AUTOMORPHISMS OF NEARLY FINITE COXETER GROUPS

W. N. FRANZSEN AND R. B. HOWLETT

ABSTRACT. Suppose thadV is an infinite Coxeter group of finite rank and suppose
thatW has a finite parabolic subgroM, of rankn— 1. Suppose also that the Coxeter
diagram ofW has no edges with infinite labels. Then any automorphisiW dhat pre-
serves reflections lies in the subgroup of AM) generated by the inner automorphisms
and the automorphisms induced by symmetries of the Coxeter graph. If, in add#ics,
irreducible and every conjugacy class of reflectiongvitnas nonempty intersection with
Wj, then all automorphisms &% preserve reflections, and it follows that Af) is the
semi-direct product of Infw) by the group of graph automorphisms.

There is not much literature dealing with the automorphism groups of infinite Coxeter
groupsﬂ It seems that complete results are known only for rank 3 Coxeter groups and the
so-calledright-angledCoxeter groups.

A Coxeter group is right-angled if the labels on all edges in the Coxeter diagram are
These were investigated by James] [12], who described the automorphism groups of Cox-
eter groups whose diagrams have the following form:

M .. 4.&..

James’s result was extended by Tits,|[16], to include all irreducible right-angled Coxeter
groups whose diagrams do not contain triangles. Finally, in [14ihikerr gave a presen-
tation for the automorphism group of any right-angled Coxeter group.

The automorphism groups of infinite rank 3 Coxeter groups whose diagrams have no
edges with infinite labels are describedlin [9]; in this case the automorphism group is the
semi-direct product of InfW) and the group of graph automorphisms. The automorphism
groups of rank 3 Coxeter groups with both finite and infinite edge labels are described
in [[7].

For the purposes of this paper, we say that an infinite Coxeter grongaidy finite
if it has finite rankn and has a finite parabolic subgroup of ramk 1. It is shown that
if W is nearly finite and does not have an edge labekdtien the group of all automor-
phisms ofW that preserve reflections is the semi-direct product ofwinand the group of
graph automorphisms. In certain special cases we are able to show that all automorphisms
of W preserve reflections. In fact, if we restrict attention to infinite irreducible Coxeter
groups whose diagrams have no infinite edge labels, then we know of no example having
an automorphism that does not preserve reflections.

1. PRELIMINARIES

Recall that a Coxeter group is a group with a presentation of the form
(1.1) W=gp({ralaen}|(rarp) ™ =1forallaben)

wherell is some indexing set, whose cardinality is calledrdrek of W, and tham,, satisfy
the following conditionsm,, = my,, eachmy liesinthe se{me Z | m> 1} U{e}, and
my, = 1 if and only ifa=b. Whenm,, = « the relation(r,r,)™» = 1 is interpreted as
vacuous. We shall restrict attention to finite rank groups with# o for all a,b € 1.

2000Mathematics Subject ClassificatioRrimary 20F55.
The closely related question of whether a Coxeter group may contain more than one class of Coxeter gener-
ating sets is investigated inl[5].
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As is well known, the isomorphism type @¥f as an abstract group does not determine
either the parameters,;, or the rank oW as a Coxeter group. Hence we always assume
that the presentatiof (1.1) is given; in particulér, | a € M} is a distinguished set of
generators for the groufy.

A reduced expressidior an elementv € W is a minimal length word expressingas a
product of elements of the distinguished generating set. We défineo be the length of
a reduced expression for.

TheCoxeter diagranof W is a graph with vertex sél and edge set consisting of those
pairs of verticeqa, b} for whichmy, > 3. The edg€d a, b} is given the labein,,. We say
thatW is irreducibleif its diagram is connected.

Let R be the real field, an¥ the vector space ové with basisl1. Let B the bilinear
form onV such that for alg,b € I,

B(a,b) = —cog(m/myp).

To make our notation more compact we defines = B(u,v) for all u,v € V. Note that
a-a=1forallael, sincem,, = 1.

For eacha € V such thata- a = 1 the transformation o¥ given byv — v—2(a-v)a
is called thereflection along a lt is well known (see, for example, Corollary 5.4 bf [11])
thatW has a faithful representation dsuch that, for alh € N, the element, acts as the
reflection along. We shall identify elements & with their images in this representation.
We also use the notatian for the reflection alon@ whenever € V satisfiesa-a= 1. It
is straightforward to show that each reflectigrmpreserves the forrB; hence all elements
of W preserveB. Furthermore, the equatiayr,g=! = rqa holds for alla € V such that
a-a=1 and all transformationgthat preserveé.

We write RefW) for the set of all reflections iW. It is immediate from the above
comments thatifo = {wa|weW, ac}then{r,|be ®} C Ref(W).

The setd is called theroot systermof W, and elements ob are calledoots Elements
of the basid1 are calledsimple roots and the reflections, for a € I are calledsimple
reflections A root is said to bepositiveif it has the formy ;. A,a with A, > 0 for alll
a € N, andnegativeotherwise. We writgb™ for the set of all positive roots ardi~ for the
set of all negative roots.

Lemma 1. With the notation as above, the following statements hold.

(1) Every negative root has the forfin.n A,a withA, < 0for all a € M. Furthermore,
O ={-b|beo'}.
(2) IfweW and a< N then

Lwr.) — I(w)+1 ifwae ot
(Wra) = l(w)—1 ifwac® .

(3) Ift € Ref(W) then t=ry, for some be ®.
(4) The group W is finite if and only if the bilinear form B is positive definite.
(5) The root systerb is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found [n]11, Section 5.4], Theorem 4[1 in [6] includes
both (4) and (5), and (3) i [10, Lemma 2.2]. O

For eachw € W we defineN(w) = {b € ®* |wbe ®~ }. By Part (2) of Lemma]1, if
w # 1 thenN(w) N T # 0. An easy induction shows thiil{w) has exactlyl (w) elements.
In particular,N(w) is a finite set. It is also easily shown thatdifis finite then there is a
uniquew € W such thatN(w) = ®*. This element, which we denote by, is also the
unique element of maximal length W (which is a finite group).
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We need the following simple fact.

Lemma 2. Suppose that w W is an involution, and let & N(w) N M. Then either
wa= —aorl(rawry) =I(w)—2.

Proof. Observe that-wa € ®*, sincea € N(w). Now N(r,) = {a}, sincea € I, and
so if —wa # a it follows thatr,(—wa) € ®*. But this implies tha{r,w)a € ®~, and so
by Lemmg 1 combined with the obvious fact that each element has the same length as its
inverse,
[(rgwry) =1(raw)—1=1I(wry)—1=1(w)—2
as claimed. |

The following lemma is one of the key ingredients in the proof of our main theorem.

Lemma 3 (Brink [2]). Suppose that b is a positive root, and write-ky .. A,a. For each
acl,if A, > 0theni, > 1.

2. PARABOLIC SUBGROUPS AND REFLECTION PRESERVING AUTOMORPHISMS

Let W be a Coxeter group, and continue with the notation introduced in the preceding
section. For eachC N we defineW to be the subgroup & generated byr, |a€cl}.
These subgroups are called #tandard parabolic subgroups W. A parabolic subgroup
of W is any subgroup of the form\Ww ! for somew € W andl C M. We shall use the
phrase “maximal parabolic subgroup” to mean “maximal proper parabolic subgroup”.

Itis clear that ifl C M thenW, preserves the subspadgeof V spanned by, and acts on
this subspace as a Coxeter group withs its set of simple roots. We writg, for the root
system o} inV;, and®;", &, for the sets of positive and negative rootstin

Lemma 4. In the above situatiordp, = ®NV,.

Proof. For eachb = 5 . A,a € ® define supfb) = {ac M| A, # 0}. Itis clear that if
b = wafor somea € | andw € W then supyb) C I; we must prove that the converse also
holds. Without loss of generality we may assume thigtpositive.

Letb € @ with suppb) C I. Sincer, # 1 we may choose a simple raot N(r,) N I1.
Thenc—2(b-c)b=ry,ce @, and sdb-c > 0. Sincea-c <0 for alla € M\ {c} it follows
thatc € supgb).

We proceed by induction ok{ry). If I(ry) = 1 then we must have = ¢, andb = wa
holds withw =1 € W anda = c € |. Now suppose thd{r,) > 1, so thatb # ¢, and put
d =rcb. Lemmg 2 gived(rg) = I(rcrpre) = I(r,) — 2; moreover, sincel = b—2(c- b)c
we see that sugd) C supgb). By the inductive hypothesid = wa for somew € W, and
ac |, and since € | it follows thatr.w € W, andb = (r.w)a is an equation of the desired
form. O

The next proposition, classifying involutions in Coxeter groups, is a useful tool in the
analysis of automorphisms.

Proposition 5 (Richardson([15]) Suppose that w W is an involution. Then there is an
I € N such that Wis finite, w is conjugate to w(the maximal length element of Ynd
w,; is central in W.

Proof. Let L = {ac MN|wa= —a}. First observe tha®;" c N(w) is finite, and so, by
Lemma[1,W_is finite. If a € L thenwraw =r,, =r_, =r,, and so it follows thatv
centralized\| .

If w=w, then we are finished; so suppose thgt w . Thenw, w # 1, and so we may
choose am € N(w w)NM. If wae @, then, asv, wac ®~, we havewac N(w ) = ®/.
But then

a=w(wa) e wp =P,
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which is a contradiction. Henaes N(w) NIM. Nowwa## —a, sincewa= —awould mean
thatac L, and

w wa=w_(—a) e W & =&,
contradictinga € N(w w). Hencel(rawr,) = I(w) — 2 by Lemmd 2, and we can use in-
duction on the length to complete the proof. O

Note that the above proof in fact shows thvat=t 1wt for somet € W such that
[(w) =21(t)+1(w,).

Our main tool in the analysis of automorphisms of infinite Coxeter groups is the follow-
ing lemma, which appears inl[1, Exercise 2d, p. 130].

Lemma 6 (Tits). If W is a Coxeter group and KK W is finite, then H is contained in a
finite parabolic subgroup of W.

One immediate consequence of Lemima 6 is that every maximal finite subgroup of a
Coxeter group is parabolic.

Lemma 7 (Kilmoyer). Let I,J C . Then everyW,W,;) double coset in W contains a
unique element of minimal length; moreover, if d is the minimal length elementdW\W
then WNdwW,d—! = W, where K= ndJ.

Proof. Seel[4, Theorem 2.7.4]. O

Corollary 8. The intersection of a finite number of parabolic subgroups is a parabolic
subgroup.

