
Group representation theory Lecture 21, 20/10/97

Let D and D′ be diagrams corresponding to partitions π and π′ of n. It is clear that the set

e(D)CSne(D′) = { e(D)ae(D′) | a ∈ CSn }

is a vector subspace of the group algebra CSn. It will be useful for us to determine the dimension
of this space.

Suppose first that π > π′, and let τ ∈ Sn be arbitrary. By the proposition from Lecture 20
there exist numbers i and j collinear in D and co-columnar in τD′. So the transposition (i, j) is in
the row group of D and the column group of τD′. So

[R(D)]1(i, j) =
∑

σ∈R(D)

σ(i, j) =
∑

τ∈R(D)

τ = [R(D)]1

since τ = σ(i, j) runs through R(D) as σ does. Similarly,

(i, j)[C(τD′)]ε =
∑

σ∈C(τD′)

ε(σ)(i, j)σ =
∑

τ∈C(τD′)

−ε(τ)τ = −[C(τD′)]ε,

since if τ = (i, j)σ then ε(τ) = ε((i, j))ε(σ) = −ε(σ). Hence it follows that

[R(D)]1C[τD′]ε = ([R(D)]1(i, j))C[τD′]ε = [R(D)]1((i, j)C[τD′]ε) = −[R(D)]1C[τD′]ε,

and therefore [R(D)]1C[τD′]ε = 0. Note also that

τ [C(D′)]ετ−1 =
∑

σ∈C(D′)

ε(σ)τστ−1 =
∑

ρ∈C(τD′)

ε(τ−1ρτ)ρ =
∑

ρ∈C(τD′)

ε(ρ)ρ = [C(τD′]ε.

So for all τ ∈ Sn we have [R(D)]1τ [C(D′)]ε = [R(D)]1[C(τD′)]ετ = 0, and thus if a =
∑
τ∈Sn λττ

is any element of the group algebra CSn then

[R(D)]1a[C(D′)]ε =
∑
τ∈Sn

λτ [R(D)]1τ [C(D′)]ε = 0.

In particular,
e(D)be(D′) = [R(D)]1([C(D)]εb[R(D′)]1)[C(D′)]ε = 0

for all b ∈ CSn.
Now suppose instead that π′ > π, and let τ ∈ Sn be arbitrary. The proposition from Lecture 20

now tells us that there is a transposition (i, j) in the row group of τD′ and the column group of D.
So [C(D)]ε(i, j) = −[C(D)]ε and (i, j)[R(τD′]1 = [R(τD′]1. Hence

[C(D)]ε[R(τD′)]1 = [C(D)]ε((i, j)[R(τD′)]1) = ([C(D)]ε(i, j))[R(τD′)]1 = −[C(D)]ε[R(τD′)]1,

and so [C(D)]ε[R(τD′)]1 = 0. If a =
∑
τ∈Sn λττ is any element of the group algebra CSn then

[C(D)]εa[R(D′)]1 =
∑
τ∈Sn

λτ [C(D)]ετ [R(D′)]1 =
∑
τ∈Sn

λτ [C(D)]ε[R(τD′)]1τ = 0.
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In particular,
e(D)ae(D′) = [R(D)]1([C(D)]εa[R(D′)]1)[C(D′)]ε = 0

for all a ∈ CSn.

We have now proved the following result.

Proposition. Let D, D′ be diagrams corresponding to partitions π, π′ of n. If π 6= π′ then
e(D)CSne(D′) = {0}.

Consider now the case π′ = π and D′ = D, and let τ ∈ Sn. If there are two numbers i and j
which are collinear in D and co-columnar in τD then (as above) we see that [R(D)]1τ [C(D)]ε = 0.
If there are no such numbers i and j then the proposition from Lecture 20 tells us that τD = ρσD
for some ρ ∈ R(D) and σ ∈ C(D). But τD = ρσD implies τ = ρσ, since, as we noted in Lecture 20,
the diagrams for a given partition are in one to one correspondence with the elements of Sn. So it
follows that if [R(D)]1τ [C(D)]ε 6= 0 then for some ρ ∈ R(D) and σ ∈ C(D) we have

[R(D)]1τ [C(D)]ε = ([R(D)]1ρ)(σ[C(D)]ε) = ε(σ)[R(D)]1[C(D)]ε = ε(σ)e(D).

Thus [R(D)]1τ [C(D)]ε is a scalar multiple of e(D) for all τ ∈ Sn, and so if a =
∑
τ∈Sn λττ is any

element of CSn it follows that [R(D)]1a[C(D)]ε =
∑
τ∈Sn λτ [R(D)]1τ [C(D)]ε is a scalar multiple

of e(D). So for any b ∈ CSn,

e(D)be(D) = [R(D)]1([C(D)]εb[R(D)]1)[C(D)]ε = λe(D) (1)

for some scalar λ, and hence e(D)CSne(D) is equal either to {0} or to the one dimensional space
Ce(D) = {λe(D) | λ ∈ C }. The following lemma shows that in fact the latter alternative always
holds.

Proposition. Let D be any diagram corresponding to a partition π of n. Then e(D)2 is a nonzero
scalar multiple of e(D).

Proof. Taking b = id in Eq. (1) gives e(D)2 = λe(D) for some scalar λ ∈ C; our aim is to show
that λ 6= 0.

