
Group representation theory Lecture 11, 1/9/97

In Lecture 10 we described the regular representation of G as the linear representation derived
from the permutation representation of G on G corresponding to the left multiplication action of
G on itself. That is, to each element g ∈ G we associate the permutation σg:G → G defined by
σgx = gx (for all x ∈ G), and corresponding to this permutation we have a permutation matrix
Rg. Then g 7→ Rg is a matrix representation. A non-matrix version of the regular representation
can be obtained by identifying the elements of G with the basis elements of a vector space V—in
other words, let V be an |G|-dimensional vector space, then choose any basis of V and a one to
one correspondence between these basis vectors and the elements of G—and associate with each
element g ∈ G the linear transformation ρg:V → V which permutes the basis according to the
permutation σg defined above. Then ρ: g 7→ ρg is a representation of G by linear transformations
of the space V .

Furthermore, we also noted in Lecture 10 that the set VG of all complex valued functions on
G is a |G|-dimensional vector space over C. So we can take the vector space V referred to in the
last paragraph to be VG. If for all x ∈ G we define the function fx ∈ VG by the formula

fxh =
{

1 if h = x−1,
0 if h 6= x−1,

then it is easily seen that the fx’s form a basis of VG in one to one correspondence with the elements
of G. The remarks in the last paragraph thus assert that there is an action of G on VG such that
gfx = fgx for all x ∈ G and g ∈ G. An alternative way to describe this action is as follows: for all
g ∈ G and f ∈ VG the function gf ∈ VG is given by

(gf)h = f(hg) for all h ∈ G.

The student should check that this formula does indeed yield gfx = fgx, and that the axioms for
a linear action of group on a vector space (see Lecture 3) are indeed satisfied.

Lecture 12, 3/9/97

We have defined a G-module to be a vector space with a G-action; that is, there must be a function
(g, v)→ gv from G×V to V satisfying (i), (ii) and (iii) of Lecture 3. Strictly speaking, this should
be a called left G-module, since the G action is on the left. Similarly, a right G-module is a vector
space V equipped with a function (v, g) 7→ vg from V ×G to V satisfying
(i) v1 = v for all v ∈ V , where 1 is the identity of G,
(ii) (vg)h = v(gh) for all v ∈ V andg, h ∈ G,
(iii) (u+ v)g = ug + vg for all u, v ∈ V and g ∈ G,
(iv) (λv)g = λ(vg) for all v ∈ V and g ∈ G and all scalars λ.

We have seen that VG becomes a left G-module via the (left) action given by (gf)h = f(hg)
for all g, h ∈ G and all functions f ∈ VG. In fact we can also make VG into a right G-module by
defining fg:G→ C (whenever f ∈ VG and g ∈ G) by

(fg)h = f(gh) for all h ∈ G.

It is a straightforward matter, which we leave to the reader, to check that (i) to (iv) above are
satisfied.
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A question which now arises is the following: which functions f :G→ C have the property that
gf = fg for all g ∈ G? That is, on which elements f ∈ VG do the left and right actions of G agree?

Definition. A function f :G→ C is called a class function if it is constant on conjugacy classes.
Thus f is a class function if and only if fx = fy whenever x and y are conjugate in G.

Proposition. A function f ∈ VG satisfies gf = fg for all g ∈ G if and only if it is a class
function.

Proof. Suppose that gf = fg for all g ∈ G and let x, y be conjugate elements of G. Then there
exists g ∈ G such that g−1xg = y, and thus

fy = f(g−1xg) = (gf)(g−1x) = (fg)(g−1x) = f(g(g−1x)) = fx,

where we have used the definitions of gf and fg and the assumption that gf = fg. Thus f is a
class function.

Conversely, suppose that f is a class function, and let g ∈ G be arbitrary. Noting that for all
h ∈ G we have

g−1(gh)g = hg,

so that gh and hg are conjugate, it follows that f(gh) = f(hg) (since f is a class function). Thus

(gf)h = f(hg) = f(gh) = (fg)h for all h ∈ G,

showing that gf = fg for all g ∈ G, as required. �

For example, the group S3 has three conjugacy classes. The identity element constitutes
a conjugacy class by itself—this is the case in any group—since σ−1(id)σ = id for all σ. As
(2 3)−1(1 2)(2 3) = (1 3) and (1 3)−1(1 2)(1 3) = (2 3) we see that (1 2), (1 3) and (2, 3) are all
conjugate, and similarly (1 2 3) = (1 2)−1(1 3 2)(1 2) shows that (1 2 3) and (1 3 2) are all conjugate.
Slightly more work is needed to show that (1 2) and (1 2 3) are not conjugate, but since this is a
side issue at present we omit it. The point is that a class function f on S3 is determined by a triple
x, y, z of complex numbers, where

f1 = x

f(1 2) = f(1 3) = f(2 3) = y

f(1 2 3) = f(1 3 2) = z.

Thus we see that the class functions on S3 form a three dimensional vector space. In general,

Proposition. The set of all class functions G → C form a vector subspace of VG of dimension
equal to the number of conjugacy classes of G.

Proof. The zero function is clearly constant on conjugacy classes, and so the set of all class
functions is nonempty. If e and f are class functions and if x and y are arbitrary conjugate elements
of G then fx = fy and ex = ey (since e, f are class functions, and so

(e+ f)x = ex+ fx = ey + fy = (e+ f)y

by the definition of the sum of two functions. Thus e+ f is a class function, and so we have shown
that the set of class functions is closed under addition. Similarly, if f is a class function and λ any
scalar then for all conjugate elements x, y ∈ G,

(λf)x = λ(fx) = λ(fy) = (λf)y,
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which shows that λf is a class function. (The student should take care to examine every step in
this calculation and make sure that (s)he knows exactly what is being asserted and why it is true.
It is very easy to look at equations like the above and believe them because they seem vaguely
reasonable, but that is not good enough in pure mathematics.) So the set of all class functions is
also closed under scalar multiplication. Hence it is a subspace of VG.