Proof. If H andK are parabolic subgroups théh= x"Wx andK = y~ W,y for some
I,J C N andx,ycW. Letd be the minimal length elementWj xy~*W;, and choose € W,
andt € W; such thad = uxy't. Then

HNK =xtuWuxny twt~ty = xtu=t(w ndwyd1)ux,
which is a parabolic subgroup by Lemfia 7. Induction completes the proof. O

Since the image under any automorphism of a maximal finite subgroup must be another
maximal finite subgroup, Corollafy 8 immediately yields the following result.

Corollary 9. LetW be an infinite Coxeter group, ande Aut(W). If H is a subgroup of
W that can be written as the intersection of a collection of maximal finite subgroups, then
o(H) is a parabolic subgroup of W.

A special case of Corollafy] 9 provides a possible method for proving that an automor-
phism preserves reflections.

Corollary 10. IfW is an infinite Coxeter groupy € Aut(W) and r is a reflection such that
(ry can be written as an intersection of maximal finite subgroups, thehis a reflection.

Suppose thdtC I is such tha¥yj is a maximal finite standard parabolic subgrouf\bf
(in the sense thay| is finite andW, is infinite for all J with | & J € ). We shall show
thatW, is not properly contained in any finite subgroup/ef

Lemma 11. Let W be a maximal finite standard parabolic subgroup. Theni§hot
conjugate to a subgroup of any other finite standard parabolic subgroup.

Proof. Suppose that] C tWct~* for somet € W and someK C I such that\ is finite
andK # 1. These assumptions are not altered by replatibg another element of the
double cosedV|tW; so we may assume thigis the minimal length element ¥ tW . By
Corollary[7 it follows thatf =W, and sd C tK.

SinceW, is a maximal finite standard parabolic subgroug, 1. So, by Lemma]1, we
may choose a simple roosuch that ~1c = d is negative. As has minimal length it
Lemma[jr guarantees thatis positive for alla € K, and henceb is positive for allb € ®)f.
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But —d is positive whilet(—d) = —c is negative, and so we conclude tldas not in®y.
Thus whend = t~1c is expressed as a linear combination of simple roots, semd
appears with a negative coefficient. Now suppose h)katblu{c}\db,, so thato= Ac+v

for someA > 0 and somer € V. Sincet™! C K it follows thatt~1v € Vi, and hence
t~'b = A(t"*c) +-t~vinvolvese with negative coefficient. So'b € ®~. But® , is

infinite, while ®, is not. Sat—* takes an infinite number of positive roots to negative roots,
and hence has infinite length. This is a contradiction. O

Corollary 12. If W is any infinite Coxeter group, then all maximal finite standard para-
bolic subgroups of W are maximal finite subgroups of W.

Proof. If W is a maximal finite standard parabolic subgroup but not a maximal finite sub-
group therW < tWyt~* for somet € W andJ C M with [W| < |W;| < o, by Lemmeﬂi
But this contradlcts Lemnfalll.

If I andJ are disjoint subsets dil such thatm,, =2 for alla < | andb € J, thenV,
andV; are orthogonal to each other, and it follows readily iWat; =W x W;. Moreover,
® ;=W (1UI) =WITUW,J = &, Ud;, since eaclw € W fixes eacta € J and each
w € W fixes eacta € |. So we obtain the following result.

Lemma 13. Let W be a Coxeter group of rank n aftthe set of simple roots. If | and J
are disjoint subsets dfl such that no edge of the Coxeter diagram joins a root in | and a
root in J, then

Ref{W ;) = Ref(W) U RefiW).
(where the symbal signifies a disjoint union).

Corresponding to the connected components of the Coxeter diagram we obtain a de-
composition =L, UL, U--- ULy, sucha,b € M lie in the same subsét if and only if
there exists a chain of simple rods= a,, a,, ..., & = b such that the reflections along
consecutive terms do not commute. We calllththe irreducible components bff, and the
corresponding standard parabolic subgrdﬂ@isthe irreducible components @¥. Note
thatW =W x W, x -~ x W, and RefW) =Ref(W_ ) U--- URef(W_ ).

It is clear that reflections belonging to different irreducible components commute. On
the other hand ib € ® is not simple then it is clear that there exists a simple sostich
thatr,(b) # b, and sar, andr,, do not commute. It follows that reflectionsandr’ belong
to the same component if and only if there is a chain of reflectioas,, r,, ..., r, =1’
such that consecutive terms do not commute.

Lemma 14. Let oo: W, — W, be an isomorphism of finite rank Coxeter groups with
o(Ref(W;)) C Ref(W,), and let rr’ € Ref(W;). If r and r’ belong to the same compo-
nent of W thena(r) and e (r’) belong to the same component of. W

Proof. This follows from the discussion above, since the image of a non-commuting chain
fromr tor’ is a non-commuting chain from(r) to o.(r’). O

Clearly symmetries of the Coxeter diagram give rise to automorphisms that permute the
simple reflections; we call theggaph automorphismsWe say that an automorphism is
inner by graphif it lies in the subgroup of AuW) generated by the inner automorphisms
and the graph automorphisms.

Note that since every reflection W is conjugate to a simple reflection, there are only
finitely many conjugacy classes of reflections. Moreover, it is clear tlatsfan automor-
phism andC, C’ conjugacy classes such tha{C) C C', then(C) =C'. So if o preserves
reflections, in the sense tha{Ref(W)) C Ref(W)), thena(Ref(W)) = Ref(W). In par-
ticular, ! also preserves reflections.
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We denote byR(W) the set of all automorphisms @ that preserve reflections. In view
of the reasoning above we see tR&V) is a subgroup of AUWV). ClearlyR(W) includes
all automorphisms that are inner by graph.

Given o € R(W) there exists a function,,: M — & such thate maps the reflection
alongarto the reflection along,, (a), for alla € IN. Note thatp,, is not uniquely determined
by «; indeed, since, = r. if and only if b = +c (given thatb,c € @), there are exactly
two choices for each,(a). Since the reflection§ry, | b € ¢,(M1) } generatdV, the roots
in ¢,,(MN) must spafy (by [10, Lemma 2.8]). Hence, (M) is a basis oV.

If a,b € N thenr,r, has ordem = m,, anda-b = cogx/m). So if ¢,(a) = c and
¢, (b) =d thenr.ry = a(r,r,) has ordem. Sincer.ry acts as a rotation on the plane
spanned by andd, we deduce that

(2.1) ¢a(a) ) ¢oc(b) = COS(l 7/ Myp)
for somel coprime tomy,. In particular,g, (@) - ¢,(b) =0 if m=2.

Lemma 15. Leta € R(W), and suppose th&t, the Coxeter diagram of W, is a forest. Then
the functiong,, above can be chosen so thiat(a) - ¢, (b) < Ofor all distinctab € 1.

Proof. Observe that we can writd = {a;,a,,...,a,}, choosing the numbering so that
for eachi the valency ofy, in the diagram associated with the subgat a,,...,a} is at
most 1. Ifby, by, ..., b, are chosen arbitrarily subjectbdrai) =Tp, then for each there
is at most ong < i such thab; - b; # 0, and we can successively choose sigins;, ..., &,
so that(gby) - (¢jbj) < 0 whenevei # j. O

It is not necessarily true that, (a) - ¢, (b) = a- b, even if they agree in sign. However,
if m=2, 3, 4 or 6, then the only numbedrg {1,2,...,m— 1} coprime tomarel = 1 and
| =m-—1, and cog(m— 1)z /m) and co$x/m) have opposite signs. Hence we deduce the
following result.

Corollary 16. Suppose that € R(W) andr is a forest with edge labels in the §& 4, 6}.
Then we can choosg, so that¢,(a) - ¢,,(b) =a-b foralla,b e .

The next resultis an unpublished theorem of J-&eHIt follows immediately froni[10,
Theorem 4.1].

Theorem 17. Suppose that WW, are irreducible Coxeter groups, with root systems
@, d, and sets of simple rootd4, M, in the spaces ¥V,. Suppose that gvV; — V,

is linear, mapsb, to ®, bijectively, and satisfiegu) - (gv) = u-v for all u, v € V;. Then
there exists we W, ande = £1 such that §l; = ewl1,.

Clearly g, = ewrl, implies that the Coxeter diagrams\W andW, are isomorphic.
In the casa&V, =W, we see that the automorphism- g~*xgis inner by graph.

Theorem 18. Suppose thatt € R(W) and suppose that the functigr, can be chosen so
that ¢, (a) - ¢, (b) = a-b for all a,b € M. Thene is inner by graph.

Proof. The functiong,,: M — @ extends uniquely to a linear map V — V. The hy-
pothesis that, (a) - ¢,(b) = a-b for all a,b € M ensures thatgu) - (gv) = u- v for all
uvev.

Let W, W, ..., W, be the irreducible components ¥, andLq, Lo, ..., L, the cor-
responding subsets 6f. Write V; for the subspace of spanned by ;. By Lemma‘%]h
the sets RefV, ), Ref(W,), ..., Ref(W,) are permuted by:. Now ifi,j € {1,2,...,m
satisfy a(Ref(\W) = Ref(W,) then¢, (a) € V; for all a € L;, and sog restricts to a linear
mapV; — V;. Moreover,g maps the root system &% bijectively onto the root system
of W;, sincec is bijective. Hence Theore@l? applies, and we conclude that there exists

w; € W, andg; = +1 such thatjwjflq&a(a) €L, forallac L;. Repeating this construction
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for all values ofj yields a bijective mag: M — N such thatc:j\/\]ﬁle(a) = ¢,(a) when
6(a) €L;.

If a,b € M belong to different components then so @) and 6(b), while if they
belong to the samk, then

6(a)-6(b) = w;6(a)-w,;0(b) = &;W;0(a) - £, 6 (b) = 95,(a) - ¢, (b) = a-b.

Soin all cases we must have thay ;)¢ = Map, Whenced gives rise to a graph automor-
phism ofW. We denote this graph automorphismiy

Letae I, and defineb € ® andj € {1,2,...,m} by b= ¢,(a) and6(a) € L;. Then
b=¢;w;6(a) € Ref(W,), and we have

Y(ra) = Noa) = rsjwjb = rWJ-b = erijil = (WiWy - - Wi )Ip (W1 Wy - - 'Wm)il

sincew;, W,, ..., Wy, centralize each other, amg centralizes, wheni # j. Butr, = a(r,)
(sinceb = ¢,,(a)), and so, writingyv = w; W - - - Wy, we deduce that(r,) = wo(r,)w* for
all a € M. Since ther, generatdV it follows that o (x) = wLy(x)w for all x € W, whence
o is inner by graph. O

Corollary 19. If the Coxeter diagram is a forest whose edge labels all belong to the set
{3,4,6}, then all automorphisms of W that preserve reflections are inner by graph.

