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ABSTRACT. Suppose thatW is an infinite Coxeter group of finite rankn, and suppose
thatW has a finite parabolic subgroupWJ of rank n− 1. Suppose also that the Coxeter
diagram ofW has no edges with infinite labels. Then any automorphism ofW that pre-
serves reflections lies in the subgroup of Aut(W) generated by the inner automorphisms
and the automorphisms induced by symmetries of the Coxeter graph. If, in addition,WJ is
irreducible and every conjugacy class of reflections inW has nonempty intersection with
WJ, then all automorphisms ofW preserve reflections, and it follows that Aut(W) is the
semi-direct product of Inn(W) by the group of graph automorphisms.

There is not much literature dealing with the automorphism groups of infinite Coxeter
groups.1 It seems that complete results are known only for rank 3 Coxeter groups and the
so-calledright-angledCoxeter groups.

A Coxeter group is right-angled if the labels on all edges in the Coxeter diagram are∞.
These were investigated by James, [12], who described the automorphism groups of Cox-
eter groups whose diagrams have the following form:

∞ ∞ ∞ .

James’s result was extended by Tits, [16], to include all irreducible right-angled Coxeter
groups whose diagrams do not contain triangles. Finally, in [14], Mühlherr gave a presen-
tation for the automorphism group of any right-angled Coxeter group.

The automorphism groups of infinite rank 3 Coxeter groups whose diagrams have no
edges with infinite labels are described in [9]; in this case the automorphism group is the
semi-direct product of Inn(W) and the group of graph automorphisms. The automorphism
groups of rank 3 Coxeter groups with both finite and infinite edge labels are described
in [7].

For the purposes of this paper, we say that an infinite Coxeter group isnearly finite
if it has finite rankn and has a finite parabolic subgroup of rankn−1. It is shown that
if W is nearly finite and does not have an edge labelled∞ then the group of all automor-
phisms ofW that preserve reflections is the semi-direct product of Inn(W) and the group of
graph automorphisms. In certain special cases we are able to show that all automorphisms
of W preserve reflections. In fact, if we restrict attention to infinite irreducible Coxeter
groups whose diagrams have no infinite edge labels, then we know of no example having
an automorphism that does not preserve reflections.

1. PRELIMINARIES

Recall that a Coxeter group is a group with a presentation of the form

(1.1) W = gp〈{ ra | a∈ Π} | (rarb)
mab = 1 for all a,b∈ Π〉

whereΠ is some indexing set, whose cardinality is called therankof W, and themab satisfy
the following conditions:mab = mba, eachmab lies in the set{m∈ Z |m≥ 1}∪{∞}, and
mab = 1 if and only if a = b. Whenmab = ∞ the relation(rarb)mab = 1 is interpreted as
vacuous. We shall restrict attention to finite rank groups withmab 6= ∞ for all a,b∈ Π.

2000Mathematics Subject Classification.Primary 20F55.
1The closely related question of whether a Coxeter group may contain more than one class of Coxeter gener-

ating sets is investigated in [5].
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As is well known, the isomorphism type ofW as an abstract group does not determine
either the parametersmab or the rank ofW as a Coxeter group. Hence we always assume
that the presentation (1.1) is given; in particular,{ ra | a ∈ Π} is a distinguished set of
generators for the groupW.

A reduced expressionfor an elementw∈W is a minimal length word expressingw as a
product of elements of the distinguished generating set. We definel(w) to be the length of
a reduced expression forw.

TheCoxeter diagramof W is a graph with vertex setΠ and edge set consisting of those
pairs of vertices{a,b} for which mab≥ 3. The edge{a,b} is given the labelmab. We say
thatW is irreducible if its diagram is connected.

Let R be the real field, andV the vector space overR with basisΠ. Let B the bilinear
form onV such that for alla,b∈ Π,

B(a,b) =−cos(π/mab).

To make our notation more compact we defineu · v = B(u,v) for all u,v ∈ V. Note that
a·a = 1 for all a∈ Π, sincemaa = 1.

For eacha ∈ V such thata ·a = 1 the transformation ofV given byv 7→ v−2(a · v)a
is called thereflection along a. It is well known (see, for example, Corollary 5.4 of [11])
thatW has a faithful representation onV such that, for alla∈Π, the elementra acts as the
reflection alonga. We shall identify elements ofW with their images in this representation.
We also use the notationra for the reflection alonga whenevera∈V satisfiesa ·a = 1. It
is straightforward to show that each reflectionra preserves the formB; hence all elements
of W preserveB. Furthermore, the equationgrag−1 = rga holds for alla ∈ V such that
a·a = 1 and all transformationsg that preserveB.

We write Ref(W) for the set of all reflections inW. It is immediate from the above
comments that ifΦ = {wa | w∈W, a∈ Π} then{ rb | b∈ Φ} ⊆ Ref(W).

The setΦ is called theroot systemof W, and elements ofΦ are calledroots. Elements
of the basisΠ are calledsimple roots, and the reflectionsra for a ∈ Π are calledsimple
reflections. A root is said to bepositiveif it has the form∑a∈Π λaa with λa ≥ 0 for all
a∈Π, andnegativeotherwise. We writeΦ+ for the set of all positive roots andΦ− for the
set of all negative roots.

Lemma 1. With the notation as above, the following statements hold.

(1) Every negative root has the form∑a∈Π λaa withλa≤ 0 for all a∈Π. Furthermore,
Φ− = {−b | b∈ Φ+ }.

(2) If w ∈W and a∈ Π then

l(wra) =

{
l(w)+1 if wa∈ Φ+,

l(w)−1 if wa∈ Φ−.

(3) If t ∈ Ref(W) then t= rb for some b∈ Φ.
(4) The group W is finite if and only if the bilinear form B is positive definite.
(5) The root systemΦ is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found in [11, Section 5.4], Theorem 4.1 in [6] includes
both (4) and (5), and (3) is [10, Lemma 2.2]. �

For eachw∈W we defineN(w) = {b∈ Φ+ | wb∈ Φ− }. By Part (2) of Lemma 1, if
w 6= 1 thenN(w)∩Π 6= /0. An easy induction shows thatN(w) has exactlyl(w) elements.
In particular,N(w) is a finite set. It is also easily shown that ifΦ is finite then there is a
uniquew ∈W such thatN(w) = Φ+. This element, which we denote bywΠ, is also the
unique element of maximal length inW (which is a finite group).
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We need the following simple fact.

Lemma 2. Suppose that w∈ W is an involution, and let a∈ N(w)∩Π. Then either
wa=−a or l(rawra) = l(w)−2.

Proof. Observe that−wa∈ Φ+, sincea ∈ N(w). Now N(ra) = {a}, sincea ∈ Π, and
so if −wa 6= a it follows that ra(−wa) ∈ Φ+. But this implies that(raw)a∈ Φ−, and so
by Lemma 1 combined with the obvious fact that each element has the same length as its
inverse,

l(rawra) = l(raw)−1 = l(wra)−1 = l(w)−2

as claimed. �

The following lemma is one of the key ingredients in the proof of our main theorem.

Lemma 3 (Brink [2]). Suppose that b is a positive root, and write b= ∑a∈Π λaa. For each
a∈ Π, if λa > 0 thenλa ≥ 1.

2. PARABOLIC SUBGROUPS AND REFLECTION PRESERVING AUTOMORPHISMS

Let W be a Coxeter group, and continue with the notation introduced in the preceding
section. For eachI ⊆ Π we defineWI to be the subgroup ofW generated by{ ra | a∈ I }.
These subgroups are called thestandard parabolic subgroupsof W. A parabolic subgroup
of W is any subgroup of the formwWI w

−1 for somew∈W andI ⊆ Π. We shall use the
phrase “maximal parabolic subgroup” to mean “maximal proper parabolic subgroup”.

It is clear that ifI ⊆Π thenWI preserves the subspaceVI of V spanned byI , and acts on
this subspace as a Coxeter group withI as its set of simple roots. We writeΦI for the root
system ofWI in VI , andΦ+

I , Φ−
I for the sets of positive and negative roots inΦI .

Lemma 4. In the above situation,ΦI = Φ∩VI .

Proof. For eachb = ∑a∈Π λaa∈ Φ define supp(b) = {a∈ Π | λa 6= 0}. It is clear that if
b = wa for somea∈ I andw∈WI then supp(b)⊆ I ; we must prove that the converse also
holds. Without loss of generality we may assume thatb is positive.

Let b∈Φ+ with supp(b)⊆ I . Sincerb 6= 1 we may choose a simple rootc∈N(rb)∩Π.
Thenc−2(b·c)b = rbc∈Φ−, and sob·c > 0. Sincea·c≤ 0 for all a∈Π\{c} it follows
thatc∈ supp(b).

We proceed by induction onl(rb). If l(rb) = 1 then we must haveb = c, andb = wa
holds withw = 1∈WI anda = c∈ I . Now suppose thatl(rb) > 1, so thatb 6= c, and put
d = rcb. Lemma 2 givesl(rd) = l(rcrbrc) = l(rb)−2; moreover, sinced = b−2(c ·b)c
we see that supp(d)⊆ supp(b). By the inductive hypothesisd = wa for somew∈WI and
a∈ I , and sincec∈ I it follows thatrcw∈WI , andb = (rcw)a is an equation of the desired
form. �

The next proposition, classifying involutions in Coxeter groups, is a useful tool in the
analysis of automorphisms.

Proposition 5 (Richardson [15]). Suppose that w∈W is an involution. Then there is an
I ⊆ Π such that WI is finite, w is conjugate to wI (the maximal length element of WI ) and
wI is central in WI .

Proof. Let L = {a ∈ Π |wa = −a}. First observe thatΦ+
L ⊂ N(w) is finite, and so, by

Lemma 1,WL is finite. If a ∈ L thenwraw = rwa = r−a = ra, and so it follows thatw
centralizesWL.

