
Group representation theory Lecture 3, 4/8/97

As several people pointed out after last lecture, my description of the representation of the quater-
nion group as a subgroup of GL(2, 3) was incorrect. The matrices A1, A2 and A3 should be as
follows:

A1 =
(

0 1
−1 0

)
, A2 =

(
−1 1
1 1

)
, A3 =

(
1 1
1 −1

)
.

Representations, linear actions and modules.

Recall that if V is a vector space over the field F and G is a group, then an action of G on V is a
function (g, v) 7→ gv from G× V to V such that
(i) (gh)v = g(hv) for all g, h ∈ G and v ∈ V ,
(ii) 1v = v for all v ∈ V , where 1 is the identity element of G,
(iii) g(u+ v) = gu+ gv for all g ∈ G and u, v ∈ V ,
(iv) g(λv) = λ(gv) for all g ∈ G and v ∈ V , and all λ ∈ F .
(Note that, by our definitions, an action of G on the vector space V is not the same thing as an
action of G on the set V : items (iii) and (iv) are not required for the latter. This terminology
can lead to confusion, and it would perhaps be better to always refer to an action of G on V that
satisfies (iii) and (iv) as a linear action. However, in this course the only group actions we will
encounter on sets which are vector spaces will be linear actions.) We have already noted that an
action of a group G on a set S is essentially the same as a permutation representation of G on S.
In the same way, a linear action of a group G on a vector space V is essentially the same as a
representation of G by linear transformations on V .

Proposition. Given an action of a group G on a vector space V , for each g ∈ G define a function
ρg:V → V by (ρg)v = gv for all v ∈ V . Then ρg is an invertible linear transformation, and the
function ρ defined by g 7→ ρg is a homomorphism from G to the group of all invertible linear
transformations on V . Conversely, given a homomorphism ρ from G to the group of invertible
linear transformations on V , the formula gv = (ρg)v defines an action of G on V .

Proof. Suppose first that the action is given. Since we have an action of G on the set V we know
from the earlier argument that g 7→ ρg is a homomorphism from G to the group of all invertible
functions V → V , and so all we have to show is that each function ρg is also linear. But this is
precisely what items (iii) and (iv) above say:

(ρg)(v + w) = g(v + w) = gv + gw = (ρg)v + (ρg)w
(ρg)(λv) = g(λv) = λ(gv) = λ((ρg)v)

for all v, w ∈ V and λ ∈ F .
Conversely, suppose that the homomorphism ρ is given. If we ignore the fact that the functions

ρg are linear, and focus instead on the fact that they are bijective functions V → V , then g 7→ ρg
can be regarded as a permutation representation of G on the set V , and hence it follows that
gv = (ρg)v defines an action of G on the set V . So we just have to show that the action is linear;
that is, that (iii) and (iv) are satisfied. Of course, this is exactly what the linearity of ρg tells us:

g(v + w) = (ρg)(v + w) = (ρg)v + (ρg)w = gv + gw

g(λv) = (ρg)(λv) = λ((ρg)v) = λ(gv)

for all v, w ∈ V and λ ∈ F .
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So a representation of a group on a vector is the same thing as an action of a group on a vector
space. Well then, why not introduce a third term to describe this same situation!

Definition. A vector space V on which a group G has an action is called a G-module.

Very naturally, we should investigate functions from G-modules to G-modules which preserve
the G-module structure, as well as investigating circumstances in which a subset of a G-module is
also a G-module. Hence we make the following definitions:

Definition. (i) A submodule of a G-module V is a vector subspace U of V such that gu ∈ U
for all g ∈ G and u ∈ U .

(ii) If U and V are G-modules then a G-homomorphism from U to V is a linear transformation
f :U → V such that f(gu) = g(fu) for all g ∈ G and u ∈ U .

We shall have much more to say about G-modules. In particular, there is a G-module version of
the First Isomorphism Theorem, which will be of great importance for the theory we shall develop.
Also important is the concept of the direct sum of two G-modules, analogous to direct sums in
group theory and vector space theory. However, before pursuing such matters, there is another
basic aspect of representations that ought to be noted.