Proof. This follows immediately from Theorem L8 and Corollary 16. a

3. NEARLY FINITE COXETER GROUPS

Recall our definition of “nearly finite”: a Coxeter group of rankis nearly finite if
it is infinite and has a finite parabolic subgroup of rank 1. In this section we begin
our investigation of nearly finite Coxeter groups and their automorphisms. We show, in
particular, that ifW is irreducible and nearly finite, arelis an automorphism & whose
restriction to a finite subgroup of rank— 1 is inner by graph, ther itself is inner by
graph.

If W is a Coxeter group and its set of simple roots, then we shall say that a subset
of N is of finite typeif the corresponding standard parabolic subgragps finite.

Then x n symmetric matriXM is reducibleif there are non-empty seksandJ such that
lUJ={1,...,n} and the(i, j)-entry of M is zero for alli € | andj € J. OtherwiseM
isirreducible We define the&Gram matrixof the Coxeter groupV to be then x n matrix
whose(i, j)-entry isg; - aj, wherel = {a;,a,,...,a,}. Clearly, the Gram matrix dV is
irreducible if and only ifW is irreducible. We say thaV is nondegeneratd the Gram
matrix is nonsingular. Note that W is finite then it is nondegenerate, since the Gram
matrix is positive definite (by Lemnjg 1).

Lemma 20. Suppose that M is a positive definite real symmetric matrix such that the
off-diagonal entries of M are nonpositive, and let-QM~. Then all entries of Q are
nonnegative. Moreover, if M is irreducible then all entries of Q are strictly positive.

Proof. Let n be the degree dfl, and writem;; andg; for the (i, j)-entries ofM andQ,
foralli,j € {1,2,...,n}. Letg be thei-th vector in the standard basis&F, written as a
column vector, and let; be thei-th column ofQ. Note that sincéM is symmetric, so too
is Q. Hence! is thei-th row of Q (where the “t” means “transpose”).

The principal minors oM are all positive, sinc is positive definite, and; equals
the (i,i)-th cofactor ofM divided by the determinant dfl. So it follows thatg; > O for
alli.

Fixke {1,2,...,n}, and define

I={i|1<i<nandgy >0},
J:{||1§|§nandqlk<0}
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LetXx= Yi Gx& andy = ¥;c;0&, and observe that+y = v,. Now V\M = €, since
Q=M1 and sovj My is thek-th entry ofy. But all the entries of are nonpositive; so

0> My = y'My+ XMy = y'My+ Z GidjkeiMe; =y My+ Z Qi Qjk M -
1€ 1€
jed j€d
Each term in this last sum is nonnegative, sined givesq;, > 0 andj € J givesq <0,
while m; <0 sincei # j. Hence

0>yMy-+ Z G My > y'My,

and sinceM is positive definite it follows thay = 0. Hencev, = x, and so all entries ofy
are nonnegative. This applies for kjlso the entries of are all nonnegative.

Suppose tha@ has at least one zero entry; sgy. = 0. Letl ={i|q, >0} and
J={j|agn=0}. ThenluJ={1,2,...,n}, sinceq; > O for alli andj. Our hypothesis
says thak € J, whereas € I, since we proved above thagt, > 0. Hence both andJ are
nonempty. Furthermore, ife J thenj # h, and we have

0= eE1ej :VLMGJ- = gqhie,tMej = %th”\y

Note thatm; < 0 for alli € I, sincej ¢ I, and sincegy,; > 0 for alli € | we see that all the
termsgy,m; in the above sum are nonpositive. So they must all be zero. §jjpce0 for
alli €1, we deduce thaty; =0 foralli € . Thusm; =0 foralli € | andj € J, and hence
M is reducible. O

Corollary 21. Suppose that W is a finite Coxeter group, and(&} .., be a family of
nonnegative real numbers indexed by thel$&if simple roots. Then there exist nonnega-
tive numbersg,),cn such that x= 5 .. uqa satisfies xa= &, foralla e . If &, > Ofor
some & I theny, > 0 for all b in the same component Gfas a.

In particular, if W is irreducible and, > 0 for some a, them, > O for all b.

Proof. LetL be an irreducible component B, and letM be the Gram matrix o0 . Then
M is positive definite, by Lemnfg 1, and the off-diagonal entried @ire non-positive since
a-b=—coqn/m,,) <0wheneven,b € N with a# b. FurthermoreM is irreducible since
W _is irreducible. By Lemm@O the entriesMdf~* are all positive.
Writing g, for the (b, c)-entry of M2, defineu; = Spey duelp, for eache € L. Then
Ue > 0, andu, > 0 if any & is nonzero. Furthermore, 3 = Y. UcC, thenx -a= &,
for all a € L. Repeating this construction for all componentsind definingk= 3 x_, we
see thaix-a = &, for all a € N, since distinct components are orthogonal to each other;
moreoverx= Y ,.n UaaWith coefficientsu, that are nonnegative, and positive wiigp: 0
for somec in the same component as O

We shall make use of the following triviality.

Lemma 22. Suppose that W is a Coxeter growpan automorphism of W, and b, c and
d simple roots such that(r,) =r. anda(ry) =rq. Thenab=c-d.

Proof. We havea-b= —cogn/m,,) andc-d = — cogw/m4), wherem,, andm,4 are the
orders ofr,ry, andr.ry. But these orders are equal sineé ,rp) = rry. g

We now come to the main result of this section.

Theorem 23. Suppose that W is irreducible, non-degenerate and nearly finite, and the
Coxeter diagram of has no infinite edge labels. Let S be the set of simple reflections.
Suppose thatr is an automorphism of W that preserves reflections, and suppose that
there exist ab € N (possibly equal) such thdl\{a} and M\{b} are of finite type and
o(S\{ra}) = S\{rp}. Thene is inner by graph.
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Proof. LetV, andV, be the subspaces ¥fspanned by1\{a} andl\{b}. Letx € V, be
such that the vectar = x+ alies in the orthogonal complement \df (which exists since
W is nondegenerate), and, similarly, Je& V,, be such that the vecter=y+ b lies in the
orthogonal complement of,. We shall show thay-y < x-x. Since the same argument
with a andb interchanged and replaced by~ will show thatx-x < y-y, it will follow
thatx-x=y-y.

Write M\{a} =J; UJ, U--- U J, where theJ; are the irreducible componentsiaf {a}.
For eaclt € M\ {a} define

Ec=coqm/m,) = —C-a,

and observe that, sina# is irreducible, eacld; contains at least onesuch that; # 0.
Now x is the orthogonal projection ofa ontoV,, and since the set} are mutually or-
thogonal it follows that

X = Xq + X+ -+ X
wherex; is the orthogonal projection efa onto the subspace spannedbyFor allc € J;
we have
c-xj=—C-a=§>0,
with strict inequality for at least onee Jj, and so if we write<]- = ZCEJj uccthen it follows
from Corollary@. thap, > O forallc € J;. Thusx= 3 ccy\ ) UcC With all coefficientsu,
positive.

Sincea(S\{ra}) = S\{rp} there is a bijectiors : M\{a} — M\{b} with a(r;) =r
for all c € M\{a}. By Lemma 22 we have-d = o(c)- o(d) for all c,d € M\{a}, and
extendingo linearly gives an isomorphisii: V, — V.

Let f € @ be such thatx(r,) =r;. Sincer ('t has the same order ag,, namely
M4, We have that

f-o(c) = codl.m/mey)
for somel, coprime tom.,. Write 6, = cogl,m/m.,), and note that; > |6;| for all
ce M\{a}, with 6. =0 if and only if &, = 0.
Letz= 3 ..\ ju} AcC be the orthogonal projection dfontoV,, so that

o(c)-z=o0(c)-f =86,

forallce M\{a}. Sincev=b+yis a nonzero element of the orthogonal complemelt, of
we have thaf = z+ v for some scalaw. Now sincef = wb+ (z+ wy) andz+ oy €V,
it follows from Lemmd_B thato > 1. Note also that

Z=z+2+ - +2

wherez; = ZCEJJ_ ka(c)o(c) is the projection off onto the space spanned 6yJ; ).
Fix an arbitraryj € {1,2,...,k}. Since&; > |6| for all ¢ € J;, we have

0<&—6,=cx—o(c)-z=c- (dzjiudd) ~o(c)- (dzj.xc,(d)o(d))

:dGZJj(C-d)IJd —dezjj(c.d)),o(d) = dezl(c.d)(”d _Ao(d))7

J

sincec (c)-o(d) =c-dforallc,d € J;. Now by Corollar it follows thafty — Ag(g) = 0
for all d € J;, and, moreover, ifug — A = O for somed € J; then we must have
& — 6. =0 forallc e J;. Similarly,

0<&+6 :dZJ (c-d) (g +Asq))

j
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for all c € J;; so py +l(,(d) > 0 for all d € J;, equality occurring for some only if
&+ 6. =0forallc e J;. Note in particular that, sincgis arbitrary in the above argument,
Hg = [Ag(g) foralld € M\{a}.

Eacht € V can be written in the formm =ty + vuwithty € V, andv e R. If u-u>0
this gives

t-t=ty-tg+v2u-u,

which is positive ifty # 0 or if v # 0. SinceW is infinite this contradicts Part (3) of
Lemma[]. Ifu-u=0thent-u=0 for allt € V, contrary to the assumption thaf is
nondegenerate. 3o u < 0, and, by the same reasoningy < 0.

Sincef € ®

1=f -f=(z+ V) (z+0V) =2-2+ 0V,

and we also have that

Z-Z = )LG(C)G(C) 2= A’G(C) OC.
celMy{a} cemM\{a}
Similarly,
l=a-a=(—Xx+U)-(—X+U) =X-X+U-U,
and also
XX = Z HcC-X = Z HeSe-
cel\{a} cel\{a}
Thus
u-u+ e = w?v-v + Ao(c) O
celm\{a} celM\{a}
and so

(HcSe— )’o(c) 6c) = ®*V-v—u-u.
celml\{a}
Sincepte > [Aq (| and&. > |6;| for all ¢, we see thaf .. (ay (Hcc — Ag(c)0c) = 0, and
Som?v-v>u-u. Butw? > 1, and since/-v < 0 it follows thatv-v > w?v-v, and hence
V-V >U-u. Since 1= x-x+u-u (shown above) and £ y-y+v-v (similarly), it follows
thaty-y < x-x, as desired.
In view of our earlier remarks, we must havev = u-u, and
0< (.ucécflcr(c)ec) = (wzfl)u'ug 0
celM\{a}
sincem > 1 andu-u < 0. Thus(w? — 1)u-u =0, givingw = 1, and
(l"céc - Ac(c) 6:) =0,
cel\{a}
giving tieSe = Ag () 0c = [A4(c) Oc| for all c € M\ {a}. Furthermore, we have
0< (Ue— Mc(c)DéC < e — Mo(c)‘ 6c| =0,
and it follows that, for allc € M\{a}, either&. = 0 or |44 | = Hc. As noted above, for
eachj € {1,2,...,k} there exists at least ortee J; with &; > 0, so thath; g, = +pg.

