
1+codim Y

2 )
( ∑

U⊆Y

Sg(U)
)
,

since Y contains U + I if and only if it contains both U and I. By Lemma (4.10)
and Proposition (4.7),∑

U

Γ(g, V/U)Sg(U) =
∑
Y⊇I

(−1)dim Y q(
1+codim Y

2 )Sg(Y )

=
∑
Y⊇I

(−1)dim Y
∑

F∈Alt(Y,g)

q(
1+codim Y

2 )

=
∑
Y⊇I

(−1)dim Y
∑

F∈Alt(Y,g)

∑
f

1

where f runs through the forms in Sym(V, g) such that (F, f) ∈ RY .
By Proposition (4.8), for each f ∈ Sym(V, g) the number of F ∈ Alt(Y, g)

such that (F, f) ∈ RY is 0 unless Y ⊆ fK
⊥, in which case it is q(

dim(Y/I)
2 ). Thus∑

U

Γ(g, V/U)Sg(U) =
∑
Y⊇I

∑
f∈Sym(V,g)

∑
{F | (F,f)∈RY }

(−1)dim Y

=
∑

f∈Sym(V,g)

∑
{Y | I⊆Y⊆f K⊥}

(−1)dim Y q(
dim(Y/I)

2 )

= (−1)dim I
∣∣{ f ∈ Sym(V, g) | I = fK

⊥ }
∣∣

by Proposition (4.9). But by Proposition (4.3) and the fact that there are no
nondegenerate alternating bilinear forms on I if dim I is odd, we conclude that∑

U

Γ(g, V/U)Sg(U) =
∣∣{ f ∈ Sym(V, g) | I = fK

⊥ }
∣∣ = sg(V )

by Proposition (4.6).
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