If w = wL then we are finished; so suppose thatw 6= wL. ThenwLw 6= 1, and so we may
choose ana∈N(wLw)∩Π. If wa∈Φ+, then, aswLwa∈Φ−, we havewa∈N(wL) = Φ+

L .
But then

a = w(wa) ∈ wΦ+
L = Φ−

L ,
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which is a contradiction. Hencea∈N(w)∩Π. Nowwa 6=−a, sincewa=−a would mean
thata∈ L, and

wLwa= wL(−a) ∈ wLΦ−
L = Φ+

L ,

contradictinga ∈ N(wLw). Hencel(rawra) = l(w)−2 by Lemma 2, and we can use in-
duction on the length to complete the proof. �

Note that the above proof in fact shows thatw = t−1wI t for somet ∈ W such that
l(w) = 2l(t)+ l(wI ).

Our main tool in the analysis of automorphisms of infinite Coxeter groups is the follow-
ing lemma, which appears in [1, Exercise 2d, p. 130].

Lemma 6 (Tits). If W is a Coxeter group and H≤W is finite, then H is contained in a
finite parabolic subgroup of W.

One immediate consequence of Lemma 6 is that every maximal finite subgroup of a
Coxeter group is parabolic.

Lemma 7 (Kilmoyer). Let I,J ⊆ Π. Then every(WI ,WJ) double coset in W contains a
unique element of minimal length; moreover, if d is the minimal length element of WI dWJ
then WI ∩dWJd−1 = WK , where K= I ∩dJ.

Proof. See [4, Theorem 2.7.4]. �

Corollary 8. The intersection of a finite number of parabolic subgroups is a parabolic
subgroup.

Proof. If H andK are parabolic subgroups thenH = x−1WI x andK = y−1WJy for some
I ,J⊆Π andx,y∈W. Letd be the minimal length element inWI xy−1WJ, and chooseu∈WI
andt ∈WJ such thatd = uxy−1t. Then

H ∩K = x−1u−1WI ux∩y−1tWJt
−1y = x−1u−1(WI ∩dWJd−1)ux,

which is a parabolic subgroup by Lemma 7. Induction completes the proof. �

Since the image under any automorphism of a maximal finite subgroup must be another
maximal finite subgroup, Corollary 8 immediately yields the following result.

Corollary 9. Let W be an infinite Coxeter group, andα ∈ Aut(W). If H is a subgroup of
W that can be written as the intersection of a collection of maximal finite subgroups, then
α(H) is a parabolic subgroup of W.

A special case of Corollary 9 provides a possible method for proving that an automor-
phism preserves reflections.

Corollary 10. If W is an infinite Coxeter group,α ∈Aut(W) and r is a reflection such that
〈r〉 can be written as an intersection of maximal finite subgroups, thenα(r) is a reflection.

Suppose thatI ⊆Π is such thatWI is a maximal finite standard parabolic subgroup ofW
(in the sense thatWI is finite andWJ is infinite for all J with I & J ⊆ Π). We shall show
thatWI is not properly contained in any finite subgroup ofW.

Lemma 11. Let WI be a maximal finite standard parabolic subgroup. Then WI is not
conjugate to a subgroup of any other finite standard parabolic subgroup.

Proof. Suppose thatWI ⊆ tWKt−1 for somet ∈W and someK ⊆ Π such thatWK is finite
andK 6= I . These assumptions are not altered by replacingt by another element of the
double cosetWI tWK ; so we may assume thatt is the minimal length element ofWI tWK . By
Corollary 7 it follows thatWI = WI∩tK , and soI ⊆ tK.

SinceWI is a maximal finite standard parabolic subgroup,t 6= 1. So, by Lemma 1, we
may choose a simple rootc such thatt−1c= d is negative. Ast has minimal length intWK ,
Lemma 1 guarantees thatta is positive for alla∈K, and hencetb is positive for allb∈Φ+

K .



AUTOMORPHISMS OF NEARLY FINITE COXETER GROUPS 5

But−d is positive whilet(−d) =−c is negative, and so we conclude thatd is not inΦK .
Thus whend = t−1c is expressed as a linear combination of simple roots, somee /∈ K
appears with a negative coefficient. Now suppose thatb∈ Φ+

I∪{c}\ΦI , so thatb = λc+ v

for someλ > 0 and somev ∈ VI . Sincet−1I ⊆ K it follows that t−1v ∈ VK , and hence
t−1b = λ (t−1c)+ t−1v involvese with negative coefficient. Sot−1b∈ Φ−. But ΦI∪{c} is

infinite, whileΦI is not. Sot−1 takes an infinite number of positive roots to negative roots,
and hence has infinite length. This is a contradiction. �

Corollary 12. If W is any infinite Coxeter group, then all maximal finite standard para-
bolic subgroups of W are maximal finite subgroups of W.

Proof. If WI is a maximal finite standard parabolic subgroup but not a maximal finite sub-
group thenWI ≤ tWJt

−1 for somet ∈W andJ ⊆ Π with |WI | < |WJ| < ∞, by Lemma 6.
But this contradicts Lemma 11. �

If I andJ are disjoint subsets ofΠ such thatmab = 2 for all a ∈ I andb ∈ J, thenVI
andVJ are orthogonal to each other, and it follows readily thatWI∪J = WI ×WJ. Moreover,
ΦI∪J = WI∪J(I ∪ J) = WI I ∪WJJ = ΦI ∪ΦJ, since eachw∈WI fixes eacha∈ J and each
w∈WJ fixes eacha∈ I . So we obtain the following result.

Lemma 13. Let W be a Coxeter group of rank n andΠ the set of simple roots. If I and J
are disjoint subsets ofΠ such that no edge of the Coxeter diagram joins a root in I and a
root in J, then

Ref(WI ∪̇J) = Ref(WI ) ∪̇ Ref(WJ).

(where the symbol̇∪ signifies a disjoint union).

Corresponding to the connected components of the Coxeter diagram we obtain a de-
compositionΠ = L1 ∪̇ L2 ∪̇ · · · ∪̇ Lm sucha,b∈ Π lie in the same subsetLi if and only if
there exists a chain of simple rootsa = a1, a2, . . . , ak = b such that the reflections along
consecutive terms do not commute. We call theLi the irreducible components ofΠ, and the
corresponding standard parabolic subgroupsWLi

the irreducible components ofW. Note
thatW = WL1

×WL2
×·· ·×WLm

and Ref(W) = Ref(WL1
) ∪̇ · · · ∪̇ Ref(WLm

).
It is clear that reflections belonging to different irreducible components commute. On

the other hand ifb∈ Φ is not simple then it is clear that there exists a simple roota such
thatra(b) 6= b, and sora andrb do not commute. It follows that reflectionsr andr ′ belong
to the same component if and only if there is a chain of reflectionsr = r1, r2, . . . , rk = r ′

such that consecutive terms do not commute.

Lemma 14. Let α : W1 → W2 be an isomorphism of finite rank Coxeter groups with
α(Ref(W1)) ⊆ Ref(W2), and let r, r ′ ∈ Ref(W1). If r and r′ belong to the same compo-
nent of W1 thenα(r) andα(r ′) belong to the same component of W2.

Proof. This follows from the discussion above, since the image of a non-commuting chain
from r to r ′ is a non-commuting chain fromα(r) to α(r ′). �

Clearly symmetries of the Coxeter diagram give rise to automorphisms that permute the
simple reflections; we call thesegraph automorphisms. We say that an automorphism is
inner by graphif it lies in the subgroup of Aut(W) generated by the inner automorphisms
and the graph automorphisms.

Note that since every reflection inW is conjugate to a simple reflection, there are only
finitely many conjugacy classes of reflections. Moreover, it is clear that ifα is an automor-
phism andC, C′ conjugacy classes such thatα(C)⊆C′, thenα(C) = C′. So if α preserves
reflections, in the sense thatα(Ref(W)) ⊆ Ref(W)), thenα(Ref(W)) = Ref(W). In par-
ticular,α−1 also preserves reflections.
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We denote byR(W) the set of all automorphisms ofW that preserve reflections. In view
of the reasoning above we see thatR(W) is a subgroup of Aut(W). ClearlyR(W) includes
all automorphisms that are inner by graph.

Given α ∈ R(W) there exists a functionφα : Π → Φ such thatα maps the reflection
alonga to the reflection alongφα(a), for all a∈Π. Note thatφα is not uniquely determined
by α; indeed, sincerb = rc if and only if b = ±c (given thatb,c ∈ Φ), there are exactly
two choices for eachφα(a). Since the reflections{ rb | b∈ φα(Π)} generateW, the roots
in φα(Π) must spanV (by [10, Lemma 2.8]). Henceφα(Π) is a basis ofV.

If a,b ∈ Π then rarb has orderm = mab anda · b = cos(π/m). So if φα(a) = c and
φα(b) = d then rcrd = α(rarb) has orderm. Sincercrd acts as a rotation on the plane
spanned byc andd, we deduce that

(2.1) φα(a) ·φα(b) = cos(lπ/mab)

for somel coprime tomab. In particular,φα(a) ·φα(b) = 0 if m= 2.

Lemma 15. Letα ∈R(W), and suppose thatΓ, the Coxeter diagram of W, is a forest. Then
the functionφα above can be chosen so thatφα(a) ·φα(b)≤ 0 for all distinct a,b∈ Π.

Proof. Observe that we can writeΠ = {a1,a2, . . . ,an}, choosing the numbering so that
for eachi the valency ofai in the diagram associated with the subset{a1,a2, . . . ,ai} is at
most 1. Ifb1, b2, . . . , bn are chosen arbitrarily subject toα(rai

) = rbi
, then for eachi there

is at most onej < i such thatbi ·b j 6= 0, and we can successively choose signsε1, ε2, . . . , εn
so that(εibi) · (ε jb j)≤ 0 wheneveri 6= j. �

It is not necessarily true thatφα(a) ·φα(b) = a ·b, even if they agree in sign. However,
if m= 2, 3, 4 or 6, then the only numbersl ∈ {1,2, . . . ,m−1} coprime tom arel = 1 and
l = m−1, and cos

(
(m−1)π/m

)
and cos(π/m) have opposite signs. Hence we deduce the

following result.