If ρ, ρ′ ∈ R(D) and σ, σ′ ∈ C(D) with ρσ = ρ′σ′ then

(ρ′)−1ρ = σ′σ−1 ∈ R(D) ∩ C(D) = {id},

and so ρ = ρ′ and σ = σ′. Hence in the expression

e(D) =
∑

ρ∈R(D)

∑
σ∈C(D)

ε(σ)ρσ

all the terms are distinct; so if we write e(D) =
∑
τ∈Sn αττ then αid = 1.

Our strategy is to compute in two different ways the trace of the linear transformation
f :CSn → CSn given by right multiplication by e(D). First we use the obvious basis of CSn,
consisting of all the elements of Sn. If σ ∈ Sn is arbitrary then

f(σ) = σe(D) =
∑
τ∈Sn

ατστ =
∑
τ∈Sn

αsigma−1ττ,
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and the coefficient of σ in this is αid = 1. Thus, when we compute the matrix of f relative to this
basis of CSn, all the diagonal entries are 1. So the trace of f is dimCSn = |Sn| = n!.

Now choose elements a1, a2, . . . , ad which form a basis for CSne(D), and extend this to a
basis a1, . . . , ad, ad+1, . . . , an! of CSn. For 1 ≤ i ≤ d we can write ai = bie(D) for some bi ∈ CSn,
and since e(D)2 = λe(D) we deduce that

f(ai) = aie(D) = bie(D)e(D) = λbie(D) = λai.

So the first d columns of the matrix of f relative to this basis coincide with the first d columns of λI.
On the other hand if i > d then f(ai) = aie(D) ∈ CSne(D), and so f(ai) is a linear combination
of a1, a2, . . . , ad only. In particular, the coefficient of ai is zero. The matrix of f relative to this
basis has the form (

λI Q
0 0

)
for some d×(n!−d) matrix Q, and the trace of f is λd. So λd = n!, and so λ 6= 0, as required. �

With λ as in the above proof, define eD = (1/λ)e(D). Then eD is an idempotent element,
since

e2
D =

1
λ2
e(D)2 =

1
λ2
λe(D) = eD.

We shall show next time that eD is a primitive idempotent of CSn, from which it follows that
the left ideal CSne(D) = CSneD of CSn is an indecomposable CSn module (by a result from
Lecture 18). Incidentally, since λ is the coefficient of id in e(D)2, which is obviously integral
since all the coefficients in e(D) are integral, the proof of the last proposition also shows that the
dimension d of the left ideal CSne(D) is a divisor of n!.

Lecture 22, 22/10/97

We now come to our main theorem on the representation theory of Sn.

Theorem. If D is any diagram then the left ideal CSne(D) of CSn is an irreducible left CSn-
module. Two modules obtained from diagrams in this way are isomorphic if and only if the partitions
associated with the diagrams are the same. Furthermore, choosing one diagram for each partition
we obtain a full set of irreducible left CSn modules.

Proof. As we saw at the end of last lecture, e(D) is a scalar multiple of an idempotent eD.
Suppose that this idempotent is not primitive, so that eD = e + f for some idempotents e and f
with ef = fe = 0. Then

e = (e+ f)e(e+ f) = eDeeD ∈ e(D)CSne(D) = Ce(D)

by a proposition from last lecture. So e = µeD for some µ ∈ C, and since e2 = e and e2
D = eD it

follows that µ2 = µ. Furthermore, idempotents are nonzero by definition; so µ = 1, and e = eD.
But this forces f = 0, a contradiction. Hence eD is primitive; so CSneD is indecomposable, and
hence irreducible by Maschke’s Theorem.

Let D, D′ be diagrams associated with partitions π, π′ such that π 6= π′, and suppose that
CSne(D) ∼= CSne(D′) (as left CSn-modules). Let φ:CSne(D) → CSne(D′) be a CSn-module
isomorphism. Then for some a ∈ Sn we have φ(eD) = ae(D′), and since φ commutes with the CSn
action we see that for all b ∈ CSn

φ(beD) = φ(be2
D) = beDφ(eD) = beDae(D′).
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But eDae(D′) ∈ e(D)CSne(D′) = {0}, as we showed in Lecture 21, since π 6= π′. Hence φ(beD) = 0,
and since every element of CSne(D) is expressible in the form beD it follows that φ is the zero map,
contradicting the fact that φ is an isomorphism. So CSne(D) and CSne(D′) are not isomorphic.

The number of conjugacy classes of Sn is the number of different cycle types of permutations
of n, which equals the number of partitions of n. Since the number of irreducible characters equals
the number of conjugacy classes it follows that the number of partitions of n also gives the number
of modules in a full set of irreducible modules for CSn. Now if we choose a diagram D arbitrarily
for each partition π of n then the left ideals CSne(D) are pairwise nonisomorphic and so must
comprise a full set of irreducible modules. Furthermore, if we replace one of the diagrams by
another diagram corresponding to the same partition then we still have a full set of irreducible
modules, and since only one of the modules has been changed the isomorphism type of that module
must be unchanged. In other words, distinct diagrams corresponding to the same partition yield
isomorphic modules, as required. �

There is much more that can be said about the representation theory of Sn, but we shall take
the subject no further. The remaining lectures will be devoted to revision and calculation of various
examples.
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