But as we have shown, ;) = g then6 = & for all c € J;, and if A ) = —q then
0. = —&: for all c € J;. In the former case we have

zj-0(c)=60,=E& =X;-C
for all c € J;, and it follows thatz; = o(x;). In the latter case,
z-0(c) =0, =& =—X;-C

forall c € J;, givingz; = —o(x;).
Let w be the the longest element of the parabolic subgroup corresponding to the union
of the setso(J;) for which z; = 6(x;), let B be the inner automorphism ¥ given by
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conjugation byw, and lete’ = Boc. Sincef permutesS\{r,} we see that!’ satisfies the
same hypotheses as Now ¢/(r,) = wr;w 1 =r,,, and

wf=wz+v=(wz +Wz +---+wz)+V,

and herevz; is the projection ofvf onto the span of(J;). Applying to o’ the arguments
used above foo: enables us to deduce that for egch

wzj = +0/(xj) = + Z o’ (c),
ce i

wherea!/(r.) = ro() for all c € M\{a}. Butw was chosen so that for eagtthe element
wz; is a negative linear combination simple roots, ansvgp= —5’(xj). Thus

W= (—0/(X)) — 0" (%) — - — 6" (X)) +V=—0"(X) +,

showing thatvf - 6’(c) = —&. = a-cfor all c € M\{a}. Since alsw’(d)-o’(c) =d-cfor
all c,d € M\{a}, Theorenf 1B shows that' is inner by graph. (Indeed, Theor¢ni 17 yields
that there exists & € W ande = +1 such thaew/ (M) = wfUM\{b}. Butwf is easily
shown to be positive, and it follows readily that= 1 andN(w') = 0. Hencewf = b, and
o/ is in fact a graph automorphism.) O

Our main objective is to prove that Theorém| 23 holds without the hypothesis that
o(S\{ra}) = S\{r,}. Our basic strategy is to show that if the given automorphism
is replaced byx 3 for some suitably chosef that is inner by graph, then the hypotheses
of Theoren{ 2B are satisfied. Our next theorem accomplishes this in the caseptet
serves some maximal finite subgroup. We need to use a modification of the argument used
in the proof of Theorerp 23 to deal with some of the cases.

Theorem 24. Suppose that W is irreducible, non-degenerate and nearly finite, and the
Coxeter diagram has no infinite edge labels. Supposedthimtin automorphism of W that
preserves reflections, and suppose that there exist§lasuch thato/(Wh, 1) = Wy (a3
Thena is inner by graph.

Proof. Write J =T\{a}. SinceW, is finite, the classification of finite Coxeter groups (see
[11], Section 2.7]) tells us that each irreducible componedtisfof one of the types in the
following list. As is customary, labels equal to 3 are suppressed.

ATL: —o— 0 - —eo—e BTL: —o—0— - —o—e

D,: s —e—o Es: o—o—I—o—o

Er: O—Q—I—O—O—C Ex: O—Q—I—O—O—O—O
o oto o
o5 e o o

F4Z

Hs: o5 o o

Hy: Ig(m)Z o o

Thus the Coxeter diagram &%} is a forest, and so by Lemnja]15 there is a function
¢ I — @ such thato(r,) =, 1 for all b e J and ¢, (b) - ¢,(c) < 0 for allb,ce J
with b # c. As in Corollary 1§ it follows that

(3.1) 0o (b) - 94(c) =b-c

unlessm,. =5 ormy,. > 7. Furthermore, these values foy,. can only occur ifo andc
lie in an irreducible component dfof typeHg, H, or 1,(m), and then only for one pair of
simple roots in the component.

If Eq. (3.1) does hold for alb,c € J then by Theorem 17 there existsc W; and
€ = £1 such thatwg,, (b) € J for all b € J, and if 8 is the inner automorphism &¥ given
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by x+— wxw! then we see thg o permutes the simple reflections\j. Theore can
then be applied, and it follows thBix is inner by graph, whence is also inner by graph.

It remains to deal with those cases in whithas at least one irreducible component of
typeHs, H, or 1,(m) (wherem=>5 orm > 7) on which Eq.) does not hold. Accord-
ingly, assume that has such a component. We use an argument similar to that used in the
proof of Theoren 23 to derive a contradiction.

In our calculations below we use the abbreviatiof@&)@and £0) for cog6) and sir{9),
and we also writer,,, for #/m.

If b,c € J are such that Eq[ (3.1) fails, thdn ¢ = —c(x,,), wherem = my;, and
0y (b) - 0,(c) = —c(jm,) for somej coprime tom. Sinceg,, (b)- ¢, (c) < 0 we have that
1< j <m/2. If the component of containingb andc is of typeHs or H, thenm=5 and
ji=2.

LetM andM’ be matrices with rows and columns indexedlbguch that, for alb,c € J,
the (b, c)-entry ofM is b- ¢ and the(b, c)-entry of M’ is ¢,,(b) - ¢, (c). We assume that
is ordered so thatl is a diagonal sum of matrices corresponding to the various irreducible
components of. Sinceg, (b)-¢,(c) =0 if and only ifb-c = 0, we see tha!’ is also a
diagonal sum, with blocks of the same sizes as tho$é.of

The blocks oM corresponding to components of tyde&n), H; andH, are as follows
(assuming the ordering is chosen appropriately).

1 - C(”m)
| C(nm) 1 ]

I 1 — C(TE5) 0
= C(7T5) 1 —1/2

0 -1/2 1
1 —c(mg) 0 0
c(ms) 1 -1/2 0
0 -1/2 1 -1/2
| 0 0 -1/2 1
The following matriced, T, andT, are the inverses d¥l;, M, andM,;.

1/S(Tm)  C(7) /S ()

M4:

|C(Tn) / $*(Tm)

1/ (mm)

[ 9+3V5
2

4425 245

T4 —

4425 6+2vV5 3+5
[ 24V6  3+yB 555
[28+12/5 33+15/5 22+10v/5 11+5/5
33+15/5 42+18/5 28+12¢/5 14+6V5
22+10V/5 28+12/5 20+8/5 10+4V5

| 11455 14+6V5 10+4/5 6+2/5

For components on which Efg (.1) fails, the corresponding block4' @fre as follows.

! _ [ 1 _C(jﬂm)
Mi = __C(j”m) 1
1 —c(2m5) O
Mj = | —c(2n5) 1 —1/2
0 -12 1
1 —c(2m5) O 0
M | —c(2ns) 1 -1/2 0
4= 0 ~1/2 1 -1/2
0 0o -1/2 1
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The corresponding inverses are as follows.

T = [ 1/32(j7tm) C(j”m)/sz(j”m)
' __C(J'nm)/sz(jnm) 1/$(j7m)

85 4425 2445
Ti=|-4+2/5 6-2V5 3-5
| 2+v5  3-v5 55

[28—12/5 —33+15/5 —-22+10/5 -11+5V5
—33+15/5 42-18/5 28-12//5 14-6V5
—22+10/5 28-12¢y5 20-8y5  10-4/5
| -11+5V/5 14-6V5 10— 4y/5 6—2v5

It can be checked that all the entriesT$f T; andT, are positive and strictly less than the
corresponding entries @, T; andT,. Hence if we writet,. andt/ for the (b, c)-entries
of M~ and(M’)~1, then we havéy >t/ for all b,c € J. Since there is a component for
which Eq. [3.1) fails, there is a block in whigf, > t;,. for all b andc.

As in the proof of Theore@B, we suppose thét,) =r, wheref € ®*, and letzbe
the projection off ontoV;. Letx be the projection of-a ontoV;. Thenu = x+ a spans
the orthogonal complement¥j in V, andu- u < 0 sinceW is non-degenerate and infinite.
Moreover,f = z+ wu for some scalaw, and by Lemm@]3 we hawe > 1.

Foreaclce Jletc-a= —c(my,) = —&. Writex =y .;ucC. Forallce J,

c-x=-c-a=¢,

He =) teqly-
C %C

Now for eachc € J there is an integej,. such that

¢a(c> Z= d’(x(c) = C(jCﬂTmca) = ec’
where|6;| < & and6, = 0 if and only if . = 0. Writingz= S .3 A.0,,(C), we have

)Lc = dzjtc/:ded
S
for all c € J. Now observe that

Z-z= C;lc((pa(c) '7) = C;)Lcec = C;%tédeced
X-a= C;“c(c'a) = _c;.ucéc = _%%tcdécéd'

Since&.&y > 6,64 > 6.64 andtq >t , > Oforallc,d e J,
z ;tcdgcgd > z Ztédeced-
C C

But there is an irreducible componentwf for whicht.y > t/,. AsW is irreducible there
is an edge joining to this component, and hence there isia this component for which
& > 0. Thent,.&2 > 1,02 > .62, and so

—X-a= thcdécéd > thédeced =zz

Therefore b-x-a<1—z-z Now

so thatf, = § 4c;(C- d)ug, and

and

u-u=(x+a)-u=a-u=a-at+a-x=1+a-x
Thusu-u< 1-2z-z and, sincai-u < 0,
1-z-z
u.

1>
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Sincex € O,
1=X-X=(z+ ou)- (z+ ou) = z-2+ v?u-u.
Hence
1-z-z
0 = <1
u-u
But w > 1, and so we have obtained the desired contradiction. O

4. GROUPS WITH TWO FINITE MAXIMAL PARABOLIC SUBGROUPS

If a € Aut(W) andF is a maximal finite subgroup &/, then clearlyo(F) is also a
maximal finite subgroup aV. Theorenj 24 was concerned with the caE ) = F; in this
section we dispense with this assumption.

Proposition 25. Suppose thad: W — W’ is an isomorphism of finite Coxeter groups that
maps reflections to reflections. Then W andiave the same type.

Proof. Since the irreducible componentsWwfandW’ are generated by the reflections they
contain, it follows from Lemm@ 34 that maps the components W to the components
of W’. Hence it is sufficient to prove the result for irreducidfeandw’.

If W is of typel,(m) then exactly half the elements \@f are reflections, and sinae
maps reflections to reflections it follows that half the element/oére reflections. Since
I,(m) is the only type of Coxeter group with this property, it follows tiédtis of the same
type asw. Of course a similar argument applies when&is of typel,(m); so we may
assume that neith& norW’ is of typel,(m).