Corollary 16. Suppose thatα ∈R(W) andΓ is a forest with edge labels in the set{3,4,6}.
Then we can chooseφα so thatφα(a) ·φα(b) = a·b for all a,b∈ Π.

The next result is an unpublished theorem of J-Y Hée. It follows immediately from [10,
Theorem 4.1].

Theorem 17. Suppose that W1, W2 are irreducible Coxeter groups, with root systems
Φ1, Φ2 and sets of simple rootsΠ1, Π2 in the spaces V1, V2. Suppose that g: V1 → V2
is linear, mapsΦ1 to Φ2 bijectively, and satisfies(gu) · (gv) = u ·v for all u, v∈V1. Then
there exists w∈W2 andε =±1 such that gΠ1 = εwΠ2.

ClearlygΠ1 = εwΠ2 implies that the Coxeter diagrams ofW1 andW2 are isomorphic.
In the caseW1 = W2 we see that the automorphismx 7→ g−1xg is inner by graph.

Theorem 18. Suppose thatα ∈ R(W) and suppose that the functionφα can be chosen so
that φα(a) ·φα(b) = a·b for all a,b∈ Π. Thenα is inner by graph.

Proof. The functionφα : Π → Φ extends uniquely to a linear mapg: V → V. The hy-
pothesis thatφα(a) · φα(b) = a · b for all a,b ∈ Π ensures that(gu) · (gv) = u · v for all
u,v∈V.

Let W1, W2, . . . , Wm be the irreducible components ofW, andL1, L2, . . . , Lm the cor-
responding subsets ofΠ. Write Vj for the subspace ofV spanned byL j . By Lemma 14
the sets Ref(W1), Ref(W2), . . . , Ref(Wm) are permuted byα. Now if i, j ∈ {1,2, . . . ,m}
satisfyα(Ref(Wi) = Ref(Wj) thenφα(a) ∈Vj for all a∈ Li , and sog restricts to a linear
mapVi → Vj . Moreover,g maps the root system ofWi bijectively onto the root system
of Wj , sinceα is bijective. Hence Theorem 17 applies, and we conclude that there exists
w j ∈Wj andε j =±1 such thatε jw

−1
j φα(a) ∈ L j for all a∈ Li . Repeating this construction
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for all values of j yields a bijective mapθ : Π → Π such thatε jw
−1
j θ(a) = φα(a) when

θ(a) ∈ L j .
If a,b ∈ Π belong to different components then so doθ(a) and θ(b), while if they

belong to the sameLi then

θ(a) ·θ(b) = w jθ(a) ·w jθ(b) = ε jw jθ(a) · ε jw jθ(b) = φα(a) ·φα(b) = a·b.
So in all cases we must have thatm

θ(a)θ(b) = mab, whenceθ gives rise to a graph automor-
phism ofW. We denote this graph automorphism byγ.

Let a∈ Π, and defineb∈ Φ and j ∈ {1,2, . . . ,m} by b = φα(a) andθ(a) ∈ L j . Then
b = ε jw

−1
j θ(a) ∈ Ref(Wj), and we have

γ(ra) = r
θ(a) = rε j w j b

= rw j b
= w j rbw−1

j = (w1w2 · · ·wm)rb(w1w2 · · ·wm)−1

sincew1, w2, . . . , wm centralize each other, andwi centralizesrb wheni 6= j. But rb = α(ra)
(sinceb= φα(a)), and so, writingw= w1w2 · · ·wm, we deduce thatγ(ra) = wα(ra)w−1 for
all a∈ Π. Since thera generateW it follows thatα(x) = w−1γ(x)w for all x∈W, whence
α is inner by graph. �

Corollary 19. If the Coxeter diagram is a forest whose edge labels all belong to the set
{3,4,6}, then all automorphisms of W that preserve reflections are inner by graph.

Proof. This follows immediately from Theorem 18 and Corollary 16. �

3. NEARLY FINITE COXETER GROUPS

Recall our definition of “nearly finite”: a Coxeter group of rankn is nearly finite if
it is infinite and has a finite parabolic subgroup of rankn− 1. In this section we begin
our investigation of nearly finite Coxeter groups and their automorphisms. We show, in
particular, that ifW is irreducible and nearly finite, andα is an automorphism ofW whose
restriction to a finite subgroup of rankn− 1 is inner by graph, thenα itself is inner by
graph.

If W is a Coxeter group andΠ its set of simple roots, then we shall say that a subsetJ
of Π is of finite typeif the corresponding standard parabolic subgroupWJ is finite.

Then×n symmetric matrixM is reducibleif there are non-empty setsI andJ such that
I ∪ J = {1, . . . ,n} and the(i, j)-entry of M is zero for alli ∈ I and j ∈ J. OtherwiseM
is irreducible. We define theGram matrixof the Coxeter groupW to be then×n matrix
whose(i, j)-entry isai ·a j , whereΠ = {a1,a2, . . . ,an}. Clearly, the Gram matrix ofW is
irreducible if and only ifW is irreducible. We say thatW is nondegenerateif the Gram
matrix is nonsingular. Note that ifW is finite then it is nondegenerate, since the Gram
matrix is positive definite (by Lemma 1).

Lemma 20. Suppose that M is a positive definite real symmetric matrix such that the
off-diagonal entries of M are nonpositive, and let Q= M−1. Then all entries of Q are
nonnegative. Moreover, if M is irreducible then all entries of Q are strictly positive.

Proof. Let n be the degree ofM, and writemi j andqi j for the (i, j)-entries ofM andQ,
for all i, j ∈ {1,2, . . . ,n}. Let ei be thei-th vector in the standard basis ofRn, written as a
column vector, and letvi be thei-th column ofQ. Note that sinceM is symmetric, so too
is Q. Hencevt

i is thei-th row ofQ (where the “t” means “transpose”).
The principal minors ofM are all positive, sinceM is positive definite, andqii equals

the (i, i)-th cofactor ofM divided by the determinant ofM. So it follows thatqii > 0 for
all i.

Fix k∈ {1,2, . . . ,n}, and define

I = { i | 1≤ i ≤ n andqik ≥ 0},
J = { i | 1≤ i ≤ n andqik < 0}.
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Let x = ∑i∈I qikei andy = ∑i∈J qikei , and observe thatx+ y = vk. Now vt
kM = et

k, since
Q = M−1, and sovt

kMy is thek-th entry ofy. But all the entries ofy are nonpositive; so

0≥ vt
kMy = ytMy+xtMy = ytMy+ ∑

i∈I
j∈J

qikq jket
iMej = ytMy+ ∑

i∈I
j∈J

qikq jkmi j .

Each term in this last sum is nonnegative, sincei ∈ I givesqik ≥ 0 and j ∈ J givesq jk < 0,
while mi j ≤ 0 sincei 6= j. Hence

0≥ ytMy+∑
I ,J

qikq jkmi j ≥ ytMy,

and sinceM is positive definite it follows thaty = 0. Hencevk = x, and so all entries ofvk
are nonnegative. This applies for allk; so the entries ofQ are all nonnegative.

Suppose thatQ has at least one zero entry; sayqhk = 0. Let I = { i | qhi > 0} and
J = { j | qh j = 0}. ThenI ∪J = {1,2, . . . ,n}, sinceqi j ≥ 0 for all i and j. Our hypothesis
says thatk∈ J, whereash∈ I , since we proved above thatqhh > 0. Hence bothI andJ are
nonempty. Furthermore, ifj ∈ J then j 6= h, and we have

0 = et
hej = vt

hMej = ∑
i∈I

qhie
t
iMej = ∑

i∈I
qhimi j .

Note thatmi j < 0 for all i ∈ I , since j /∈ I , and sinceqhi > 0 for all i ∈ I we see that all the
termsqhimi j in the above sum are nonpositive. So they must all be zero. Sinceqhi > 0 for
all i ∈ I , we deduce thatmi j = 0 for all i ∈ I . Thusmi j = 0 for all i ∈ I and j ∈ J, and hence
M is reducible. �

Corollary 21. Suppose that W is a finite Coxeter group, and let(ξa)a∈Π be a family of
nonnegative real numbers indexed by the setΠ of simple roots. Then there exist nonnega-
tive numbers(µa)a∈Π such that x= ∑a∈Π µaa satisfies x·a= ξa for all a ∈Π. If ξa > 0 for
some a∈ Π thenµb > 0 for all b in the same component ofΠ as a.

In particular, if W is irreducible andξa > 0 for some a, thenµb > 0 for all b.

Proof. Let L be an irreducible component ofΠ, and letM be the Gram matrix ofWL. Then
M is positive definite, by Lemma 1, and the off-diagonal entries ofM are non-positive since
a·b=−cos(π/mab)≤ 0 whenevera,b∈Π with a 6= b. Furthermore,M is irreducible since
WL is irreducible. By Lemma 20 the entries ofM−1 are all positive.

Writing qbc for the (b,c)-entry of M−1, defineµc = ∑b∈L qbcξb for eachc ∈ L. Then
µc ≥ 0, andµc > 0 if any ξb is nonzero. Furthermore, ifxL = ∑c∈L µcc, thenxL ·a = ξa
for all a∈ L. Repeating this construction for all componentsL, and definingx = ∑L xL, we
see thatx ·a = ξa for all a ∈ Π, since distinct components are orthogonal to each other;
moreover,x= ∑a∈Π µaa with coefficientsµa that are nonnegative, and positive whenξc 6= 0
for somec in the same component asa. �

We shall make use of the following triviality.

Lemma 22. Suppose that W is a Coxeter group,α an automorphism of W, and a, b, c and
d simple roots such thatα(ra) = rc andα(rb) = rd. Then a·b = c·d.