Representations and matrix representations

Let U, V be finite-dimensional vector spaces over the field F , of dimensions m and n respectively,
and let f :U → V be a linear map. If B is a basis of U and C a basis of V then the matrix of f
relative to B and C is the n×m matrix MC B(f) whose (i, j)-entry is the scalar aij , where

fuj =
n∑
i=1

aijvi for all j = 1, 2, . . . , m,

u1, u2, . . . , um being the vectors that comprise the basis B, and v1, v2, . . . , vn those that comprise
the basis C. The fundamentals of the connection between matrices and linear transformations
should be familiar to you from 2nd year work. The principal facts are as follows. Multiplying the
coordinate vector relative to B of an element u ∈ U by MC B(f) yields the coordinate vector relative
to C of fu ∈ V ; that is, if u =

∑m
j=1 λjuj then fu =

∑n
i=1 λivi, where

MC B(f)


µ1

µ2
...
µm

 =


λ1

λ2
...
λn

 .

If the bases B and C are fixed, the mapping f 7→MC B(f) is a bijective correspondence between the
set of all linear maps U → V and the set of all n×m matrices over F . If f :U → V and h:V →W
are both linear maps, and D is a basis of the vector space W , then MDB(hf) = MDC(h)MC B(f).
And similarly, if h and f are two linear maps from U to V then MC B(h+ f) = MC B(h) +MC B(f).
In particular we have that

MC C(hf) = MC C(h)MC C(f)
MC C(h+ f) = MC C(h) +MC C(f)

for all linear transformations h, f : V → V . Since the matrix of the identity linear transformation
is the identity matrix, it follows from the first of these two equations that a linear transformation
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V → V is invertible if and only if its matrix relative to C is invertible, and we deduce that
f 7→MC C(f) is an isomorphism from the group of all invertible linear transformations on V to the
group of all invertible n× n matrices over F .

Definition. The group of all invertible linear transformations on a vector space V is called the
general linear group GL(V ) of the space V . The group of invertible d×d matrices over F is written
as GL(d, F ), and is called the general linear group of degree d over F .

We have defined a (linear) representation of G on V to be a homomorphism ρ:G → GL(V ).
Similarly, a matrix representation of G is a homomorphism G → GL(d, F ); the integer d is called
the degree of the representation. If ρ is a representation of G on a d-dimensional vector space V ,
and if C is a basis of V , then we obtain a matrix representation of G of degree d by defining
Rg = MC C(ρg) for each g ∈ G. The map R:G→ GL(d, F ) is certainly a homomorphism since it is
the composite of the homomorphism g 7→ ρg from G to GL(V ) and the isomorphism f 7→MC C(f)
from GL(V ) to GL(d, F ). Hence R is a matrix representation, as claimed. Conversely, given a
matrix representation R:G→ GL(d, F ) we can obtain a representation ρ:G→ GL(V ) by defining
ρg to be the linear transformation whose matrix relative to C is Rg. The moral of this story is this:
once a basis of V is fixed, a representation of G on V is essentially the same thing as a matrix
representation of G of degree d = dimV .

Since the choice of a basis for a vector space is a somewhat arbitrary matter, it is natural
to investigate the relationship between two matrix representations that are derived from the same
representation ρ:G → GL(V ) by choosing two different bases. So suppose that B and C are bases
of V , and let R, S : G→ GL(d, F ) be defined by the formulas Rg = MC C(ρg) and Sg = MBB(ρg),
for all g ∈ G. If T = MB C(id) then we find that for all g ∈ G,

T (Rg) = MB C(id)MC C(ρg) = MB C((id)(ρg)) = MB C((ρg)(id)) = MBB(ρg)MB C(id) = (Sg)T.

Since MB C(id)MC B(id) = MBB(id) = I, and similarly MC B(id)MB C(id) = MC C(id) = I, we see
that the matrix T is invertible. Hence Sg = T (Rg)T−1 for all g ∈ G.

Definition. Matrix representations R, S : G→ GL(d, F ) are said to be equivalent if there exists
T ∈ GL(d, F ) such that Sg = T (Rg)T−1 for all g ∈ G.