The only coincidences of order for finite irreducible Coxeter groups, excluding groups
of type I,(m), occurs for typesA, and Hz, which both have order 120. They are not
isomorphic, since, for examplé,, has trivial centre whild; does not. Sinc&/ andw’
have the same order and are isomorphic, we conclude that they are of the same type.

Proposition 26. Suppose that W is an irreducible nearly finite Coxeter group, and let
a < I be such thaf1\{a} is of finite type. Suppose that there exists i with b+ a and
M\{b} of the same type d3\{a}. If M\{a} andM\{b} have at least one component of
type H;, Hy or 1,(m) for m > 4, then the Coxeter diagram associated with W either has a
symmetry of order two that interchanges a and b, or is of tyfe Xor some g> 2, where
these diagrams are as follows:

X(q): <: X(2): eo b
a b a b .

Proof. Let " be the Coxeter diagram &¥, andl ,, ', the diagrams obtained by deleting
a, b respectively. For eacbe I let val(c) be the valency o€ as a vertex of. Observe
that the valency ot # a as a vertex of , is val(c) — 1 or val¢) if c is adjacent taa
or not adjacent t@ in I'; so the sum of the valencies Iy is (3. val(c)) — 2val(a).
Applying the same reasoning alsoltg we deduce that véh) = val(b), sincel, andly,
are isomorphic.

Suppose first thdt, andl', are reducible, antd does not lie in a component &f, of
type Hs, H, or I,(m) for m> 4. Note that vala) > 2 since there must be edges frano
all components of .

By hypothesid™, has a componert of type Hs, H, or I,(m) that does not contaib.
Observe thaf lies in a componend’ of [, that also containg, sincea is connected ta.
SinceH, andl,(m) for m > 5 are not contained in any larger diagrams of finite type, it
follows thatA is of typeH; or I,(5). Furthermore, the valency afin A’ is at most 2, since
no diagram of finite type has a vertex of valency greater than 2 as well as an edge label
greater than 3. So va) < 3.
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If Ais of typeH; thenA’ must be of typeH,, and the valency o in A’ is 1. Soa s
adjacent tdo in I', and vala) = 2. Hencel, has exactly two components (given that it is
reducible). One of these {8, of typeH,, and the other must be of typ#; sincel’,, has a
component of typéls. Thusr is

a b
5 q 5

and we see that there is a symmetry interchangiagdb.
If Ais of typel,(5) thenA' is of typeH; or H,. In the former casa has valency 1 is';
soais adjacent td and vala) = 2. Thusl; andl"y, are of typel,(5) x Hz, whencd™ is

a b
5 q 5

and there is a symmetry interchangimgndb. Turning to the other case, observe that the
valency ofa in A’ (of type H,) is 2, since deleting gives a component of typeg(5). If

a andb are not adjacent then @) = 2, andl", has two components, which must be of
typesl,(5) andH,. Sorl is

5 5

which has a symmetry swappirggandb. So suppose that andb are adjacent, so that
val(a) = val(b) = 3. Letc be the end vertex ot’ adjacent ta. If cis also adjacent tb
thenl , has only two components, and they are of typg5) andH,. Furthermore, the
valency ofcin 'y is 1; so valc) = 2, andl" must be

c
5 / \ 5

a 9 g

which has a symmetry swappiagandb. Finally, suppose thatis not adjacent th. Then
I, andl, are of typel,(5) x A; x Hy, and there is @ adjacent tdb that is not adjacent
toa. In this casd is

c ¢!

a 9

and again there is a symmetry swappaandb.

Next we consider those cases for whichandl, are reducible, and lies in a compo-
nentA of I, of typeHz, Hy or [,(m) for m> 4.

Suppose thah has typeH;. Then the valency db in ", is at most 2, and consequently
2 <val(a) = val(b) < 3. Suppose v@h) = val(b) = 3. Thena andb must be adjacent.
The two end vertices dk cannot both be adjacent & sincel, is reducible. If neither of
them are adjacent @thenl, has three components, and is thus of tdpex A; x Hs. We
see that in this cadeis

*——o—o

*—o—o

and has a symmetry interchangiagandb. If one of the end vertices df is adjacent
to a, thenl", has two components and is of type x Hs. There are four possibilities: two
choices for the vertex df that is adjacent ta, and then two choices for the edge incident
with a that has the label 5.

5 b 5 b 5 b 5 b

——o ——o *—4 *—4
5:‘1 :q fl; 4;5
——o ——o *———4 *——4
a a
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The first and third of these have symmetries interchangiagdb, while the other two are
both of typeX(q).

Now suppose that véd) = val(b) = 2, still in the case thaA is of typeH;. Note that
I, andl", must have two components. ifis adjacent ta then it must be an end vertex
of A, andl", must be of typd,(5) x H; or of typeA, x Hs. The two possibilities foF are
as follows.

b»io—o oio—«b
q q
a"T'—' 'T'—"a

In both cases there is a symmetry interchangirendb. If b is not adjacent t@ then

it is the middle vertex of\, and, since only one of the end vertices can be adjaceat to
(given thatl"y, is not irreducible), we see that the one that is not adjaceattnstitutes a
component of , of type A;. Sol", andl, are of typeA; x Hz. The four possibilities for

I" are as follows.

5 b 5 b 5 b 5 b
N N o F
a a 5 5 a a
The first and third of these have symmetries interchangiagdb, while the other two are
both of typeX(2).
We have dealt with all possible cases for whikis of typeH;. Suppose now that is
of typeH,. As in theH; case we have Z val(a) = val(b) < 3.
Suppose first that véd) = val(b) = 3. Thena andb are adjacent, ank is not an end
vertex ofA. If no other vertex o\ is adjacent t@, thenl™, has three components and is of
typeA; x A, x Hy or Aq x 15(5) x Hy. Sincea may be either of the inner vertices of of the

H, there are potentially four possibilities, but only two of these dgiyésomorphic ta,.
The two possibilities fof are

b b
oi»—o—o oio—»—o
q q
—eo—0o—9 —eo—0o—o

o a o a

and there is a symmetry interchangangndb. If there were two vertices &\ {b} adjacent

to athen these vertices could not be adjacent to each other, since if they wefg, theuald
contain a triangle, contradicting the fact that it is of finite type. So the two components of
A\{b} would have to each contain one of these vertices, and this is also impossible since
thenl™, would be irreducible. So it remains to consider the cases in wdistadjacent to
exactly one of the vertices i\ {b}. In each cas€, must have exactly two components,
one of which is a componetit\{b} and the other of which has typ¢,. Now b may be

either of the two inner vertices @&, anda may be joined to any of the three vertices of
A\{b}. Each of the six choices gives a unique possibilitylfor

5 b 5 b 5 b
5(1 Q; (I:
—0—0 o—¢ o—¢
a 5 a 5 a
5 b 5 b 5 b
——O r———O *—o—4¢
:q :q Q;
——o > o o—eo ¢
a a 5 a

In each case there is a symmetryrahterchanginga andb.

Now suppose that ved) = val(b) = 2, still in that case thah is of typeH,. Observe
thatl", andl, have two components. b is an end vertex ofA then it must be adjacent
to a, andl", must be either of typég x H, or of typeH; x H,. The corresponding two



AUTOMORPHISMS OF NEARLY FINITE COXETER GROUPS 17

possibilities forl are

-
beg 2 o o o o> o o ob
q q
a®se—e—o oo,

and in both cases there is a symmetry interchangimgdb. If b is not adjacent ta then it
is an inner vertex of\, and, since only one of the other vertices can be adjacenfgiven
thatl"y, is not irreducible and does not contain a triangle), we again obtain six possibilities:
b can be either inner vertex ffanda can be adjacent to any of the three vertice&'pfb}.

5 b 5 b 5 b
a 5 a 5 a
5 :b 5 :b :i::b7
a a 5 a

In each case there is a symmetry interchangiagdb.

Having dealt with all possible cases for whighs of typeH; or H,, we assume now
thatA is of typel,(m). In this caséb has valency 1 in iff 5, and hence has valency 2in
We see that andb are adjacent, andis not adjacent to the other vertexdfsincel , is
reducible. Sd", andly, are of typeA; x I,(m). Thusr is

a b

*——o—0o—0
m q m

and there is a symmetry swappiagndb.

We have now dealt with all cases in whi€l andTl", are reducible, and it remains to
deal with the possibility that they are irreducible of tylpém), Hs or H,. Observe thal
has three vertices in the first case, four in the second and five in the third.

If T, is of typel,(m), with verticesb andc, thenl", has vertices andc, which must be
joined by an edge labelled. Sorl is

b.m

A

a

whereq = 2 is allowed. There is a symmetry of the desired kind.

If I, is of typeH; andb is the middle vertex, thea must also be adjacent to the other
two vertices, since vah) = val(b). One of these edges must be labelled 5 and the other 3,
sincerly is of typeH;. So there are two possibilities for,

5 b 5 b
5 : ; : ; 5
again allowingg = 2. In each case there is a symmetry swapgrandb. If b is an end

vertex ofl", thena must be adjacent to exactly one of the remaining two vertices, and since
there are two choices fdrthere are four possibilities far.

b 5 b 5 5 b 5 b
q: 5 q: ;5 : ;q ;q
Here again we allovg = 2, and again each of the diagrams has a symmetry swapping
aandb.

Finally suppose thdt, is of typeH,. If bis an inner vertex of , thena must be adjacent
to exactly two of the other vertices of, to ensure that véh) = val(b). Furthermore,
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these two must not belong to the same componemt,§fb} sincel’, must not contain
a triangle. There are two possibilities for and then two possibilities for the vertices of
I;\{b} adjacent ta. The four possibilities foF are

5 b 5 b 5 b 5 b

allowingq= 2. In each case there is a symmetry swappiagdb. We are left to consider
the cases wheb is an end vertex of ;. Suppose first thab at the end with the edge
labelled 5. Since v@h) = val(b) we see thaa, like b, is adjacent to exactly one of the the
other three vertices df,. It cannot be the middle one, or this would have valency Bjn
contrary to the requirement thhy, is of typeH,. The other two are both possible. df
is at the end of , that does not have the edge labelled 5, we again deduca thast be
adjacent to exactly one of the other three verticeB pfHowever, only one of these three

choices satisfies the requirement thgtis of typeH,. So altogether we have three more
possibilities forT. They are

b 5 b 5 5 b
q: 5 q: :5 ;q
allowingq = 2. In each case there is a symmetry swappiagdb. d

5. COMPLETION OF THE PROOF OF THE MAIN THEOREM

Recall first the following trivial fact.

Lemma 27. Let W be a Coxeter group, andlac IN. If m,, is odd then g and r, are
conjugate in W.