Proof. We havea·b=−cos(π/mab) andc·d =−cos(π/mcd), wheremab andmcd are the
orders ofrarb andrcrd. But these orders are equal sinceα(rarb) = rcrd. �

We now come to the main result of this section.

Theorem 23. Suppose that W is irreducible, non-degenerate and nearly finite, and the
Coxeter diagram of has no infinite edge labels. Let S be the set of simple reflections.
Suppose thatα is an automorphism of W that preserves reflections, and suppose that
there exist a,b ∈ Π (possibly equal) such thatΠ\{a} and Π\{b} are of finite type and
α(S\{ra}) = S\{rb}. Thenα is inner by graph.
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Proof. Let Va andVb be the subspaces ofV spanned byΠ\{a} andΠ\{b}. Let x∈Va be
such that the vectoru = x+a lies in the orthogonal complement ofVa (which exists since
W is nondegenerate), and, similarly, lety∈Vb be such that the vectorv = y+b lies in the
orthogonal complement ofVb. We shall show thaty · y≤ x · x. Since the same argument
with a andb interchanged andα replaced byα−1 will show thatx ·x≤ y ·y, it will follow
thatx ·x = y·y.

Write Π\{a}= J1 ∪̇ J2 ∪̇ · · · ∪̇ Jk, where theJj are the irreducible components ofΠ\{a}.
For eachc∈ Π\{a} define

ξc = cos(π/mca) =−c·a,

and observe that, sinceW is irreducible, eachJj contains at least onec such thatξc 6= 0.
Now x is the orthogonal projection of−a ontoVa, and since the setsJj are mutually or-
thogonal it follows that

x = x1 +x2 + · · ·+xk

wherex j is the orthogonal projection of−a onto the subspace spanned byJj . For allc∈ Jj
we have

c·x j =−c·a = ξc ≥ 0,

with strict inequality for at least onec∈ Jj , and so if we writex j = ∑c∈Jj
µcc then it follows

from Corollary 21 thatµc > 0 for all c∈ Jj . Thusx = ∑c∈Π\{a} µcc with all coefficientsµc
positive.

Sinceα(S\{ra}) = S\{rb} there is a bijectionσ : Π\{a} → Π\{b} with α(rc) = r
σ(c)

for all c ∈ Π\{a}. By Lemma 22 we havec · d = σ(c) ·σ(d) for all c,d ∈ Π\{a}, and
extendingσ linearly gives an isomorphism̃σ : Va →Vb.

Let f ∈ Φ+ be such thatα(ra) = r f . Sincer
σ(c)r f has the same order asrcra, namely

mca, we have that

f ·σ(c) = cos(lcπ/mca)

for somelc coprime tomca. Write θc = cos(lcπ/mca), and note thatξc ≥ |θc| for all
c∈ Π\{a}, with θc = 0 if and only if ξc = 0.

Let z= ∑c∈Π\{b}λcc be the orthogonal projection off ontoVb, so that

σ(c) ·z= σ(c) · f = θc

for all c∈Π\{a}. Sincev= b+y is a nonzero element of the orthogonal complement ofVb
we have thatf = z+ωv for some scalarω. Now sincef = ωb+(z+ωy) andz+ωy∈Vb,
it follows from Lemma 3 thatω ≥ 1. Note also that

z= z1 +z2 + · · ·+zk

wherezj = ∑c∈Jj
λ

σ(c)σ(c) is the projection off onto the space spanned byσ(Jj).
Fix an arbitraryj ∈ {1,2, . . . ,k}. Sinceξc ≥ |θc| for all c∈ Jj , we have

0≤ ξc−θc = c·x−σ(c) ·z= c·
(

∑
d∈Jj

µdd
)
−σ(c) ·

(
∑

d∈Jj

λ
σ(d)σ(d)

)
= ∑

d∈Jj

(c·d)µd− ∑
d∈Jj

(c·d)λ
σ(d) = ∑

d∈Jj

(c·d)(µd−λ
σ(d)),

sinceσ(c) ·σ(d) = c·d for all c,d∈ Jj . Now by Corollary 21 it follows thatµd−λ
σ(d) ≥ 0

for all d ∈ Jj , and, moreover, ifµd − λ
σ(d) = 0 for somed ∈ Jj then we must have

ξc−θc = 0 for all c∈ Jj . Similarly,

0≤ ξc +θc = ∑
d∈Jj

(c·d)(µd +λ
σ(d))
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for all c ∈ Jj ; so µd + λ
σ(d) ≥ 0 for all d ∈ Jj , equality occurring for somed only if

ξc+θc = 0 for all c∈ Jj . Note in particular that, sincej is arbitrary in the above argument,
µd ≥ |λ

σ(d)| for all d ∈ Π\{a}.
Eacht ∈V can be written in the formt = t0 + νu with t0 ∈Va andν ∈ R. If u ·u > 0

this gives
t · t = t0 · t0 +ν

2u·u,

which is positive ift0 6= 0 or if ν 6= 0. SinceW is infinite this contradicts Part (3) of
Lemma 1. Ifu · u = 0 thent · u = 0 for all t ∈ V, contrary to the assumption thatW is
nondegenerate. Sou·u < 0, and, by the same reasoning,v·v < 0.

Since f ∈ Φ
1 = f · f = (z+ωv) · (z+ωv) = z·z+ω

2v·v,
and we also have that

z·z = ∑
c∈Π\{a}

λ
σ(c)σ(c) ·z = ∑

c∈Π\{a}
λ

σ(c)θc.

Similarly,
1 = a·a = (−x+u) · (−x+u) = x ·x+u·u,

and also
x ·x = ∑

c∈Π\{a}
µcc·x = ∑

c∈Π\{a}
µcξc.

Thus
u·u + ∑

c∈Π\{a}
µcξc = ω

2v·v + ∑
c∈Π\{a}

λ
σ(c)θc,

and so

∑
c∈Π\{a}

(µcξc−λ
σ(c)θc) = ω

2v·v−u·u.

Sinceµc ≥ |λ
σ(c)| andξc ≥ |θc| for all c, we see that∑c∈Π\{a}(µcξc−λ

σ(c)θc) ≥ 0, and

soω2v · v≥ u ·u. But ω2 ≥ 1, and sincev · v < 0 it follows thatv · v≥ ω2v · v, and hence
v ·v≥ u ·u. Since 1= x ·x+u ·u (shown above) and 1= y ·y+v ·v (similarly), it follows
thaty·y≤ x ·x, as desired.

In view of our earlier remarks, we must havev·v = u·u, and

0≤ ∑
c∈Π\{a}

(µcξc−λ
σ(c)θc) = (ω2−1)u·u≤ 0

sinceω ≥ 1 andu·u < 0. Thus(ω2−1)u·u = 0, givingω = 1, and

∑
c∈Π\{a}

(µcξc−λ
σ(c)θc) = 0,

giving µcξc = λ
σ(c)θc = |λ

σ(c)θc| for all c∈ Π\{a}. Furthermore, we have

0≤ (µc−|λσ(c)|)ξc ≤ µcξc−|λσ(c)| |θc|= 0,

and it follows that, for allc∈ Π\{a}, eitherξc = 0 or |λ
σ(c)| = µc. As noted above, for

each j ∈ {1,2, . . . ,k} there exists at least oned ∈ Jj with ξd > 0, so thatλ
σ(d) = ±µd.

But as we have shown, ifλ
σ(d) = µd thenθc = ξc for all c∈ Jj , and if λ

σ(d) = −µd then
θc =−ξc for all c∈ Jj . In the former case we have

zj ·σ(c) = θc = ξc = x j ·c

for all c∈ Jj , and it follows thatzj = σ̃(x j). In the latter case,

zj ·σ(c) = θc =−ξc =−x j ·c

for all c∈ Jj , giving zj =−σ̃(x j).
Let w be the the longest element of the parabolic subgroup corresponding to the union

of the setsσ(Jj) for which zj = σ̃(x j), let β be the inner automorphism ofW given by
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conjugation byw, and letα ′ = βα. Sinceβ permutesS\{rb} we see thatα ′ satisfies the
same hypotheses asα. Now α ′(ra) = wr f w

−1 = rw f , and

w f = wz+v = (wz1 +wz2 + · · ·+wzk)+v,

and herewzj is the projection ofw f onto the span ofσ(Jj). Applying toα ′ the arguments
used above forα enables us to deduce that for eachj

wzj =±σ̃ ′(x j) =± ∑
c∈Jj

µcσ
′(c),

whereα ′(rc) = r
σ ′(c) for all c∈ Π\{a}. But w was chosen so that for eachj the element

wzj is a negative linear combination simple roots, and sowzj =−σ̃ ′(x j). Thus

w f = (−σ̃ ′(x1)− σ̃ ′(x2)−·· ·− σ̃ ′(xk))+v =−σ̃ ′(x)+v,

showing thatw f ·σ ′(c) =−ξc = a·c for all c∈Π\{a}. Since alsoσ ′(d) ·σ ′(c) = d ·c for
all c,d ∈Π\{a}, Theorem 18 shows thatα ′ is inner by graph. (Indeed, Theorem 17 yields
that there exists aw′ ∈W andε = ±1 such thatεw′(Π) = w f ∪Π\{b}. But w f is easily
shown to be positive, and it follows readily thatε = 1 andN(w′) = /0. Hencew f = b, and
α ′ is in fact a graph automorphism.) �

Our main objective is to prove that Theorem 23 holds without the hypothesis that
α(S\{ra}) = S\{rb}. Our basic strategy is to show that if the given automorphismα

is replaced byαβ for some suitably chosenβ that is inner by graph, then the hypotheses
of Theorem 23 are satisfied. Our next theorem accomplishes this in the case thatα pre-
serves some maximal finite subgroup. We need to use a modification of the argument used
in the proof of Theorem 23 to deal with some of the cases.