Let C1, C2, . . . , Ct be all the conjugacy classes of G, and for each i from 1 to t let Fi be the
function G→ C given by Fi =

∑
y∈Ci fy−1 , where the functions fx ∈ VG are as defined at the start

of this lecture. Then

Fig =
∑
y∈Ci

fy−1(g) =
{

1 if g ∈ Ci,
0 if g /∈ Ci,

since fy−1(g) is 1 if g = y and is zero otherwise. Now every class function on G can be expressed as
a linear combination of the Fi; specifically, if f :G→ C takes the value λi on elements in the class
Ci (for i from 1 to t) then f =

∑
i λiFi. Thus the Fi span the space of class functions. Furthermore,

it can be seen that for all choices of the coefficients λi the function
∑
i λiFi takes the value λi on

elements of class Ci. Thus if
∑
i λiFi = 0 then all the coefficients λi must be 0, which means that

the Fi are linearly independent. So F1, F2, . . . , Ft form a basis for the space of class functions,
which therefore has dimension t, as required. �

The functions fx for x ∈ G form a basis of VG. But we also saw in Lecture 10 that if R(1),
R(2), . . . , R(s) are a full set of pairwise inequivalent irreducible matrix representations of G then
the collection S of all coordinate functions of all the R(k) also forms a basis of VG (whence we
deduced that the sum of the squares of the degrees of the R(k) equals |G|). We shall show that the
characters—see definition below—χ(1), χ(2), . . . , χ(s) of the representations R(1), R(2), . . . , R(s)

form a basis of the space of class functions on G.

Definition. The character of a matrix representation R of G is the function χ:G → C defined
by χ(g) = trace(Rg). Thus if the degree of R is d and Rij (where 1 ≤ i, j ≤ d) are the coordinate
functions of R then χ =

∑d
i=1Rii.

We have seen in an assignment question that the character of a representation is always a class
function. The point is that similar matrices have the same trace, and so whenever g, x ∈ G the
matrix

R(g−1xg) = (Rg)−1(Rx)(Rg)

has the same trace as Rx, and this shows that the character χ takes the same value on g−1xg as it
does on x. Linear independence of the collection S of all coordinate functions of the R(k) implies
linear independence of the characters χ(k), for if

∑
k λkχ

(k) = 0 then

0 =
∑
k

λk

( dk∑
i=1

R
(k)
ii

)
=
∑
i,k

λkR
(k)
ii ,

and this implies that all the coefficients λk are zero. So to prove that the characters of the irreducible
representations form a basis for the space of all class functions it remains to prove that they span.

Proposition. If χ(1), χ(2), . . . , χ(s) are the characters of a full set of irreducible representations
of G then every class function on G can be expressed as a linear combination

∑
k λkχ

(k).

Proof. Let f be a class function on G, and for each of the irreducible representations R(h) (notation
as above) consider the matrix

Mh =
∑
g∈G

(fg)(R(h)g), (1)
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(where the overline indicate complex conjugation). We show that Mh commutes with R(h)x for all
x ∈ G. Indeed, since f is a class function we have that f(x−1gx) = fg for all g ∈ G, and so

(R(h)x)−1Mh(R(h)x) = (R(h)x)−1
(∑
g∈G

f(x−1gx)(R(h)g)
)

(R(h)x)

=
∑
g∈G

f(x−1gx)((R(h)x)−1(R(h)g)(R(h)x))

=
∑
g∈G

f(x−1gx)R(h)(x−1gx) =
∑
g∈G

(fg)(R(h)g)

since, with x fixed, x−1gx runs through all elements of G as g does. So (R(h)x)−1Mh(R(h)x) = Mh.
Now because R(h) is irreducible, Schur’s Lemma tells us that Mh = λhI for some scalar λh So now
looking at the (i, j)-entry in Eq. (1) tells us that∑

g∈G
(fg)(R(h)

ij g) = λhδij . (2)

For all f1, f2 ∈ VG define f1 ∗ f2 ∈ C by

f1 ∗ f2 =
1
|G|

∑
g∈G

(f1g)(f2g).

We saw in Lecture 9 (see Eq. (3) of that lecture) thatR(k)
pm∗R(l)

qn is zero unless k = l, p = q andm = n,
in which case it is 1/dk. Since the functions R(k)

pm span VG we can write f =
∑
k,p,m µk pmR

(k)
pm for

some coefficients µk pm, and this gives

R
(h)
ij ∗ f =

∑
k,p,m

µk pm(R(h)
ij ∗R

(k)
pm) =

∑
k,p,m

µk pm(1/dk)δhkδipδjm = (1/dh)µh i j .

But Eq. (2) says that R(h)
ij ∗ f = λhδij/|G|. Thus we have shown that

µh i j =
dhλhδij
|G|

,

and it follows that

f =
∑
h,i,j

µh i jR
(h)
ij =

1
|G|

∑
h,i,j

dhλhδijR
(h)
ij =

1
|G|

∑
h

dhλh

(∑
i

R
(h)
ii

)
=

1
|G|

∑
h

dhλhχ
(h).

This is a linear combination of the χ(h)’s, as required. �
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