Proof. If my, = 2k+1 thenry, = (r rp)<ra(rarp) . O
Our main theorem is as follows.

Theorem 28. If W is an irreducible non-degenerate nearly finite Coxeter group with finite
edge labels, then any automorphism of W that preserves reflections is inner by graph.

Proof. Let o € R(W), and leta € ' be such thad = M\{a} is of finite type. Thero(W;)
is a maximal finite subgroup ¥, and so equal§\j.t—* for somet € W and someK C I.
Replacingo: by w— to(w)t~* permits us to assume thatW;) = W. By Propositior} 25
and the fact thatr preserves reflectiongy; andW are of the same type. This= M\ {b}
for someb € I (possibly equal t@).

Suppose thal does not contain any component of tydg H, or [,(m) for m> 4. As
W; andW are of the same type there is an isomorphfgmA; — Wy taking simple re-
flections to simple reflections. Applying Corolldry|19 to the automorphiski,ajiven by
wi— B~ 1(a(w)), we deduce that there exigsts W, such thaty: w— t(B~1(a(w)))t*
is a graph automorphism &%;. Thusfy is an isomorphisnW; — W that takes sim-
ple reflections to simple reflections. Bf is the restriction to\; of the automorphism
w— B(t)a(w)B(t)~L, and it follows from Theore@S that this automorphism is inner by
graph. Hencey is inner by graph.

Suppose, on the other hand, tdtas a component of typés, H, or I,(m) for m> 4.
If W is not of typeX(q) then by Propositio@G there is a graph automorphiahW that
takesW to W;. Now yor preserved);, and so Theoremn 24 tells us that is inner by
graph. Hencey is inner by graph.
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It remains to consider that possibility thatis of typeX(q) for someq > 2 andJ # K.
Letn = {a,b,c,d,e}, the Coxeter diagram being as follows.

5 _¢—e
c< q
—O
Note thatq = 2 is allowed.

The simple reflectiom, is central inWj; therefore

o(re) € Z(Wk) = (rg, W),
wherewy is the longest element W . As a(r,) is a reflection andy is the only reflection
in Z(Wg ) we deduce thatt(ro) = ryq. Now by Lemma 18

Ref(W;) = Ref(Wcpqy) U{re}
Ref(W) = Ref(W{c,a,e}) U{ra},

and it follows thator(Ref(Wycp, 4)) = Ref(W{C@e}). Soa(Wyepqy) =Wicae)-

Since the grouplv{c_’a,e} has only one conjugacy class of reflections (by Ler@a 27),
replacinga: by w— t(o(w))t 1 for a suitably chosehe Wicae allows us to assume that
o(rg) =re. Nowr = a(ry) has the property that the orderwf, is three (since,ry has
order three), and of the fifteen reflectionsWj , ., only four satisfy this requirement.
Furthermore, these four are permuted transitively by the gw{gfg}; S0 again replacing
replacinga by w— t(o(w))t 1 for a suitably chosehpermits us to assume that=r .

Sincer, commutes withry we deduce that(r.) is a reflection that commutes with.
There are just two possibilities for this: the reflection alangnd the reflection along
g=—(A+1)e—21a— Ac, whereA = 2cogr/5) (the positive solution ok? = A 4 1). If
a(re) =re then Theorem 24 tells us thatis inner by graph. So assume thefr;) = rg,
and leto(r,) = r¢, wheref € ®. We now have

O‘(ra) =Ty Ot(l’b) =Ta
OC(I‘C) =Ty O‘(rd) =T
ofrg) =rg.

Sincer¢rgy has order threef, - g = +1/2. Replacingf by —f if necessary, we may assume
thatf -g= —1/2. Sincer;r. has order twof - c= 0. Sincer;r, has ordeig andr;ry has
order five,f -a= coqjr/q) for somej coprime tog and f - d = — cogkr/5) for somek
coprime to 5. Let us writé, = cog jr/q) = f -aand&, = cogx/q); note that0,| < &,.
Let us also writehy = cogkr/5) = —f - d; note that6,4| < cogr/5) = 1/2.
For later reference, note thatg = %(1— A),whilec-g=e-g=d-g=0.
Definex = Aa+ 3Ac— 604d + (3 + (2—21)6,)e. Note thatx € V. We computex- v
for eachv in the basif{a, c,d,g} of V.
X-a=A—2A+0+(3+(2-21)6,)(—31)
=331+ (A%2—-1)6,
= ea
=f-.a,
X-C=—3A1+32+0+0
=0
=f-c,
X-d=04+0—-64+0
=f.d,
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X-g=32A(1-1)+0+0+0

NI

=f-qg
Thusx is the orthogonal projection df ontoV.
Now define

y=((1+214)+ (4+41)EDa+ ((3+32) +(2+20)E)c+ 2d+ ((1+31) + (2+40)E e
We find that
y-a=(1+22)+ (4+40)E — S((3+32)+ (2+22)&) +0
— A1+ 30) +(2+42)&)
=343 - 302+ (3+24 - 242)&,
= éa = —b-a,
y-e=—3((1+24) + (4+40)E) + (3 +31) +(2+20)&) +0+0

= —3A((1+20) + (4+42)E) + 0+ 0+ ((1+31) + (2+41)&)
=1+ A%+ (2+24 —22%)&,
=0=-b-e

Thusy is the projection of-b ontoVi . Putu= b+, a nonzero element of the orthogonal
complement ol,. We can confirm tha¥V is nondegenerate by checking thatu < 0.
Indeed,

u-u=(y+b)-u=b-u=1+b-y
=1-8((14+20) + (4+42)8) — 3A((3+34) +(2+24)8) — 5
= A —2(142L)E, — (4+41)E2
<0,
as expected. Now we find that
X-e=—2A24+0+0+3+(2-21)0,=1- 31 +(2-21)6,
and thus
X-X=Aa-X+ 32 C-Xx—0gd-x+ (3 +(2-21)6,) e-x
=A0,+0+65+(3+(2-21)0,)(1— 21 +(2—-21)6,)
=08 +3-3A+(A+3(1-2)+(3-31+1%))0,+4(1—1)?62
=05 +3-31+2(3-21)0,+4(2—1)62.
Note that§2 < 12 = 2(1+ ). Furthermore, since we also have théy < &,
X-X< - 104213216, +4/2—2]|6,
< F-3A+2(24 —-3)&+4(2-2)EZ,
and therefore
1-x-x—u-u>1-T4+11 224 —3)&, - 4(2—-2)&Z
FA+2(14+20)E 4 (4+4L)E2
=(3A—-3)+85,+ (8L —4)EZ,
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which is clearly positive since all the terms are positive. Therefore
1-x-x
u-u

<1

)

asu-u<0.
As in our earlier proofs we writé = x+ wu, and use Lemmf 3 to deduce that either
o >1(ifxe ®") orw < —1 (if x€ ®~), and hence thab? > 1. Sincef is a root,

1=1-f
= (X+ ou) - (X+ ou)

= X-X+ w?Uu-u,

and hence

and this is a contradiction. So this case cannot arise, and we conclude ihatner by
graph. O

The next result provides a strengthening of our main theorem.

Theorem 29. Theoreni 28 remains valid if the assumption that W is nondegenerate is
omitted.

Proof. Let n be the rank ofN. SinceW is nearly finite there is a subspace\bfof di-
mensionn — 1 on which the bilinear fornB associated withV is positive definite. IB is
degenerate then its radical must be complementary to this positive definite subspace, and
soB is positive semidefinite with a 1-dimensional radical. The classification of irreducible
positive semidefinite Coxeter groups is givenl[in/[11, Section 2.7]; the groups concerned
are isomorphic to the affine Weyl groups, and correspond to the following list of Coxeter
diagrams.

E:...I... ES:..I.H_._._.

523 ol o o

In each case the rank is one greater than the name might suggest: for ex&,mlm
rankn+ 1. For typesC, andA,, we requiren > 2; typeA, is not covered by the present
theorem since its diagram hasas an edge label (although the conclusion of the theorem
in fact remains valid). FoB, andD,, we requiren > 3 andn > 4 respectively.

For all cases exce[zﬂitn the desired conclusion that every reflection-preserving automor-
phism is inner by graph follows immediately from Corollary] 19. So supposeVthat
of type A,, and leto: € R(W). Choose a function, : M — @ such thato(r,) = Fo0(a)
forallac M. Write M = {ay,,...,a,}, wherea, is adjacent ta, anda, is adjacent to
a_q for 1<i<n. Theng,(a)-9,(a)) is £1/2 if g anda; are adjacent, and zero other-
wise. We can successively choose signs,, ..., &, So that whenp, (g) is replaced by
€ 0o (8)) We haved,, (8_1) - 94(&) = —1/2for 1<i <n. Now if 9, (ap) - ¢ (an) = —1/2
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then Theorerh 18 guarantees tbais inner by graph. But ify, (ag) - ¢, (a,) = 1/2 then it
is readily checked that the matrix who§ej) entry is¢, (&) - 9,(a;) is positive definite,
contradicting the fact tha is degenerate. O

6. GROUPS WITH A FINITE IRREDUCIBLE MAXIMAL PARABOLIC SUBGROUP

In this section we shall not assume that the automorpligmeserves reflections; in-
stead we shall prove that it must preserve reflections, given appropriate extra hypotheses.
Specifically, we shall investigate nearly finite Coxeter groups with a finite irreducible max-
imal parabolic subgroup.

Our analysis depends upon some facts concerning automorphism groups of finite irre-
ducible Coxeter groups. We proceed to give a brief discussion of this topic.

LetW be a finite irreducible Coxeter group. The centré\bfs either trivial or of or-
der two. We denote the nonidentity element of the centre, ihen it exists. In all of
these caseg,is equal towy, the longest element &¥. The group of all homomorphisms
from W to the cyclic group of order two is isomorphic to the abelianizatiowofind has
order four if the Coxeter diagram has an even edge label, and order two otherwise. Let
2 denote the group of all homomorphisms frakhto its centre. It is clear that for all
f € A the mappingx; : w— wf(w) is a homomorphism fror to itself, and is an auto-
morphism precisely whenis in the kernel off (so thatzf(z) # 1). These automorphisms
are reflection preserving if and only\W is of rank 2. Moreoverg;y = o oy whenever
f(z2) =9(z) = 1; hence’ (W) = {0 | z€ kerf } is a subgroup of Ayw). Clearly all
elements ofe/ (W) are self-inverse.