Theorem 24. Suppose that W is irreducible, non-degenerate and nearly finite, and the
Coxeter diagram has no infinite edge labels. Suppose thatα is an automorphism of W that
preserves reflections, and suppose that there exists a∈ Π such thatα(WΠ\{a}) = WΠ\{a}.
Thenα is inner by graph.

Proof. Write J = Π\{a}. SinceWJ is finite, the classification of finite Coxeter groups (see
[11, Section 2.7]) tells us that each irreducible component ofJ is of one of the types in the
following list. As is customary, labels equal to 3 are suppressed.

An: Bn: 4

Dn: E6:

E7: E8:

F4: 4 H3: 5

H4: 5 I2(m): m

Thus the Coxeter diagram ofWJ is a forest, and so by Lemma 15 there is a function
φα : J → Φ such thatα(rb) = r

φα (b) for all b ∈ J andφα(b) · φα(c) ≤ 0 for all b,c ∈ J
with b 6= c. As in Corollary 16 it follows that

(3.1) φα(b) ·φα(c) = b·c
unlessmbc = 5 or mbc ≥ 7. Furthermore, these values formbc can only occur ifb andc
lie in an irreducible component ofJ of typeH3, H4 or I2(m), and then only for one pair of
simple roots in the component.

If Eq. (3.1) does hold for allb,c ∈ J then by Theorem 17 there existsw ∈ WJ and
ε =±1 such thatεwφα(b) ∈ J for all b∈ J, and ifβ is the inner automorphism ofW given
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by x 7→wxw−1 then we see thatβα permutes the simple reflections ofWJ. Theorem 23 can
then be applied, and it follows thatβα is inner by graph, whenceα is also inner by graph.

It remains to deal with those cases in whichJ has at least one irreducible component of
typeH3, H4 or I2(m) (wherem= 5 or m≥ 7) on which Eq. (3.1) does not hold. Accord-
ingly, assume thatJ has such a component. We use an argument similar to that used in the
proof of Theorem 23 to derive a contradiction.

In our calculations below we use the abbreviations c(θ) and s(θ) for cos(θ) and sin(θ),
and we also writeπm for π/m.

If b,c ∈ J are such that Eq. (3.1) fails, thenb · c = −c(πm), wherem = mbc, and
φα(b) ·φα(c) = −c( jπm) for some j coprime tom. Sinceφα(b) ·φα(c) ≤ 0 we have that
1 < j < m/2. If the component ofJ containingb andc is of typeH3 or H4 thenm= 5 and
j = 2.

Let M andM′ be matrices with rows and columns indexed byJ, such that, for allb,c∈ J,
the (b,c)-entry ofM is b · c and the(b,c)-entry ofM′ is φα(b) ·φα(c). We assume thatJ
is ordered so thatM is a diagonal sum of matrices corresponding to the various irreducible
components ofJ. Sinceφα(b) ·φα(c) = 0 if and only if b ·c = 0, we see thatM′ is also a
diagonal sum, with blocks of the same sizes as those ofM.

The blocks ofM corresponding to components of typesI2(m), H3 andH4 are as follows
(assuming the ordering is chosen appropriately).

MI =
[

1 −c(πm)
−c(πm) 1

]

M3 =

 1 −c(π5) 0
−c(π5) 1 −1/2

0 −1/2 1



M4 =


1 −c(π5) 0 0

−c(π5) 1 −1/2 0
0 −1/2 1 −1/2
0 0 −1/2 1


The following matricesT3, T4 andTI are the inverses ofM3, M4 andMI .

TI =
[

1/s2(πm) c(πm)/s2(πm)
c(πm)/s2(πm) 1/s2(πm)

]

T3 =

 9+3
√

5
2 4+2

√
5 2+

√
5

4+2
√

5 6+2
√

5 3+
√

5

2+
√

5 3+
√

5 5+
√

5
2



T4 =


28+12

√
5 33+15

√
5 22+10

√
5 11+5

√
5

33+15
√

5 42+18
√

5 28+12
√

5 14+6
√

5
22+10

√
5 28+12

√
5 20+8

√
5 10+4

√
5

11+5
√

5 14+6
√

5 10+4
√

5 6+2
√

5


For components on which Eq (3.1) fails, the corresponding blocks ofM′ are as follows.

M′
I =

[
1 −c( jπm)

−c( jπm) 1

]

M′
3 =

 1 −c(2π5) 0
−c(2π5) 1 −1/2

0 −1/2 1



M′
4 =


1 −c(2π5) 0 0

−c(2π5) 1 −1/2 0
0 −1/2 1 −1/2
0 0 −1/2 1





AUTOMORPHISMS OF NEARLY FINITE COXETER GROUPS 13

The corresponding inverses are as follows.

T ′
I =

[
1/s2( jπm) c( jπm)/s2( jπm)

c( jπm)/s2( jπm) 1/s2( jπm)

]

T ′
3 =

 9−3
√

5
2 −4+2

√
5 −2+

√
5

−4+2
√

5 6−2
√

5 3−
√

5

−2+
√

5 3−
√

5 5−
√

5
2



T ′
4 =


28−12

√
5 −33+15

√
5 −22+10

√
5 −11+5

√
5

−33+15
√

5 42−18
√

5 28−12
√

5 14−6
√

5
−22+10

√
5 28−12

√
5 20−8

√
5 10−4

√
5

−11+5
√

5 14−6
√

5 10−4
√

5 6−2
√

5


It can be checked that all the entries ofT ′

I , T ′
3 andT ′

4 are positive and strictly less than the
corresponding entries ofTI , T3 andT4. Hence if we writetbc andt ′bc for the (b,c)-entries
of M−1 and(M′)−1, then we havetbc≥ t ′bc for all b,c∈ J. Since there is a component for
which Eq. (3.1) fails, there is a block in whichtbc > t ′bc for all b andc.

As in the proof of Theorem 23, we suppose thatα(ra) = r f , wheref ∈Φ+, and letzbe
the projection off ontoVJ. Let x be the projection of−a ontoVJ. Thenu = x+ a spans
the orthogonal complement ofVJ in V, andu·u< 0 sinceW is non-degenerate and infinite.
Moreover, f = z+ωu for some scalarω, and by Lemma 3 we haveω ≥ 1.

For eachc∈ J let c·a =−c(πmca
) =−ξc. Write x = ∑c∈J µcc. For allc∈ J,

c·x =−c·a = ξc,

so thatξc = ∑d∈J(c·d)µd, and
µc = ∑

d∈J

tcdξd.

Now for eachc∈ J there is an integerjc such that

φα(c) ·z= φα(c) · f = c( jcπmca
) = θc,

where|θc| ≤ ξc andθc = 0 if and only if ξc = 0. Writing z= ∑c∈J λcφα(c), we have

λc = ∑
d∈J

t ′cdθd

for all c∈ J. Now observe that

z·z= ∑
c∈J

λc(φα(c) ·z) = ∑
c∈J

λcθc = ∑
c∈J

∑
d∈J

t ′cdθcθd

and
x ·a = ∑

c∈J
µc(c·a) =−∑

c∈J
µcξc =−∑

c∈J
∑
d∈J

tcdξcξd.

Sinceξcξd ≥ |θcθd| ≥ θcθd andtcd ≥ t ′cd ≥ 0 for all c,d ∈ J,

∑
c

∑
d

tcdξcξd ≥∑
c

∑
d

t ′cdθcθd.

But there is an irreducible component ofWJ for which tcd > t ′cd. AsW is irreducible there
is an edge joininga to this component, and hence there is ac in this component for which
ξc > 0. Thentccξ

2
c ≥ tccθ

2
k > t ′ccθ

2
c , and so

−x ·a = ∑
c

∑
d

tcdξcξd > ∑
c

∑
d

t ′cdθcθd = z·z.

Therefore 1+x ·a < 1−z·z. Now

u·u = (x+a) ·u = a·u = a·a+a·x = 1+a·x.
Thusu·u < 1−z·z, and, sinceu·u < 0,

1 >
1−z·z

u·u
.
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Sincex∈ Φ,
1 = x ·x = (z+ωu) · (z+ωu) = z·z+ω

2u·u.

Hence

ω
2 =

1−z·z
u·u

< 1.

But ω ≥ 1, and so we have obtained the desired contradiction. �

4. GROUPS WITH TWO FINITE MAXIMAL PARABOLIC SUBGROUPS

If α ∈ Aut(W) andF is a maximal finite subgroup ofW, then clearlyα(F) is also a
maximal finite subgroup ofW. Theorem 24 was concerned with the caseα(F) = F ; in this
section we dispense with this assumption.

Proposition 25. Suppose thatα : W→W′ is an isomorphism of finite Coxeter groups that
maps reflections to reflections. Then W and W′ have the same type.

Proof. Since the irreducible components ofW andW′ are generated by the reflections they
contain, it follows from Lemma 14 thatα maps the components ofW to the components
of W′. Hence it is sufficient to prove the result for irreducibleW andW′.

If W is of type I2(m) then exactly half the elements ofW are reflections, and sinceα
maps reflections to reflections it follows that half the elements ofW′ are reflections. Since
I2(m) is the only type of Coxeter group with this property, it follows thatW′ is of the same
type asW. Of course a similar argument applies wheneverW′ is of typeI2(m); so we may
assume that neitherW norW′ is of typeI2(m).

The only coincidences of order for finite irreducible Coxeter groups, excluding groups
of type I2(m), occurs for typesA4 and H3, which both have order 120. They are not
isomorphic, since, for example,A4 has trivial centre whileH3 does not. SinceW andW′

have the same order and are isomorphic, we conclude that they are of the same type.�

Proposition 26. Suppose that W is an irreducible nearly finite Coxeter group, and let
a∈ Π be such thatΠ\{a} is of finite type. Suppose that there exists b∈ Π with b 6= a and
Π\{b} of the same type asΠ\{a}. If Π\{a} and Π\{b} have at least one component of
type H3, H4 or I2(m) for m> 4, then the Coxeter diagram associated with W either has a
symmetry of order two that interchanges a and b, or is of type X(q) for some q≥ 2, where
these diagrams are as follows:

X(q):
5

q

5

b

a

X(2):
5

5

b

a

c

.

