
Group representation theory Lecture 15, 15/9/97

Before moving on to more theory, let us calculate some examples. Unfortunately, verifying elegant
theoretical results in practice often involves long calculations.

Let us start with a degree 1 representation of the group of symmetries of a square. Labelling
the vertices of the square 1, 2, 3 and 4 (cyclically), and identifying its symmetries with pemutations
of the vertices, we can easily write down the eight symmetries. The rotation symmetries are the
powers of the 4-cycle (1 2 3 4), and multiplying these four elements by (1 3) gives the four reflection
symmetries. Since we know that the product of two reflections is a rotation, and the product of two
rotations is a rotation, while the product of a reflection and a rotation is a reflection, it follows that
there is a representation of the group which maps the reflections to −1 and the rotations to +1.

So we have eight permutations which form a subgroup D of G = S4, the group of all per-
mutations of {1, 2, 3, 4}, and we have a representation ρ:D → GL(1,C). We should be able to
form an induced representation. For this we first need a system of coset representatives. Now
[G : D] = 24/8 = 3; so we need three coset representatives. An easy way to find three suitable
permutations is to find a subgroup X of G with three elements. The subgroup H ∩X must then
be trivial (since its order must divide both 3 and 8), and so if x, y are distinct elements of X then
the cosets xH and yH are distinct (since x−1y /∈ H). So we can take x1 = id, x2 = (1 2 3) and
x3 = (1 3 2) as the coset representatives.

Now let us calculate the matrices which will represent some randomly chosen elements of
S4 in the induced representation ρG. Consider g = (1 4 3), for example. The cosets gx1H,
gx2H, gx3H must equal x1H, x2H, x3H in some order. Now we have to calculate. First,
x−1

2 gx1 = (1 3 2)(1 4 3) = (1 4 2) /∈ D. Also x−1
1 gx1 = g /∈ D. So it must be that x−1

3 gx1 ∈ H,
and indeed calculation yields x−1

3 gx1 = (1 4)(2 3), which is the reflection in the perpendicular bi-
sector of the sides 1-4 and 2-3 of the square. So ρ(x−1

3 gx1) = −1, and this is the (3, 1) entry
of the matrix ρG(g). The (2, 1) and (1, 1) entries are 0. Moving on to the second column, we
know that the (3, 2) entry must be zero, since the (3, 1) entry is nonzero, and since x−1

2 gx2 is a
3-cycle (and hence not in H) we conclude that the (1, 2) entry must be nonzero. We readily find
that x−1

1 gx2 = (1 4 3)(1 2 3) = (1 2)(3 4), another reflection. And finally the nonzero entry in the
3rd column must be in the 2nd row (since the other two rows are taken), and the entry must be
ρ((1 3 2)(1 4 3)(1 3 2)) = ρ((1 3)(2 4)) = 1 (since (1 3)(2 4) is a rotation). So we obtain the matrix

ρG((1 4 3)) =

 0 −1 0
0 0 1
−1 0 0

 .

Let us next calculate ρG((1 2)). We find that x−1
2 (1 2)x2 = (1 3) (one of the reflections in D),

x−1
1 (1 2)x3 = (1 3) and x−1

3 (1 2)x1 = (1 3). So

ρG((1 2) =

 0 0 −1
0 −1 0
−1 0 0

 .

The logical thing to do next is to check that ρG((1 2)ρG((1 4 3)) = ρG((1 2)(1 4 3). By what we
have done so far the left hand side is 0 0 −1

0 −1 0
−1 0 0

 0 −1 0
0 0 1
−1 0 0

 =

 1 0 0
0 0 −1
0 1 0

 .
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So as (1 2)(1 4 3) = (1 4 3 2) we only have to check that

ρG((1 4 3 2)) =

 1 0 0
0 0 −1
0 1 0

 .

Now ρ(x−1
1 (1 4 3 2)x1) = ρ((1 4 3 2)) = 1, which confirms that the (1, 1) entry is correct. Similarly

ρ(x−1
3 (1 4 3 2)x2) = ρ(1 2 3 4) = 1 and ρ(x−1

2 (1 4 3 2)x3) = ρ((2 4)(1 3)) = −1, which also check.
If we had started with a representation of D of degree 2, or more, the calculations would have

been very similar; the main difference would just be the size of the resulting matrices. For example,
there is a representation σ:D → GL(2,C) defined by

σ((1 2 3 4)) =
(

0 −1
1 0

)
, σ((1 2)(3 4)) =

(
−1 0
0 1

)
,

and if we use the same coset representatives as above to compute σG we find that

σG((1 4 3)) =

 0 σ((1 2)(3 4)) 0
0 0 σ((1 3)(2 4))

σ((1 4)(2 3)) 0 0

 =


0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 −1 0 0 0 0


as σ((1 3)(2 4)) = σ((1 2 3 4))2 = −I and σ((1 4)(2 3)) = σ((1 3)(2 4))σ((1 2)(3 4)) = −σ((1 2)(3 4)).