If W is of typeB,,, with the following diagram,

4
. o—o— .- —o—o

we letd: W — Z(W) be the homomorphism that maps— 1 and all other simple reflec-
tions toz. It is easily checked thaf(z) = 1, and soo;, € Aut(W). Similarly, for typeF,
there are two conjugacy classes of reflections, and wé:1&v — Z(W) map the reflec-
tions in one of these ta and those in the other to 1. Aga@ € Aut(W). In all cases
wherewn =z Z(W), let& : W — Z(W) be the homomorphism that maps each simple re-
flection toz. Then& (w) = 2™ for allw € W, and sa (z) = 1 precisely wherh(z) is even.

In particular,c;: € Aut(W) whenW is of type By, Dy, Eg, F4 or Hy. A straightforward
calculation shows thaté commutes with all reflection preserving automorphisms.

Proposition 30. The group</ (W) defined above is trivial if W is of type,ADy, 1, E,
E; or Hy, has order two if W is of typeR, 1, Doy, Eg or Hy, and has order four if W is of

type By or F4.

Indeed,« (W) = (o) for typesDyy, Eg andH,, while o7 (W) = (e ) for By, and
o (W) = (o, o) for By andFy.

WhenW is of typel,(m) it is obvious that Aufw) = R(W), and in all other cases
/(W) NR(W) is trivial. So in these cases AWlY) has a subgroup isomorphic to the
semidirect producR(W) x <7 (W) (since it is obvious thaR(W) is normal in AutW)).
Let Gr(W) be the group of all graph automorphisms/sf By Theore we know that
R(W) = Inn(W) Gr(W) unlessW is of typeHs or Hy. In these cases there are at most
two possibilities for the functiow,, in Lemmg 15, and s(R(W) : Inn(W) Gr(W)] < 2. In
fact, as we shall see in the proof of Proposifioh 32, tyggsandH, do possess reflection
preserving automorphisms that are not inner by grapHR8&) : Inn(W) Gr(W)] = 2 in
each case. FOW of typel,(m) it can be checked th&(W)/Inn(W) Gr(W) is isomorphic
to the group of units of the ring of integers moduto

As is well known, the groups of typ&, are isomorphic to the finite symmetric groups,
and all automorphisms are inner except winea 5, in which case InfW) = R(W) has
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index two in Au{W). The main assertion of Theordm|31 below is that there are no other
finite irreducible Coxeter group®’ such that AufwW) # R(W).o7 (W).

Whenever the group of symmetries of the Coxeter diagram has order 2, ybddhe
corresponding nontrivial graph automorphismafIf W is of typeH; or H, we letp be the
non-inner reflection preserving automorphism constructed in the proof of Prop¢sifion 32
below. The following theorem then describes the classification of automorphisms of finite
irreducible Coxeter groups.

Theorem 31. If W is a Coxeter group of type,BD,, Eg, E;, Eg, F4, Hy or H, then
Aut(W) = R\W).«7 (W). Specifically
(1) IfW is of type B, n odd, themAut(W) =W /{wpn) x (o).
(2) IfW is of type B, n even, thelut(W) = (W/(wpn)) x (o)) x (ot ).
(3) IfW is of type I3, n odd, therAut(W) = R(W) = W.
(4) IfW is of type [, n even and n> 4, thenAut(W) == ((W/(wp)) 3 (7)) x (o).
(5) If W is of type [ thenAut(W) = ((W/(wpn)) x Symg) x (o).

(6) If W is of type g thenAut(W) = R(W) = W.

(7) IfW is of type E thenAut(W) = R(W) =W /(wp).
(8) If W is of type g thenAut(W) = (W/(wn)) x (o).
(9) IfW is of type  thenAut(W) = (W/(wn)) x (7, o).

(10) If W is of type H thenAut(W) = (W/{(wp)) x (p).
(11) IfW is of type H thenAut(W) = (W/(wq)) > (p)) x (o).

Proof. (Outline) In all cases we consider the sizes of the conjugacy classes of involutions;
see[[3]. We consider the simpler cases first.

For typeEg there are 4 classes of involutions, of sizes 270, 540, 45 and 36, the class of
reflections being the one of size 36. Clearly all automorphisms must preserve reflections
and hence are inner by Corolldgry]19. In this case the graph automorptigsirmer, being
conjugation bywpn. Thus we have:

Aut(W) = R(W) = W.
For typeE; there are 63 reflections, and the other classes of involutions have sizes 945,
3780, 315, 3780, 316, 945, 63 and 1. In this capeis central and so if is a simple
reflection therrwp, is an involution. Thus the other class of involutions that has size 63

must be the class afvy;. Butl(rwy) = 62 is even, and so this class does not genékate
In the absence of graph automorphisms we therefore have:

Aut(W) = RW) =W /{wp).

For typeEg there are 120 reflections, and the other classes of involutions have sizes
3780, 37800, 113400, 3150, 37800, 3780, 120 and 1. Again the second class of size 120
is the class ofwp, wherer is a reflection. Buix: is an automorphism that interchanges
these two classes. Thus, upag, automorphisms preserve reflections and hence are inner.
We have:

Aut(W) = (W/{wn)) x (o).

For typeH; the class of reflections has size 15 while the other classes have sizes 15
and 1. By an argument similar to that used for type the second class of size 15 does
not generat&V. Thus AutW) = R(W). Sincewp is central, InfW) =W /(wp). But, as
explained above, IriV) has index two irR(W) in this case. So we have:

AUL(W) = (W/ (W) > (p).

For typeH, the class of reflections has size 60 while the other classes have sizes 450,
60 and 1. In this case; is an automorphism that swaps the two classes of size 60, and so
Aut(W) is the product oR(W) and(c:). So we have:

Aut(W) = (W/{(wn)) % (p)) x (atz)-
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For typeF, there are two classes of reflections, each of size 12, and they are inter-
changed by the graph automorphigmThe remaining classes have sizes 18, 77, 12, 12
and 1. Ifr ands are representatives of the classes of reflectionsrivgrandswy are rep-
resentatives of the other classes of size 12. We can take the homomo£phigm- Z(W)
defined above to satisff(r) = wy and{(s) = 1. The reflection subgroup generated by
the reflections conjugate tois of typeD,, and containsvy. Thus classes af andrwp,
together do not generat®, and the same applies for the classes afidsw,. This leaves
8 possible targets for the images of the two classes of reflections under the action of an
automorphism. Sincg and o, generate a copy of the dihedral group of order eight, we
have:

AUt(W) == (W/(Wn)) > (7, 0 ).

For typesB, andD,, we use the well known fact that groups of these types are isomor-
phic to &, x Sym, and &, x Sym,, whereé&;, = (X3,X%y,...,X,) iS an elementary abelian
2-group of order 2, andé&}, is the subgroup of}, generated by elements of the form; .
Thus involutions have the fori} z; wheref; is a product of distinct transpositions ang
is a product ofj distinctx,’s, with the proviso that ik, appears im; and the transposition
(hk) appears irf}; thenx, also appears im;. It can be shown that WV is of typeB, then
Bim; is conjugate to an elemef{r where no termx in 7/ is moved byp;. The same
is true in typeD,, provided that 2< n, althoughj (andl) must be even in this case. The
number of elements in the class is

n!
i'jl(in—j—2i)!
If n= 2t then the involutions i, of the form3;z; are conjugate either 18 or to B,
where(kl) is some transposition ifi,. We obtain two classes of size

(2i)!
2
In type B,, the classes of reflections have representatBies and Bym;, with sizes
n(n— 1) andn respectively. The latter class does not occur in tige The only coinci-
dences of class sizes that involve classes of reflections are as follows.

In type B, the class 0f12)(34) has the same size as that(@P).

In type D, the class 0f12)(34)x,x, has the same size as that(&p).

In typeBg the classes of; xox3 andx; x,XgX, X5 have the same size as that(@p).
In type B, the class ok;wp has the same size as thatgf

In typesB,, andD the class of12)w has the same size as that(@P).

The first three cannot give rise to automorphisms as the classes that would contain the
images of the reflections do not genenate The same applies in the fourth case wihes
odd, while whem is even the automorphismé interchanges the two classes in question.
In the fifth case the two classes are interchanged by the automormmﬁ B, or the
automorphismoy: of Dy. Thus in all cases A@V) is generated by (W) and R(W).
Finally, observing that fon odd the graph automorphism of groups of typeis induced
by conjugation by and that the group of graph automorphisms of tipés isomorphic
to Syms, we have the following conclusions.
If W is of typeB,,, n odd, then

AUE(W) =W/ (i) 4 (or).

If W is of typeB,,, n even, then
Aut(W) = ((W/<w|-|>) X <oc€>) X <a5).

If W is of typeD,,, n odd, then
Aut(W) = R(W)

1%

W.
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If W is of typeD,,, n > 4 even, then

AUt(W) == ((W/{Wn)) x (7)) x (o).
If W is of typeD, then

AUL(W) 2= (W/ (W) x Symg ) x (azz). O
We now use the above discussion to prove the results that we actually need.

Proposition 32. Let W be a finite Coxeter group, and ketbe an automorphism of W that
preserves reflections. Thenpreserves the set of parabolic subgroups of W.

Proof. By Lemmé 1# we know that permutes the irreducible component3/f and by
Propositiorf 2p it maps each component to a component of the same type. So reglacing
by ya for a suitable graph automorphismwe can assume that preserves each compo-
nent. So it is sufficient to prove the result for irreducible Coxeter groups. Since the group
of all automorphisms that preserve parabolic subgroups contains the inner and graph auto-
morphisms we have only to consider typdgsandH,, and it is sufficient to prove that one
element ofR(W) that is not inner by graph preserves the set of parabolic subgroups.

LetW be of typeH, and letl = {a,b,c,d}, with the following diagram:

a b c d
*—o—0—0

5

LetA = (14 /5), and define = (31 +2)a+ (34 +3)b+2(A + 1)c+ (A + 1)d. It can
be checked tha € ® anda’-c= & -d = 0; furthermored -b= (A — 1) = —cog2x/5).
So there is an automorphisme R(W) that fixesry, r. andry and takes, tor,. If we
define

W1 =TplalclplalblalcMolalblalclblaldfclolas
Wo =TclplalplaldlclblalblalclolalbldlcMolalbla
W3 = Tplalplaldlclblalblal clblalbldf clblalolal clolas
then a straightforward calculation reveals that
{wya’,wyc,wyd} = {a,d,c},
{Wza/,Wzb, Wzd} = {a+ )Lb, a, d},
{wsad, Wb, wsc} = {c,Aa+ (A +1)b+c,a},
and therefore
~1 ~1
p(W{a,c,d}) =W W{wla’.wlc,wld}wl =W W{a,d,c}WL
—1 —1
P Wiahdy) =Wo Wiw,ar wobw,d) W2 = Wo " Wia .} Wa,
—1 —1
P Wiabcy) =Wa Wiw,ar w b ey Wa = Wa " Wia p ¢ Wa-
In particular, these are all parabolic subgroups. It is obvious;x(ng’C’d}) is parabolic,
and sop preserves maximal parabolic subgroups. Since the result is known for groups of
lower rank apart fronis, the proof forH; is all that remains to be done.
So now letW be a group of typéd,, and letl = {a,b,c}, arranged as foH,. Let
a = (A+1)a+(A+1)b+c. Itisreadily checked tha € ®, and also that'-c= (1 —1)
anda -b = 0. So there is an automorphismthat interchanges, andr and takes , to
ra- If W=ryrarpra then{wa,wb} = {c,a}, and sop (W, ;) is a parabolic subgroup. If
W =Trrpry then{wa,wc} = {Aa+b,b}, and sop (W, ,,) is a parabolic subgroup. $o

preserves maximal parabolic subgroups, and hence all parabolic subgroups, since the result
is already known for smaller rank. O
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Proposition 33. Suppose thatW is a finite irreducible Coxeter group of rank at least three,
and suppose that is a nonidentity automorphism i& (W). If W’ is a maximal parabolic
subgroup of W such that(W') is also a parabolic subgroup themn(w) = w for all we W'.