Proof. Let Γ be the Coxeter diagram ofW, andΓa, Γb the diagrams obtained by deleting
a, b respectively. For eachc∈ Π let val(c) be the valency ofc as a vertex ofΓ. Observe
that the valency ofc 6= a as a vertex ofΓa is val(c)− 1 or val(c) if c is adjacent toa
or not adjacent toa in Γ; so the sum of the valencies inΓa is

(
∑c∈Π val(c)

)
− 2val(a).

Applying the same reasoning also toΓb we deduce that val(a) = val(b), sinceΓa andΓb
are isomorphic.

Suppose first thatΓa andΓb are reducible, andb does not lie in a component ofΓa of
typeH3, H4 or I2(m) for m> 4. Note that val(a) ≥ 2 since there must be edges froma to
all components ofΓa.

By hypothesisΓa has a component∆ of typeH3, H4 or I2(m) that does not containb.
Observe that∆ lies in a component∆′ of Γb that also containsa, sincea is connected to∆.
SinceH4 and I2(m) for m > 5 are not contained in any larger diagrams of finite type, it
follows that∆ is of typeH3 or I2(5). Furthermore, the valency ofa in ∆′ is at most 2, since
no diagram of finite type has a vertex of valency greater than 2 as well as an edge label
greater than 3. So val(a)≤ 3.
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If ∆ is of typeH3 then∆′ must be of typeH4, and the valency ofa in ∆′ is 1. Soa is
adjacent tob in Γ, and val(a) = 2. HenceΓa has exactly two components (given that it is
reducible). One of these is∆′, of typeH4, and the other must be of typeH3 sinceΓb has a
component of typeH3. ThusΓ is

a b

5 5q

and we see that there is a symmetry interchanginga andb.
If ∆ is of typeI2(5) then∆′ is of typeH3 or H4. In the former casea has valency 1 in∆′;

soa is adjacent tob and val(a) = 2. ThusΓa andΓb are of typeI2(5)×H3, whenceΓ is

a b

5 q 5

and there is a symmetry interchanginga andb. Turning to the other case, observe that the
valency ofa in ∆′ (of typeH4) is 2, since deletinga gives a component of typeI2(5). If
a andb are not adjacent then val(a) = 2, andΓa has two components, which must be of
typesI2(5) andH4. SoΓ is

a b

5 5

which has a symmetry swappinga andb. So suppose thata andb are adjacent, so that
val(a) = val(b) = 3. Let c be the end vertex of∆′ adjacent toa. If c is also adjacent tob
thenΓa has only two components, and they are of typesI2(5) andH4. Furthermore, the
valency ofc in Γb is 1; so val(c) = 2, andΓ must be

5
q

5
a b

c

which has a symmetry swappinga andb. Finally, suppose thatc is not adjacent tob. Then
Γa andΓb are of typeI2(5)×A1×H4, and there is ac′ adjacent tob that is not adjacent
to a. In this caseΓ is

5
q

5
a b

c c′

and again there is a symmetry swappinga andb.

Next we consider those cases for whichΓa andΓb are reducible, andb lies in a compo-
nent∆ of Γa of typeH3, H4 or I2(m) for m> 4.

Suppose that∆ has typeH3. Then the valency ofb in Γa is at most 2, and consequently
2≤ val(a) = val(b) ≤ 3. Suppose val(a) = val(b) = 3. Thena andb must be adjacent.
The two end vertices of∆ cannot both be adjacent toa, sinceΓb is reducible. If neither of
them are adjacent toa thenΓb has three components, and is thus of typeA1×A1×H3. We
see that in this caseΓ is

5

5

q

a

b

and has a symmetry interchanginga andb. If one of the end vertices of∆ is adjacent
to a, thenΓb has two components and is of typeA1×H3. There are four possibilities: two
choices for the vertex of∆ that is adjacent toa, and then two choices for the edge incident
with a that has the label 5.

5

5

q

a

b

5

5

q

a

b

5

5

q

a

b

5

5

q

a

b
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The first and third of these have symmetries interchanginga andb, while the other two are
both of typeX(q).

Now suppose that val(a) = val(b) = 2, still in the case that∆ is of typeH3. Note that
Γa andΓb must have two components. Ifb is adjacent toa then it must be an end vertex
of ∆, andΓb must be of typeI2(5)×H3 or of typeA2×H3. The two possibilities forΓ are
as follows.

q

5

5

a

b

q

5

5

a

b

In both cases there is a symmetry interchanginga andb. If b is not adjacent toa then
it is the middle vertex of∆, and, since only one of the end vertices can be adjacent toa
(given thatΓb is not irreducible), we see that the one that is not adjacent toa constitutes a
component ofΓb of typeA1. SoΓa andΓb are of typeA1×H3. The four possibilities for
Γ are as follows.

5

5

a

b

5

5

a

b

5

5

a

b

5

5

a

b

The first and third of these have symmetries interchanginga andb, while the other two are
both of typeX(2).

We have dealt with all possible cases for which∆ is of typeH3. Suppose now that∆ is
of typeH4. As in theH3 case we have 2≤ val(a) = val(b)≤ 3.

Suppose first that val(a) = val(b) = 3. Thena andb are adjacent, andb is not an end
vertex of∆. If no other vertex of∆ is adjacent toa, thenΓb has three components and is of
typeA1×A2×H4 or A1× I2(5)×H4. Sincea may be either of the inner vertices of of the
H4 there are potentially four possibilities, but only two of these giveΓa isomorphic toΓb.
The two possibilities forΓ are

5

5

q

a

b 5

5

q

a

b

and there is a symmetry interchanginga andb. If there were two vertices of∆\{b} adjacent
to a then these vertices could not be adjacent to each other, since if they were thenΓb would
contain a triangle, contradicting the fact that it is of finite type. So the two components of
∆\{b} would have to each contain one of these vertices, and this is also impossible since
thenΓb would be irreducible. So it remains to consider the cases in whicha is adjacent to
exactly one of the vertices in∆\{b}. In each caseΓb must have exactly two components,
one of which is a component∆\{b} and the other of which has typeH4. Now b may be
either of the two inner vertices of∆, anda may be joined to any of the three vertices of
∆\{b}. Each of the six choices gives a unique possibility forΓ.

5

5
q

a

b 5

5

q

a

b 5

5

q

a

b

5

q

a

b 5

q

a

b 5

5

q

a

b

In each case there is a symmetry ofΓ interchanginga andb.
Now suppose that val(a) = val(b) = 2, still in that case that∆ is of typeH4. Observe

that Γa andΓb have two components. Ifb is an end vertex of∆ then it must be adjacent
to a, andΓb must be either of typeA3×H4 or of typeH3×H4. The corresponding two
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possibilities forΓ are

q

5

5b

a

q

5

5 b

a

and in both cases there is a symmetry interchanginga andb. If b is not adjacent toa then it
is an inner vertex of∆, and, since only one of the other vertices can be adjacent toa (given
thatΓb is not irreducible and does not contain a triangle), we again obtain six possibilities:
b can be either inner vertex of∆ anda can be adjacent to any of the three vertices of∆\{b}.

5

5

a

b 5

5 a

b 5

5 a

b

5

a

b 5

a

b 5

5 a

b

In each case there is a symmetry interchanginga andb.
Having dealt with all possible cases for which∆ is of typeH3 or H4, we assume now

that∆ is of typeI2(m). In this caseb has valency 1 in inΓa, and hence has valency 2 inΓ.
We see thata andb are adjacent, anda is not adjacent to the other vertex of∆ sinceΓb is
reducible. SoΓa andΓb are of typeA1× I2(m). ThusΓ is

m q m
a b

and there is a symmetry swappinga andb.

We have now dealt with all cases in whichΓa andΓb are reducible, and it remains to
deal with the possibility that they are irreducible of typeI2(m), H3 or H4. Observe thatΓ
has three vertices in the first case, four in the second and five in the third.

If Γa is of typeI2(m), with verticesb andc, thenΓb has verticesa andc, which must be
joined by an edge labelledm. SoΓ is

m

mq

b

a

whereq = 2 is allowed. There is a symmetry of the desired kind.
If Γa is of typeH3 andb is the middle vertex, thena must also be adjacent to the other

two vertices, since val(a) = val(b). One of these edges must be labelled 5 and the other 3,
sinceΓb is of typeH3. So there are two possibilities forΓ,

5

5
q

a

b 5

5
q

a

b

again allowingq = 2. In each case there is a symmetry swappinga andb. If b is an end
vertex ofΓa thena must be adjacent to exactly one of the remaining two vertices, and since
there are two choices forb there are four possibilities forΓ.

5

q 5

a

b 5

q 5

a

b 5

q

a

b 5

q

a

b

Here again we allowq = 2, and again each of the diagrams has a symmetry swapping
a andb.

Finally suppose thatΓa is of typeH4. If b is an inner vertex ofΓa thena must be adjacent
to exactly two of the other vertices ofΓa to ensure that val(a) = val(b). Furthermore,
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these two must not belong to the same component ofΓa\{b} sinceΓb must not contain
a triangle. There are two possibilities forb, and then two possibilities for the vertices of
Γa\{b} adjacent toa. The four possibilities forΓ are

5

5
q

a

b 5

5
q

a

b 5

q

a

b 5

q

a

b

allowingq= 2. In each case there is a symmetry swappinga andb. We are left to consider
the cases whenb is an end vertex ofΓa. Suppose first thatb at the end with the edge
labelled 5. Since val(a) = val(b) we see thata, like b, is adjacent to exactly one of the the
other three vertices ofΓa. It cannot be the middle one, or this would have valency 3 inΓb,
contrary to the requirement thatΓb is of typeH4. The other two are both possible. Ifb
is at the end ofΓa that does not have the edge labelled 5, we again deduce thata must be
adjacent to exactly one of the other three vertices ofΓa. However, only one of these three
choices satisfies the requirement thatΓb is of typeH4. So altogether we have three more
possibilities forΓ. They are

5

q 5

a

b 5

q 5

a

b 5

q

a

b

allowingq = 2. In each case there is a symmetry swappinga andb. �

5. COMPLETION OF THE PROOF OF THE MAIN THEOREM

Recall first the following trivial fact.