Lecture 4, 6/8/97

Some representations of the symmetric group of degree 3

Let σ be a permutation of {1, 2, . . . , n}. If V is a vector space (over any field F ) with basis
v1, v2, . . . , vn then there is a linear transformation pσ:V → V such that vi 7→ vσj for each j. That
is, pσvj =

∑n
i=1 δi σjvi. Thus the matrix of pσ relative to the basis v1, v2, . . . , vn is the matrix Pσ

whose (i, j)-entry is δi σj . We call Pσ the permutation matrix corresponding to σ. It is trivial to
check from the definition that if σ and τ are permutations of {1, 2, . . . , n} then pστ = pσpτ : indeed,
for all j we have

pστvj = v(στ)j = vσ(τj) = pσ(vτj) = pσ(pτvj) = (pσpτ )vj ,

and as the linear maps pστ and pσpτ have the same effect on all elements of the basis v1, v2, . . . , vn
it follows that they are equal. Note also that if id is the identity permutation then pid is the identity
transformation of V . Thus it follows that pσ is invertible for all σ ∈ Sn, and p:Sn → GL(V ) defined
by pσ = pσ is a representation of Sn. By the general theory we have described, any choice of a basis
of V gives rise to a matrix representation Sn → GL(n, F ) corresponding to the representation p. Of
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course, if we make the obvious choice and use the basis v1, v2, . . . , vn, the matrix representation
we obtain is given by σ 7→ Pσ.

When written out explicitly in the case n = 3, the matrix representation we have described
above is as follows:

id 7→

 1 0 0
0 1 0
0 0 1


(1, 2) 7→

 0 1 0
1 0 0
0 0 1


(1, 3) 7→

 0 0 1
0 1 0
1 0 0


(2, 3) 7→

 1 0 0
0 0 1
0 1 0


(1, 2, 3) 7→

 0 0 1
1 0 0
0 1 0


(1, 3, 2) 7→

 0 1 0
0 0 1
1 0 0


Since det(AB) = detAdetB whenever A and B are d × d matrices, we see that if R: g 7→ Rg is
a matrix representation of degree d of any group G, then g 7→ det(Rg) is a matrix representation
of degree 1 of the group G. Applying this observation to the above representation of S3 yields the
representation given by

id 7→ 1
(1, 2) 7→ −1

(1, 3) 7→ −1
(2, 3) 7→ −1

(1, 2, 3) 7→ 1
(1, 3, 2) 7→ 1.

This representation can alternatively be described by the rule that even permutations are mapped
to 1 and odd permutations to −1. There is another even more obvious representation of S3 of
degree 1: it is given by σ 7→ 1 for all σ ∈ S3. (Of course this works in the same way for any group
G at all. The representation given by g 7→ 1 for all g is called the 1-representation, or the principal
representation, of G).

Making use of the terminology introduced in Lecture 3 we may call the three dimensional space
V with basis v1, v2, v3 an S3-module. The S3-action is given by σvj = vσj for all σ ∈ S3 and all
j ∈ {1, 2, 3}. It is fairly easy to see that the subset U of V defined by

U = {λ1v1 + λ2v2 + λ3v3 | λ1 + λ2 + λ3 = 0 }

is an S3-submodule of V . To prove this it suffices to show that U is closed under addition and
scalar multiplication, and also closed under the action of elements of S3. This is left as an exercise
for the student. The student can also check that u1 = v1 − v2 and u2 = v2 − v3 form a basis for U ,
and the matrices relative to this basis of the transformations of U corresponding to the various
elements of S3 are as follows:

id 7→
(

1 0
0 1

)
(1, 2) 7→

(
−1 1
0 1

) (1, 3) 7→
(

0 −1
−1 0

)
(2, 3) 7→

(
1 0
1 −1

) (1, 2, 3) 7→
(

0 −1
1 −1

)
(1, 3, 2) 7→

(
−1 1
−1 0

)
.