Proof. Let a = o wheref € JZ, and letz be the element AV of maximal length. Sup-
pose thaW’ is a maximal parabolic subgroup such thatv) # w for at least one element
w € W, and suppose, for a contradiction, tlg\V') is a parabolic subgroup. It is trivial
to check that inner automorphisms commute with all elements’ @/); so without loss

of generality we may assume that =W, for someJ C I.

LetV’ be the subspace ®fspanned by the root systemafW;), and letv be a nonzero
element of the orthogonal complementfin V. Thenwv=v for all w € a:(W;), and in
particularo(r,)v=vfor all rootsa € @7 . There is at least oreec ®] such thaw(r,) #r,,
since otherwise we would haegw) = w for allw € Wj. Moreover,a(r,) #r, implies that
o(ry) =r,z. Now sincez acts orV as multiplication by-1, if a.(r,) = razthenryv = —v,
which implies that is a scalar multiple of. Since there is at least one sueh @7, it is
unique. Fix this roog, and note that it is orthogonal ¥d.

If b e ®} andb # athenrya= a(r,)a=a. Hencea is orthogonal tab]\{a}. Thus
r, generates a component\j of typeA;, and every other component\f; is contained
in oo(Wj). Furthermorer, is not conjugate itW to any other reflectiom, € Wj, since
f(ry) =z# f(ry). SOW is of typeB,, or F, andW} is of typeA; x A,_,, wheren is the
rank ofW. LetK = J\{a}, and note that\ is a parabolic subgroup of(\W;). Thusc(W;)
is also of typeA; x A,_,. If n> 3 then the centre ak(W;) has order two and is generated
by a reflection; however, this contradicts the fact thais not a reflection, since it acts as
multiplication by—1 on the spac®’, which has dimension greater than 1. r8e 3, and
W is of typeBs;. Writing b for the unique element df\ {a} we find that the two reflections
in a(W;) arer, andr,r,z. But these are conjugate W, whereas in typ8; the parabolic
subgroups of typéy x A; are generated by a pair of non-conjugate reflections. [

Proposition 34. Let W be a finite irreducible Coxeter group of rank n, and suppose that W
is not of type A. Leta € Aut(W), and suppose that for every reflectiog W the element
o(r) lies in a parabolic subgroup of W of rank less thas th. Theno € R(W).

Proof. Suppose that ¢ R(W). The image of a proper parabolic subgroup under the action
of an element oR(W) is clearly always a proper parabolic subgroup. So we may replace
by o for any B € R(W) without affecting either the hypotheses of the proposition or the
assumption that ¢ R(W). SinceW is not of typeAs; we may assume that € <7 (W). Let

o = oy, wheref € 7. Now f # 1 sinceo # 1, and so there exists a simple reflectign
such thatf (r,) = z It follows thatr,z= «(r,) lies in a parabolic subgrodfy’ of rank less
thann— 1. If V' is the subspace &f spanned by the root systemWf then all elements of

W’ act trivially on the quotient spasd&/V’, which has dimension at least 2. Bghas 1 as

a repeated eigenvalue, contradicting the fact that it actslasn the(n — 1)-dimensional
space{veV |v-a=0}. O

Note that ifW is of typeAg then the automorphisms that do not preserve reflections take
them to conjugates of the central element of a parabolic subgroup oAﬁypehowever, to
deal with typeAs; we have the following fact.

Proposition 35. Let W be a Coxeter group of type,Aand leto € Aut(W). If there
exists a nontrivial proper parabolic subgroup’\Wf W such that«(W') is also a parabolic
subgroup of W ther is inner.

Proof. We can identifyWt with the symmetric group of degree 6, and, modifyadpy an
appropriate inner automorphism, we may assume that the actionoof the generators
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ri=(i,i+1) (for 1<i <5)is as follows:

(12) — (13)(24)(56)
(23) — (16)(25)(34)
(34) — (14)(23)(56)
(45) — (16)(24)(35)

(56) — (12)(34)(56).

If W' is a nontrivial proper parabolic subgroup such tod®’) is also parabolic then
o(W’) certainly contains an element from the conjugacy cla¥ obntaining the element
(12)(34)(56). Hencea(W') is of typeA$ or Ay x As. Sincea? is inner, it suffices now
to check that neithem ((rq,r3,rs)) nor e({ry,ro,rs,rs)) is a parabolic subgroup. We leave
this straightforward task to the reader. O

Suppose thatV is a nearly finite Coxeter group of ramkwith no infinite edge labels.
Suppose that € MM is such that = M\ {a} is irreducible and of finite type, and letbe an
automorphism ofV. From Corollary IP we know that(W;) is a maximal finite parabolic
subgroup. Replacing by its composite with an inner automorphism permits us to assume
thato (W) = W for someK C IN. Clearly the rank of\j is at mosin— 1.

We claim that\ is of the same type a&/. This depends on the following fact, whose
proof we omit.

Proposition 36. Suppose that W is an irreducible finite Coxeter group that is abstractly
isomorphic to a direct product of two nontrivial Coxeter groups. ThenW is either of fype B
for some odd k> 1 or |,(2m) for some odd m> 1. The factors are of types,/and D in

the former case (or Aand A; if k = 3), and of types pand L(m) in the latter case.

This can be proved, for example, by an examination of the list of normal subgroups of
finite irreducible Coxeter groups given by Maxwell [13]. The proposition tells us that if
an irreducible finite Coxeter group is abstractly isomorphic to a reducible Coxeter group,
then the rank of the reducible group is one greater than the rank of the irreducible group.

Hence in our situation abov&y must be irreducible. As we noted in the proof of
Proposition 2b, if two irreducible finite Coxeter groups are abstractly isomorphic then they
are of the same type. S&; andW are of the same type. Thus we have proved the
following result.

Theorem 37. If W is a nearly finite Coxeter group of rank n, and ¥standard parabolic
subgroup of W that is irreducible and of rank+1, then any automorphism of W will map
Wj to a conjugate of a standard parabolic subgroup ¥8f the same type as;W

The following is Lemma 9 in[9].

Lemma 38. If W is any infinite irreducible Coxeter group then the only graph automor-
phism that is inner is the identity.

Our objective is to prove the following result.

Theorem 39. Suppose that W is a nearly finite Coxeter group with finite edge labels, and
suppose that 3 M\ {a} is irreducible and of finite type. Suppose also that i odd for
at least one ke J. Then all automorphisms of W are inner by graph, and indeed

Aut(W) = Inn(W) x Gr(W),
whereGr(W) is the group of all graph automorphisms of W.
Proof. Since Lemma 38 above tells us that (W) N Gr(W) = {1}, the assertion that
Aut(W) = Inn(W) x Gr(W) will follow once it has been shown that all automorphisms

are inner by graph. By Theorgm]29 it suffices to prove that all automorphisms preserve
reflections.
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Suppose, for a contradiction, thate Aut(W) does not preserve reflections. By The-
orem[37 we may assume thatW,;) =W for someK C I of the same type a3. Let
B: Wx — W, be an isomorphism that takes simple reflections to simple reflections. Since
r, is conjugate to an elementd; there exists at least one reflectioa W, such that:(r)
is not a reflection; hence the automorphigof W) given byw — f(o/(w)) is notinR(Wj).

Let us first assume that andK are not of typeAs. By Propositior{ 3§ there is a
b € J such thaty(b) does not lie in any parabolic subgroupW of rank less tham — 2,
wheren is the rank ofW. So o(r,) does not lie in any parabolic subgroup \&k of
rank less tham —2. Sincem,, # « there exists at least one maximal finite parabolic
subgroupW’ containing bothr, andr,. Suppose there are more than one of these, say
W andW”. Theno(W') ando(W") are distinct proper parabolic subgroupd/fand so
a(W') N o (W”) is a parabolic subgroup &% of rank at mosh— 2 (by Lemmd ). Fur-
thermore, o (W') N oe(W”) is not contained i, sinceW’ NW” is not contained iW;.
Soa(W')Nna(W”)NW has rank at mosi— 3 and is a parabolic subgroup\f contain-
ing o.(ry,). This contradiction shows that there is a unique maximal finite parabolic sub-
groupW’ containingr, andr,,. Since there is obviously a maximal finite standard parabolic
subgroup containing, andry,, it follows from Lemmg 1P tha¥v’ =W for someL C 1.
If W_ has rankn— 2 or less therx (W ) "W has rankn— 3 or less and is a parabolic sub-
group ofW containingry,; as before, this is a contradiction. 8e= M\ {c} for somec € J;
moreovero (W ) "W has rankn— 2.

SinceW; is not of typeAs, there is a reflection preserving automorphisraf W, such
thatsy € o7 (W;). Now

(67)(WLrg) = (B (e (WL NW5))) = & (B (ee(WL) W)

is a maximal parabolic subgroupdf, by Propositiofi 32. So by Propositipn| 33 it follows
that (6y)(w) = w for all w e W, ;. Sincer, € W;- andé preserve reflections, it follows
that y(rp,) is a reflection, and hence(ry) is a reflection. This is a contradiction, and
completes the proof in the case tandK are not of typeAs.

So suppose thatandK are of typeAs. LetW be a maximal finite standard parabolic
subgroup ofV containingr, andr,. Thena (W ) "W is the intersection of two maximal
finite subgroups oW, and hence is a nontrivial proper parabolic subgroupVpf So
B(oe(W ) NWi) = ¥(W ;) is a proper parabolic subgroup bf;. By Proposmor.i it
follows thaty is inner, contradicting the fact that¢ R(W;).
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