Returning to our first example, let us now calculate the character of ρG. Recall that G = S4

has five conjugacy classes Ci corresponding to the five possible cycle types for permutations of
{1, 2, 3, 4}. As representatives of these classes we can take the following elements gi:

g1 = id, g2 = (1 2), g3 = (1 2 3), g4 = (1 2 3 4) and g5 = (1 2)(3 4).

If hi is the number of elements in the class Ci, it is easy shown that

h1 = 1, h2 = 6, h3 = 8, h4 = 6 and h5 = 3.

In order to calculate the induced character using the formula from the end of Lecture 14 we need
to also know the conjugacy classes Dj of D and all the containment relations Dj ⊆ Ci. Now in
fact there are five Dj ’s. Two of these have one element each: D1 = {id} and D2 = {(1 3)(2 4)}.
(Observe that (1 3)(2 4) is the half-turn, corresponding to the linear transformation which is −1
times the identity.) The other three classes have two elements each: firstly, D3 = {(1 2 3 4), (1 4 3 2)}
(the remaining two rotations); next, D4 = {(1 3), (2 4)} (the reflections in the two diagonals of the
square); finally D5 = {(1 2)(3 4), (1 4)(2 3)} (the reflections in perpendicular bisectors of the sides).
The character χ of ρ takes the value +1 on elements of classes D1, D2 and D3, and −1 on elements
of D4 and D5. (Of course in this case the character χ is just the same as the representation ρ, since
the degree of the representation is 1.)

By the formula from the end of Lecture 14, the value the induced character χG takes at an
element g ∈ G is given by

χG(g) =
|G|
|H|

∑
j

qj
h
χ(lj) = 3

∑
j

qj
h
χ(lj) (1)
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where h is the size of the conjugacy class of G containing g, the lj are representatives of the
conjugacy classes of D that are contained in the G-conjugacy class of g and the qj are the sizes of
these classes. Now the class C3 of G does not contain any elements of D; so the sum in Eq. (1) is
empty if g ∈ C3, and thus χG(g) = 0 in this case. Classes C1, C2 and C4 of G each contain only one
conjugacy class of D. So

χG(g1) = 3
1
1
χ(1) = 3

χG(g2) = 3
2
6
χ((1 2)) = −1

χG(g4) = 3
2
6
χ((1 2 3 4)) = 1.

It remains to calculate χG(g5). In this case the conjugacy class of G (namely C5) contains two
conjugacy classes of D (namely D2 and D5). So the formula yields

χG(g5) = 3(
1
3
χ((1 3)(2 4)) +

2
3
χ((1 2)(3 4))) = 3(

1
3
− 2

3
) = −1

Although the character of D that we started with is obviously irreducible, having degree 1, the
induced character χG does not have to be. We can determine how close it is to being irreducible
by calculating its inner product with itself. We find

(χG, χG) =
1
24

∑
g∈G
|χG(g)|2

=
1
24

5∑
i=1

hi|χG(gi)|2

=
1
24

(1× 9 + 6× 1 + 0 + 6× 1 + 3× 1)

= 1.

Thus χG is in fact irreducible after all.
Let us also calculate the character of the induced representation σG mentioned above. Writing

ψ for the character of σ, the following table gives the character values on elements from the various
classes of D.

classes D1 D2 D3 D4 D5

ψ(x) 2 −2 0 0 0

As for χG, it is immediate that ψG(g3) = 0. Also as for χG the value that ψG takes on g1, g2 and
g4 is found by multiplying ψ(g1), ψ(g2) and ψ(g4) by the appropriate ratios, which are respectively
3, 1 and 1. And finally

ψG(g5) = 3(
1
3
ψ((1 3)(2 4) +

2
3
ψ((1 2)(3 4))) = −2.

So the values of the induced character are as follows
classes C1 C2 C3 C4 C5
ψG(g) 6 0 0 0 −2

We readily find that (ψG, ψG) = 1
24 (36 + 3 × 4) = 2, and from this it follows that ψG must be a

sum of two irreducible characters of G. We can also check that (ψG, χG) = 1, so that χG is in
fact one of the irreducible constituents of ψG. The difference ψG − χG must therefore be another
irreducible character of G.
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