Thus we have obtained a matrix representation of S3 of degree 2.
Let us assume, for definiteness, that the field F (the scalar field for V and the coefficient field

for our matrices) is C, the field of complex numbers. The two representations of S3 of degree 1 and
the representation of S3 of degree 2 that we have described above are all irreducible representations
of S3, in a sense that we will define shortly. Moreover, it turns out that any irreducible complex
representation of S3 has to be equivalent to one of these three. The major theorems of representation
theory that we will discuss in this course tell us in principle how an arbitrary complex representation
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of a finite group G can be expressed in terms of irreducible complex representations, and how many
equivalence classes of irreducible complex representations a finite group has. There is no known
uniform method of constructing the irreducible representations of an arbitrary finite group, and
consequently the main practical problem of representation theory is to find elegant descriptions
of the irreducible representations of various important classes of finite groups. In truth, there are
not very many classes of groups for which this goal has been achieved, but the symmetric groups
constitute a class for which a complete theory has been discovered. It is hoped that some of this
theory will be described before the end of this course.

Centralizers and conjugacy

Proposition. Let G be a group and g ∈ G. Then the set CG(g) = {x ∈ G | xg = gx } is a
subgroup of G.

Proof. We must show that 1 ∈ CG(g), that x−1 ∈ CG(g) whenever x ∈ CG(g), and that
xy ∈ CG(g) whenever x, y ∈ CG(g). All of these are trivial. Since the defining property of
the identity element is that 1g and g1 both equal g, we have 1g = g1, and hence 1 ∈ CG(g). If
x ∈ CG(g) then xg = gx, and multiplying this equation on the left and on the right by x−1 gives
gx−1 = x−1g, whence x−1 ∈ CG(g). And if x, y ∈ CG(g) then xg = gx and yg = gy, and we see
that

(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy),
whence xy ∈ CG(g), as required. �

Definition. The subgroup CG(g) defined in the above proposition is called the centralizer in G
of the element g.

Recall that if H is a subgroup of a group G then for each x ∈ G the subset xH = {xh | h ∈ H }
is called a left coset of H in G. The mapping h 7→ xh from H to xH is a bijection, and so the
number of elements of the coset xH is the same as the number of elements of G. If x, y ∈ G then
the left cosets xH and yH either coincide or are disjoint. They coincide if x ∈ yH, or (equivalently)
if y ∈ xH, or (a third equivalent condition) if x−1y ∈ H. Furthermore, every element of G lies in
some left coset of H: indeed, g ∈ gH. It follows that we may choose a left transversal, or system
of representatives of the left cosets, for the subgroup H. This is a family (xi)i∈I of elements of G
such that G is the disjoint union of the cosets xiH for i ∈ I. Assuming that the group G is finite
then of course the number of left cosets of H is finite too. The number of left cosets of H in G is
called the index of H in G, denoted by [G : H]. If n = [G : H] then a left transversal for H will
consist of n elements x1, x2, . . . , xn, and since

G = x1H ∪ x2H ∪ · · · ∪ xnH
expresses G as the disjoint union of n = [G : H] sets all of which have |H| elements, we conclude
that |G| = [G : H]|H|.

Suppose now that H = CG(g), where g ∈ G. If x, y ∈ G are in the same left coset of H, then
y = xh for some h ∈ H, and

ygy−1 = (xh)g(xh)−1 = x(hg)h−x−1 = x(gh)h−1x−1 = xgx−1,

since h is in the centralizer of g. Thus we have shown that ygy−1 = xgx−1 whenever x, y are in the
same left coset of the centralizer. Conversely, if ygy−1 = xgx−1 then (x−1y)g = g(x−1y), so that
x−1y ∈ CG(g), and hence x and y are in the same coset of the centralizer. Thus the elements of G of
the form xgx−1 are in one to one correspondence with the left cosets of CG(g): if x1, x2, . . . , xn is a
left transversal then every element of the form xgx−1 equals one or other of the n elements xigx−1

i ,
and these elements are all distinct (since they correspond to distinct cosets). These elements of the
form xgx−1 are called the conjugates of g in G; we have shown that the number of conjugates of G
equals the index of the centralizer of g.

5


