Group representation theory Lecture 15, 15/9/97

Before moving on to more theory, let us calculate some examples. Unfortunately, verifying elegant
theoretical results in practice often involves long calculations.

Let us start with a degree 1 representation of the group of symmetries of a square. Labelling
the vertices of the square 1, 2, 3 and 4 (cyclically), and identifying its symmetries with pemutations
of the vertices, we can easily write down the eight symmetries. The rotation symmetries are the
powers of the 4-cycle (1234), and multiplying these four elements by (13) gives the four reflection
symmetries. Since we know that the product of two reflections is a rotation, and the product of two
rotations is a rotation, while the product of a reflection and a rotation is a reflection, it follows that
there is a representation of the group which maps the reflections to —1 and the rotations to +1.

So we have eight permutations which form a subgroup D of G = S4, the group of all per-
mutations of {1,2,3,4}, and we have a representation p: D — GL(1,C). We should be able to
form an induced representation. For this we first need a system of coset representatives. Now
[G : D] = 24/8 = 3; so we need three coset representatives. An easy way to find three suitable
permutations is to find a subgroup X of G with three elements. The subgroup H N X must then
be trivial (since its order must divide both 3 and 8), and so if x, y are distinct elements of X then
the cosets H and yH are distinct (since 71y ¢ H). So we can take 77 = id, 7o = (123) and
x3 = (132) as the coset representatives.

Now let us calculate the matrices which will represent some randomly chosen elements of
S, in the induced representation p&. Consider g = (143), for example. The cosets gz H,
groH, grxsH must equal x1H, xoH, x3H in some order. Now we have to calculate. First,
xytgry = (132)(143) = (142) ¢ D. Also z;'gr; = g ¢ D. So it must be that 23 'gz; € H,
and indeed calculation yields x5 Ygx; = (14)(23), which is the reflection in the perpendicular bi-
sector of the sides 1-4 and 2-3 of the square. So p(zz'gri) = —1, and this is the (3,1) entry
of the matrix p%(g). The (2,1) and (1,1) entries are 0. Moving on to the second column, we
know that the (3,2) entry must be zero, since the (3,1) entry is nonzero, and since x; 'gzo is a
3-cycle (and hence not in H) we conclude that the (1,2) entry must be nonzero. We readily find
that z;'gre = (143)(123) = (12)(34), another reflection. And finally the nonzero entry in the
3rd column must be in the 2nd row (since the other two rows are taken), and the entry must be
p((132)(143)(132)) = p((13)(24)) =1 (since (13)(24) is a rotation). So we obtain the matrix

0 -1 0
pC((143)=( 0 0 1
-1 0 0

Let us next calculate p@((12)). We find that 25 (12)zs = (13) (one of the reflections in D),
271 (12)x3 = (13) and 23 (12)z; = (13). So

The logical thing to do next is to check that p&((12)p%((143)) = p&((12)(143). By what we
have done so far the left hand side is



So as (12)(143) = (1432) we only have to check that

10 0
p“((1432))=10 0 -1
01 0

Now p(x; (1432)x1) = p((1432)) = 1, which confirms that the (1,1) entry is correct. Similarly
p(r3 (1432)x2) = p(1234) =1 and p(z5 *(1432)x3) = p((24)(13)) = —1, which also check.

If we had started with a representation of D of degree 2, or more, the calculations would have
been very similar; the main difference would just be the size of the resulting matrices. For example,
there is a representation o: D — GL(2,C) defined by

sz = (1 ). anen = (3 0),

and if we use the same coset representatives as above to compute ¢© we find that

0 0 -1 0 0 0
00 0 1 0 0
0 o((12)(34)) 0 _
c%((143)) = 0 0 o((13)(24)) | = 8 8 8 8 01 _01
o((14)(23)) 0 0 10 00 0 0
0 -1 0 0 0 0

as 0((13)(24)) = 0((1234))?2 = —T and o((14)(23)) = o((13)(24))0((12)(34)) = —a((12)(34)).
Returning to our first example, let us now calculate the character of p&. Recall that G = Sy

has five conjugacy classes C; corresponding to the five possible cycle types for permutations of
{1,2,3,4}. As representatives of these classes we can take the following elements g;:

g1 =1id, go=(12), g3=(123), ga=(1234) and g5=(12)(34).
If h; is the number of elements in the class C;, it is easy shown that
hlzl, h2:6, h3:8, h4:6 and h5:3

In order to calculate the induced character using the formula from the end of Lecture 14 we need
to also know the conjugacy classes D; of D and all the containment relations D; C C;. Now in
fact there are five D;’s. Two of these have one element each: Dy = {id} and Dy = {(13)(24)}.
(Observe that (13)(24) is the half-turn, corresponding to the linear transformation which is —1
times the identity.) The other three classes have two elements each: firstly, D5 = {(1234),(1432)}
(the remaining two rotations); next, Dy = {(13),(24)} (the reflections in the two diagonals of the
square); finally D5 = {(12)(34),(14)(23)} (the reflections in perpendicular bisectors of the sides).
The character x of p takes the value +1 on elements of classes Dy, D2 and D3, and —1 on elements
of Dy and D5. (Of course in this case the character x is just the same as the representation p, since
the degree of the representation is 1.)

By the formula from the end of Lecture 14, the value the induced character x¢ takes at an
element g € G is given by
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where h is the size of the conjugacy class of G containing g, the [; are representatives of the
conjugacy classes of D that are contained in the G-conjugacy class of g and the g; are the sizes of
these classes. Now the class C3 of G does not contain any elements of D; so the sum in Eq. (1) is
empty if g € C3, and thus x“(g) = 0 in this case. Classes C;, C2 and C4 of G each contain only one
conjugacy class of D. So

X% (1) = 3%x(1) =3

X (g2) = 3%)(((1 2)) = —1

“(ga) = ?%x((l 234)) = 1.

It remains to calculate x%(gs). In this case the conjugacy class of G (namely Cs) contains two
conjugacy classes of D (namely Do and D5). So the formula yields

X

1 2
X%(g5) = 3(3x((13)(2)) + 2x(12)(34)) =3(5 — 5) = ~1
Although the character of D that we started with is obviously irreducible, having degree 1, the
induced character y does not have to be. We can determine how close it is to being irreducible
by calculating its inner product with itself. We find

1
(X x9) =57 D o)l
geG

5
1
- Y P
=1

1
:2—(1><9+6><1+O+6><1+3><1)
1.

Thus x© is in fact irreducible after all.

Let us also calculate the character of the induced representation ¢& mentioned above. Writing

1 for the character of o, the following table gives the character values on elements from the various
classes of D.
classes | Dy Dy D3 Dy 7Ds
b)) |2 -2 0 0 o0

As for ¢, it is immediate that 9% (g3) = 0. Also as for x“ the value that ¢ takes on g1, go and
g4 is found by multiplying ¥ (g1), ¥(g2) and ¥ (g4) by the appropriate ratios, which are respectively
3, 1 and 1. And finally

1 2
P9 (g5) = 3(51/1((1 3)(24) + 51/1((1 2)(34))) = —2.
So the values of the induced character are as follows

classes | Ci Cy C3 C4 Cs

W) | 6 0 0 0 -2

We readily find that (v, ¢%) = i(36 +3 x 4) = 2, and from this it follows that ¢ must be a
sum of two irreducible characters of G. We can also check that (¢, x%) = 1, so that x¢ is in
fact one of the irreducible constituents of Y. The difference )¢ — Y& must therefore be another
irreducible character of G.




