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1. Use orthogonality of coordinate functions to prove that if x and ¢ are
characters of irreducible complex representations of G then

1 ifxy=¢
‘G,ZX _{0 if x # .
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(Hint: Choose a full set of irreducible unitary representations R()
of G, as in Lecture 9. Since equivalent representations have the

same character, x(g) = de R(k)( ) and ¢(g) = Zdl R(l)( ) for
some k and [.)

Solution.

Let R and S be representations whose characters are x and ¢. If
RM R R®) are a full set of irreducible unitary representations
of G then R must be equivalent to R*) and S to R® for some k and [.
As in the notes, for each h € {1,2,...,s} and p, m € {1,2,... ,dp}
define RZ(,]}%: G — C by the rule that Rg;%g is the (p, m)-entry of R(Mg
(for each g € G), and let x(M) = ZZ;"Zl R, (the character of R().
Since equivalent representations have the same character we obtain
x = x® and ¢ = xV. Now orthogonality of coordinate functions
gives
|G‘ S (RO, (RS g) = (1/di)5116gmn

geG

and putting p = m and ¢ = n and summing over m and n gives

dr dp di
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The right hand side is zero unless [ = k, in which case it equals 1 (since

2

there are dj nonzero terms in the sum). So

Z X (g)x® (g) = o (%)

gEG

The left hand side here equals | e d(9)x(g). If x # ¢ then certainly
k # 1, and so the right hand side is 0. If y = ¢ the left hand side can
be written as (1/|G]) 3, [x(9)[?, which is nonzero since all terms
are nonnegative, and |x(1)|> # 0 as x(1) is the trace of the d; x dj
identity matrix, which is d;. So if x = ¢ we must have k = [, and (%)
gives > o d(9)x(9) = 1.

2. Use Exercise 1 to show that if x is the character of a representation
which is not irreducible then (1/|G[) >_ ¢ Ix(g)]* > 1.

Solution.

If a representation R is not irreducible then by Maschke’s Theorem it is
equivalent to the diagonal sum of two other representations, and then
its character will be the sum of the characters of these other representa-
tions. If these in turn are not irreducible then they can also be written
as sums of other characters. As the degrees of the representations are
reduced at each step, and the degree of a representation is always a
positive integer, the process cannot go on indefinitely. Eventually our
original character x is expressed as a sum 1 + ¥ + - -+ + ¥, where
the 9, are characters of irreducible representations. As in Exercise 1,
each 1; must equal one of the x(*) (and there could be repetitions).
Thus x = 22:1 mix*) for some nonnegative integers my, at least one
of which is nonzero. Now
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The least value this can take is 1. Moreover, this minimum is only
attained when one of the m;’s is 1 and the others all 0, in which case
x = x® is irreducible. Otherwise (1/|G|) dogea Ix(g)* > 1.

3. Prove that if A is a character of G of degree 1 and ¢ is any character
of G then \¢, defined by (Ad)(g) = A(g)¢(g) for all g € G, is also a
character of G.



Solution.

Let R be a matrix representation with character ¢. (Note that X is
a representation as well as a character, since its degree is 1.) Define
S(g) = Mg)R(g) for all g € G. Then S is a representation, since for
all gand h in G

S(gh) = A(gh)R(gh) = Mg)A(h)R(g) R(h)

(since scalars commute with matrices). Multiplying a matrix by a
scalar clearly multiplies its trace by the same scalar. The trace of
R(g) is x(g); hence the trace of S(g) is A(g)x(g9) = (Ax)(g), and the
function g — (A¢)(g) is the character of the representation S.

Determine the irreducible characters of S4, given that there are exactly
five of them.

Solution.

Each element of Sy is uniquely expressible in the form ox with o € S5
and z € K, and each coset of K in .Sy is uniquely expressible as o K
with o € S3. A character x of S3 becomes a character of S4/K if we
define x(cK) = x(o) for all 0 € S3. By Exercise 2 we obtain a char-
acter x of Sy satisfying y(oz) = x(0K) = x(0o) for all o € S5 and all
x € K. We see that xy must take the same value on elements of K as
it takes at the identity, and the same value on four-cycles as on trans-
positions. (Observe, for instance, that (1,2,3,4) = (1, 3)[(2,3)(1,4)].)
Starting with the 1-character of Ss this simply gives the 1-character of
S4, and similarly the sign character of S3 (mapping even permutations
to 1 and odd permutations to —1) gives the sign character of S4. The
irreducible character of S3 of degree 2 yields x3 of the table below.
The character y4 was found in Assignment 1, and x5 is the product of
X4 and x2 (see Exercise 1).

1 (]"2) (17273) (]‘72?374) (172)(374)
Yi| 1 1 1 1 1
Y2 | 1 —1 1 —1 1
s | 2 0 ~1 0 2
xa| 3 1 0 —1 —1
xs | 3 ~1 0 1 ~1
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The numbers of elements in the various conjugacy classes are 1, 6, 8, 6
and 3 (taking the classes in the same order as in the table). To calculate
the inner product of a character with itself, multiply the square of the
absolute value of the character on each class by the number of elements
in the class, sum over all the classes and divide by the order of the group
(24 in this case). Thus for x4 we get

(324+6x12+8x0%+6x (—1)*+3 x (~1)?)/24
which is 1. Since each of the y; give 1 they are all irreducible.

If A = (a;;)is an m x n matrix and B = (bg;) a p X ¢ matrix then
the Kronecker product of A and B is the mp x ng matrix A x B whose
(i—=1Dp+k,(j —1)g+ D)-entry is a;;by;. That is,

anB algB ce alnB

. (I21B a22B e agnB
Ax B= : . .

a’mlB amQB [ amnB

Prove that (A x B)(C x D) = AC x BD, provided that the number of
rows of C' (resp. D) equals the number of columns of A (resp. B).

Solution.

By multiplication of partitioned matrices in the usual way we find that
(A x B)(C x D) equals

a,HB algB . alnB CllD 612D . Ch«D

ang aggB e agnB 021D 622D e CQTD

am1B  am2B ... amunB ciD cnoD ... cpeD
Zj CbleleD Zj aljcngD Zj alejrBD
Zj aszleD Zj a2jCjQBD PN Zj GQjCjTBD
Zj aijleD Zj aijngD PN Zj aijjrBD

which equals AC' x BD, since Y a;jcjy is the (i, k)-entry of AC.