Lemma 27. Let W be a Coxeter group, and a,b ∈ Π. If mab is odd then ra and rb are
conjugate in W.

Proof. If mab = 2k+1 thenrb = (rarb)kra(rarb)−k. �

Our main theorem is as follows.

Theorem 28. If W is an irreducible non-degenerate nearly finite Coxeter group with finite
edge labels, then any automorphism of W that preserves reflections is inner by graph.

Proof. Let α ∈ R(W), and leta∈ Π be such thatJ = Π\{a} is of finite type. Thenα(WJ)
is a maximal finite subgroup ofW, and so equalstWKt−1 for somet ∈W and someK ⊆Π.
Replacingα by w 7→ tα(w)t−1 permits us to assume thatα(WJ) = WK . By Proposition 25
and the fact thatα preserves reflections,WJ andWK are of the same type. ThusK = Π\{b}
for someb∈ Π (possibly equal toa).

Suppose thatJ does not contain any component of typeH3, H4 or I2(m) for m> 4. As
WJ andWK are of the same type there is an isomorphismβ : WJ →WK taking simple re-
flections to simple reflections. Applying Corollary 19 to the automorphism ofWJ given by
w 7→ β−1(α(w)), we deduce that there existst ∈WJ such thatγ : w 7→ t(β−1(α(w)))t−1

is a graph automorphism ofWJ. Thusβγ is an isomorphismWJ → WK that takes sim-
ple reflections to simple reflections. Butβγ is the restriction toWJ of the automorphism
w 7→ β (t)α(w)β (t)−1, and it follows from Theorem 23 that this automorphism is inner by
graph. Henceα is inner by graph.

Suppose, on the other hand, thatJ has a component of typeH3, H4 or I2(m) for m> 4.
If W is not of typeX(q) then by Proposition 26 there is a graph automorphismγ of W that
takesWK to WJ. Now γα preservesWJ, and so Theorem 24 tells us thatγα is inner by
graph. Henceα is inner by graph.
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It remains to consider that possibility thatW is of typeX(q) for someq≥ 2 andJ 6= K.
Let Π = {a,b,c,d,e}, the Coxeter diagram being as follows.

5

5

q

b

a

d

e

c

Note thatq = 2 is allowed.
The simple reflectionre is central inWJ; therefore

α(re) ∈ Z(WK) = 〈rd,wK〉,
wherewK is the longest element inWK . As α(re) is a reflection andrd is the only reflection
in Z(WK) we deduce thatα(re) = rd. Now by Lemma 13

Ref(WJ) = Ref(W{c,b,d})∪{re}
Ref(WK) = Ref(W{c,a,e})∪{rd},

and it follows thatα(Ref(W{c,b,d})) = Ref(W{c,a,e}). Soα(W{c,b,d}) = W{c,a,e}.
Since the groupW{c,a,e} has only one conjugacy class of reflections (by Lemma 27),

replacingα by w 7→ t(α(w))t−1 for a suitably chosent ∈W{c,a,e} allows us to assume that
α(rd) = rc. Now r = α(rb) has the property that the order ofrr c is three (sincerbrd has
order three), and of the fifteen reflections inW{c,a,e} only four satisfy this requirement.
Furthermore, these four are permuted transitively by the groupW{a,c}; so again replacing

replacingα by w 7→ t(α(w))t−1 for a suitably chosent permits us to assume thatr = ra.
Sincerc commutes withrd we deduce thatα(rc) is a reflection that commutes withrc.

There are just two possibilities for this: the reflection alonge and the reflection along
g=−(λ +1)e−2λa−λc, whereλ = 2cos(π/5) (the positive solution ofλ 2 = λ +1). If
α(rc) = re then Theorem 24 tells us thatα is inner by graph. So assume thatα(rc) = rg,
and letα(ra) = r f , where f ∈ Φ. We now have

α(ra) = r f α(rb) = ra

α(rc) = rg α(rd) = rc

α(re) = rd .

Sincer f rg has order three,f ·g =±1/2. Replacingf by− f if necessary, we may assume
that f ·g =−1/2. Sincer f rc has order two,f ·c = 0. Sincer f ra has orderq andr f rd has
order five, f ·a = cos( jπ/q) for some j coprime toq and f ·d = −cos(kπ/5) for somek
coprime to 5. Let us writeθa = cos( jπ/q) = f ·a andξa = cos(π/q); note that|θa| ≤ ξa.
Let us also writeθd = cos(kπ/5) =− f ·d; note that|θd| ≤ cos(π/5) = λ/2.

For later reference, note thata·g = 1
2(1−λ ), while c·g = e·g = d ·g = 0.

Definex = λa+ 1
2λc−θdd +(3

2 +(2−2λ )θa)e. Note thatx∈VK . We computex · v
for eachv in the basis{a,c,d,g} of VK .

x ·a = λ − 1
4λ +0+(3

2 +(2−2λ )θa)(−1
2λ )

= 3
4λ − 3

4λ +(λ 2−λ )θa

= θa

= f ·a,

x ·c =−1
2λ + 1

2λ +0+0

= 0

= f ·c,

x ·d = 0+0−θd +0

= f ·d,



20 W. N. FRANZSEN AND R. B. HOWLETT

x ·g = 1
2λ (1−λ )+0+0+0

=−1
2

= f ·g.
Thusx is the orthogonal projection off ontoVK .

Now define

y= ((1+2λ )+(4+4λ )ξa)a+((1
2 + 3

2λ )+(2+2λ )ξa)c+ 1
2d+((1+ 3

2λ )+(2+4λ )ξa)e.

We find that

y·a = (1+2λ )+(4+4λ )ξa− 1
2((1

2 + 3
2λ )+(2+2λ )ξa)+0

− 1
2λ ((1+ 3

2λ )+(2+4λ )ξa)

= 3
4 + 3

4λ − 3
4λ

2 +(3+2λ −2λ
2)ξa

= ξa =−b·a,

y·c =−1
2((1+2λ )+(4+4λ )ξa)+((1

2 + 3
2λ )+(2+2λ )ξa)+0+0

= 1
2λ =−b·c,

y·d = 1
2 =−b·d,

y·e=−1
2λ ((1+2λ )+(4+4λ )ξa)+0+0+((1+ 3

2λ )+(2+4λ )ξa)

= 1+λ −λ
2 +(2+2λ −2λ

2)ξa

= 0 =−b·e.
Thusy is the projection of−b ontoVK . Putu = b+y, a nonzero element of the orthogonal
complement ofVK . We can confirm thatW is nondegenerate by checking thatu ·u < 0.
Indeed,

u·u = (y+b) ·u = b·u = 1+b·y
= 1−ξa((1+2λ )+(4+4λ )ξa)− 1

2λ ((1
2 + 3

2λ )+(2+2λ )ξa)− 1
4

=−λ −2(1+2λ )ξa− (4+4λ )ξ 2
a

< 0,

as expected. Now we find that

x ·e=−1
2λ

2 +0+0+ 3
2 +(2−2λ )θa = 1− 1

2λ +(2−2λ )θa,

and thus

x ·x = λa ·x+ 1
2λ c·x−θd d ·x+(3

2 +(2−2λ )θa)e·x

= λθa +0+θ
2
d +(3

2 +(2−2λ )θa)(1− 1
2λ +(2−2λ )θa)

= θ
2
d + 3

2 −
3
4λ +(λ +3(1−λ )+(3−3λ +λ

2))θa +4(1−λ )2
θ

2
a

= θ
2
d + 3

2 −
3
4λ +2(3−2λ )θa +4(2−λ )θ 2

a .

Note thatθ 2
d ≤

1
4λ 2 = 1

4(1+λ ). Furthermore, since we also have that|θa| ≤ ξa,

x ·x≤ 7
4 −

1
2λ +2|3−2λ | |θa|+4|2−λ | |θa|2

≤ 7
4 −

1
2λ +2(2λ −3)ξa +4(2−λ )ξ 2

a ,

and therefore

1−x ·x−u·u≥ 1− 7
4 + 1

2λ −2(2λ −3)ξa−4(2−λ )ξ 2
a

+λ +2(1+2λ )ξa +(4+4λ )ξ 2
a

= (3
2λ − 3

4)+8ξa +(8λ −4)ξ 2
a ,
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which is clearly positive since all the terms are positive. Therefore

1−x ·x
u·u

< 1,

asu·u < 0.
As in our earlier proofs we writef = x+ ωu, and use Lemma 3 to deduce that either

ω ≥ 1 (if x∈ Φ+) or ω ≤−1 (if x∈ Φ−), and hence thatω2 ≥ 1. Sincef is a root,

1 = f · f

= (x+ωu) · (x+ωu)

= x ·x+ω
2u·u,

and hence

ω
2 =

1−x ·x
u·u

< 1,

and this is a contradiction. So this case cannot arise, and we conclude thatα is inner by
graph. �

The next result provides a strengthening of our main theorem.

Theorem 29. Theorem 28 remains valid if the assumption that W is nondegenerate is
omitted.

Proof. Let n be the rank ofW. SinceW is nearly finite there is a subspace ofV of di-
mensionn−1 on which the bilinear formB associated withW is positive definite. IfB is
degenerate then its radical must be complementary to this positive definite subspace, and
soB is positive semidefinite with a 1-dimensional radical. The classification of irreducible
positive semidefinite Coxeter groups is given in [11, Section 2.7]; the groups concerned
are isomorphic to the affine Weyl groups, and correspond to the following list of Coxeter
diagrams.

