
Group representation theory Lecture 17, 24/9/97

Proposition. If φ:FG → Matd(F ) is a representation of a group algebra FG then the restric-
tion of φ to the basis G of FG gives a matrix representation of the group G. Conversely, if
ψ:G → GL(d, F ) is a matrix representation of G then we can obtain a matrix representation of
FG by extending the domain of definition of ψ to the whole of FG by the formula

ψ(
∑
g∈G

λgg) =
∑
g∈G

λg(ψg).

Thus, representations of G are essentially the same as representations of FG.

Proof. Let φ:FG → Matd(F ) be a representation of FG, and let ψ be the restriction of φ to
G. (In other words, for each g ∈ G we define ψg = φg. This makes sense since G is a subset
of FG.) Since (φα)(φβ) = φ(αβ) holds for all α, β ∈ FG, we certainly have (ψg)(ψh) = ψ(gh) for
all g, h ∈ G. So to prove that ψ is a representation of G it remains to show that ψg is invertible
for all g (so that ψ can be interpreted as a map from G to GL(d, F ) instead of a map from G to
Matd(F )). But (ψg)(ψg−1) = ψ(gg−1) = ψ1G = I (since part of the definition of a representation
of an algebra is that the identity element must be mapped to the identity matrix). So ψg has an
inverse (namely, ψ(g−1)), as required.

Conversely, let ψ:G→ GL(d, F ) be a representation of G, and define φ:FG→ Matd(F ) by

φ(
∑
g∈G

λgg) =
∑
g∈G

λg(ψg).

This yields a well defined function on FG since each element of FG is uniquely expressible in the
form

∑
g∈G λgg (where the coefficients λg are elements of F ). Then for all choices of scalars λg, µg

we have

φ
(∑
g∈G

λgg
)
φ
(∑
g∈G

µgg
)

=
(∑

g

λg(ψg)
)(∑

h

µh(ψh)
)

=
∑
g

∑
h

λgµhψ(gh)

=
∑
k∈G

( ∑
{g,h|gh=k}

λgµh

)
ψk = φ

(∑
k∈G

( ∑
{g,h|gh=k}

λgµh

)
k
)

= φ
((∑

g

λgg
)(∑

h

µhh
))
,

and hence φ preserves multiplication. It remains to prove that ψ is linear and that ψ1G = I. This
is left to the reader. �

Let R(1), R(2), . . . , R(s) be a full set of irreducible unitary representations of G. Let di
be the degree of R(i). In accordance with the proposition above, we can make each R(i) into a
representation of CG so that R(i)(

∑
g λgg) =

∑
g λg(R

(i)g). Now define A to be the C-algebra which
is the direct sum of the full matrix algebras Matd1(C), Matd2(C), . . . , Matds(C). Thus each element
of A is an ordered s-tuple of matrices (M1,M2, . . . ,Ms), where Mi is a di × di matrix, and the
operations of addition, multiplication and scalar multiplication for A are all defined componentwise.
Define a function φ:CG→ A by

φα = (R(1)α,R(2)α, . . . , R(s)α)

for all α ∈ FG. We shall prove that the function φ is an isomorphism of C-algebras. Thus we
obtain the following theorem.
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Wedderburn’s Theorem. The complex group algebra of a finite group G is isomorphic to a
direct sum of full matrix algebras.

Wedderburn’s Theorem can reasonably be called the main theorem in the study of complex
representations of finite groups. It is, as we shall see, easy to deduce from the orthogonality
relations; so one could also argue that the main theorem is really the orthogonality of coordinate
functions. But Wedderburn’s Theorem gives the results a structural flavour which is in the spirit
of modern algebra.

We need only to prove that the map φ defined above is an isomorphism. It is obviously
preserves addition, multiplication and scalar multiplication, since each R(i) preserves all of these.
In other words, φ is an algebra homomorphism. Now the vector space dimension of Matd(C) is d2;
so the dimension of A is

∑
i d

2
i , which, as we know, equals |G|. This is also the dimension of FG.

So if φ is surjective it will also have to be injective.

Choose any k ∈ {1, 2, . . . , s} and i, j ∈ {1, 2, . . . , dk}, and let α = 1
|G|
∑
g∈G (R(k)

ij g)g (where

R
(k)
ij is the (i, j) coordinate function of R(k). The (p, q)-entry of R(l)α is

1
|G|

∑
g∈G

(R(k)
ij g)(R(l)

pq g),

which (by the orthogonality of coordinate functions) is zero unless l = k and (p, q) = (i, j), in which
case it is nonzero. So

φα = (0, 0, . . . ,∆ij , . . . , 0)

where the only nonzero component of the right hand side is the kth component, and this component
(denoted here as ∆ij) has nonzero (i, j)-entry and is zero elsewhere. The elements of A that we
obtain in this way as we vary k, i and j clearly form a basis for A, and since all these elements are
in the image of φ it follows that the image of φ is the whole of A, as required.
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