Ãn: C̃n: 4 4

B̃n: 4 D̃n:

F̃4: 4 Ẽ6:

Ẽ7: Ẽ8:

G̃2: 6

In each case the rank is one greater than the name might suggest: for example,Ãn has
rankn+ 1. For typesC̃n andÃn we requiren≥ 2; typeÃ1 is not covered by the present
theorem since its diagram has∞ as an edge label (although the conclusion of the theorem
in fact remains valid). For̃Bn andD̃n we requiren≥ 3 andn≥ 4 respectively.

For all cases except̃An the desired conclusion that every reflection-preserving automor-
phism is inner by graph follows immediately from Corollary 19. So suppose thatW is
of type Ãn, and letα ∈ R(W). Choose a functionφα : Π → Φ such thatα(ra) = r

φα (a)
for all a∈ Π. Write Π = {a0,a1, . . . ,an}, wherea0 is adjacent toan andai is adjacent to
ai−1 for 1≤ i ≤ n. Thenφα(ai) ·φα(a j) is±1/2 if ai anda j are adjacent, and zero other-
wise. We can successively choose signsε1, ε2, . . . , εn so that whenφα(ai) is replaced by
εiφα(ai) we haveφα(ai−1) ·φα(ai) =−1/2 for 1≤ i ≤ n. Now if φα(a0) ·φα(an) =−1/2
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then Theorem 18 guarantees thatα is inner by graph. But ifφα(a0) ·φα(an) = 1/2 then it
is readily checked that the matrix whose(i, j) entry isφα(ai) ·φα(a j) is positive definite,
contradicting the fact thatB is degenerate. �

6. GROUPS WITH A FINITE IRREDUCIBLE MAXIMAL PARABOLIC SUBGROUP

In this section we shall not assume that the automorphismα preserves reflections; in-
stead we shall prove that it must preserve reflections, given appropriate extra hypotheses.
Specifically, we shall investigate nearly finite Coxeter groups with a finite irreducible max-
imal parabolic subgroup.

Our analysis depends upon some facts concerning automorphism groups of finite irre-
ducible Coxeter groups. We proceed to give a brief discussion of this topic.

Let W be a finite irreducible Coxeter group. The centre ofW is either trivial or of or-
der two. We denote the nonidentity element of the centre byz, when it exists. In all of
these cases,z is equal towΠ, the longest element ofW. The group of all homomorphisms
from W to the cyclic group of order two is isomorphic to the abelianization ofW, and has
order four if the Coxeter diagram has an even edge label, and order two otherwise. Let
H denote the group of all homomorphisms fromW to its centre. It is clear that for all
f ∈H the mappingα f : w 7→w f(w) is a homomorphism fromW to itself, and is an auto-
morphism precisely whenz is in the kernel off (so thatz f(z) 6= 1). These automorphisms
are reflection preserving if and only ifW is of rank 2. Moreover,α f g = α f αg whenever
f (z) = g(z) = 1; henceA (W) = {α f | z∈ ker f } is a subgroup of Aut(W). Clearly all
elements ofA (W) are self-inverse.

If W is of typeBn, with the following diagram,

4
a

we letζ : W → Z(W) be the homomorphism that mapsra 7→ 1 and all other simple reflec-
tions toz. It is easily checked thatζ (z) = 1, and soα

ζ
∈ Aut(W). Similarly, for typeF4

there are two conjugacy classes of reflections, and we letζ : W → Z(W) map the reflec-
tions in one of these toz and those in the other to 1. Againα

ζ
∈ Aut(W). In all cases

wherewΠ = z∈ Z(W), let ξ : W→ Z(W) be the homomorphism that maps each simple re-
flection toz. Thenξ (w) = zl(w) for all w∈W, and soξ (z) = 1 precisely whenl(z) is even.
In particular,α

ξ
∈ Aut(W) whenW is of typeB2k, D2k, E8, F4 or H4. A straightforward

calculation shows thatα
ξ

commutes with all reflection preserving automorphisms.

Proposition 30. The groupA (W) defined above is trivial if W is of type An, D2k+1, E6,
E7 or H3, has order two if W is of type B2k+1, D2k, E8 or H4, and has order four if W is of
type B2k or F4.

Indeed,A (W) = 〈α
ξ
〉 for typesD2k, E8 andH4, while A (W) = 〈α

ζ
〉 for B2k+1, and

A (W) = 〈α
ξ
,α

ζ
〉 for B2k andF4.

WhenW is of type I2(m) it is obvious that Aut(W) = R(W), and in all other cases
A (W)∩R(W) is trivial. So in these cases Aut(W) has a subgroup isomorphic to the
semidirect productR(W) o A (W) (since it is obvious thatR(W) is normal in Aut(W)).
Let Gr(W) be the group of all graph automorphisms ofW. By Theorem 18 we know that
R(W) = Inn(W)Gr(W) unlessW is of typeH3 or H4. In these cases there are at most
two possibilities for the functionφα in Lemma 15, and so[R(W) : Inn(W)Gr(W)]≤ 2. In
fact, as we shall see in the proof of Proposition 32, typesH3 andH4 do possess reflection
preserving automorphisms that are not inner by graph; so[R(W) : Inn(W)Gr(W)] = 2 in
each case. ForW of typeI2(m) it can be checked thatR(W)/ Inn(W)Gr(W) is isomorphic
to the group of units of the ring of integers modulom.

As is well known, the groups of typeAn are isomorphic to the finite symmetric groups,
and all automorphisms are inner except whenn = 5, in which case Inn(W) = R(W) has
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index two in Aut(W). The main assertion of Theorem 31 below is that there are no other
finite irreducible Coxeter groupsW such that Aut(W) 6= R(W)A (W).

Whenever the group of symmetries of the Coxeter diagram has order 2, we letγ be the
corresponding nontrivial graph automorphism ofW. If W is of typeH3 orH4 we letρ be the
non-inner reflection preserving automorphism constructed in the proof of Proposition 32
below. The following theorem then describes the classification of automorphisms of finite
irreducible Coxeter groups.

Theorem 31. If W is a Coxeter group of type Bn, Dn, E6, E7, E8, F4, H3 or H4 then
Aut(W) = R(W)A (W). Specifically:

(1) If W is of type Bn, n odd, thenAut(W)∼= W/〈wΠ〉o 〈α
ζ
〉.

(2) If W is of type Bn, n even, thenAut(W)∼=
(
(W/〈wΠ〉)o 〈α

ζ
〉
)
×〈α

ξ
〉.

(3) If W is of type Dn, n odd, thenAut(W) = R(W)∼= W.
(4) If W is of type Dn, n even and n> 4, thenAut(W)∼=

(
(W/〈wΠ〉)o 〈γ〉

)
×〈α

ξ
〉.

(5) If W is of type D4 thenAut(W)∼=
(
(W/〈wΠ〉)oSym3

)
×〈α

ξ
〉.

(6) If W is of type E6 thenAut(W) = R(W)∼= W.
(7) If W is of type E7 thenAut(W) = R(W)∼= W/〈wΠ〉.
(8) If W is of type E8 thenAut(W)∼= (W/〈wΠ〉)×〈αξ

〉.
(9) If W is of type F4 thenAut(W)∼= (W/〈wΠ〉)o 〈γ,αχ〉.

(10) If W is of type H3 thenAut(W)∼= (W/〈wΠ〉)o 〈ρ〉.
(11) If W is of type H4 thenAut(W)∼=

(
(W/〈wΠ〉)o 〈ρ〉

)
×〈α

ξ
〉.

Proof. (Outline) In all cases we consider the sizes of the conjugacy classes of involutions;
see [3]. We consider the simpler cases first.

For typeE6 there are 4 classes of involutions, of sizes 270, 540, 45 and 36, the class of
reflections being the one of size 36. Clearly all automorphisms must preserve reflections
and hence are inner by Corollary 19. In this case the graph automorphismγ is inner, being
conjugation bywΠ. Thus we have:

Aut(W) = R(W)∼= W.

For typeE7 there are 63 reflections, and the other classes of involutions have sizes 945,
3780, 315, 3780, 316, 945, 63 and 1. In this casewΠ is central and so ifr is a simple
reflection thenrwΠ is an involution. Thus the other class of involutions that has size 63
must be the class ofrwΠ. But l(rwΠ) = 62 is even, and so this class does not generateW.
In the absence of graph automorphisms we therefore have:

Aut(W) = R(W)∼= W/〈wΠ〉.
For typeE8 there are 120 reflections, and the other classes of involutions have sizes

3780, 37800, 113400, 3150, 37800, 3780, 120 and 1. Again the second class of size 120
is the class ofrwΠ, wherer is a reflection. Butα

ξ
is an automorphism that interchanges

these two classes. Thus, up toα
ξ
, automorphisms preserve reflections and hence are inner.

We have:
Aut(W)∼= (W/〈wΠ〉)×〈αξ

〉.
For typeH3 the class of reflections has size 15 while the other classes have sizes 15

and 1. By an argument similar to that used for typeE7, the second class of size 15 does
not generateW. Thus Aut(W) = R(W). SincewΠ is central, Inn(W) ∼= W/〈wΠ〉. But, as
explained above, Inn(W) has index two inR(W) in this case. So we have:

Aut(W)∼= (W/〈wΠ〉)o 〈ρ〉.
For typeH4 the class of reflections has size 60 while the other classes have sizes 450,

60 and 1. In this caseα
ξ

is an automorphism that swaps the two classes of size 60, and so
Aut(W) is the product ofR(W) and〈α

ξ
〉. So we have:

Aut(W)∼=
(
(W/〈wΠ〉)o 〈ρ〉

)
×〈α

ξ
〉.
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For typeF4 there are two classes of reflections, each of size 12, and they are inter-
changed by the graph automorphismγ. The remaining classes have sizes 18, 77, 12, 12
and 1. Ifr andsare representatives of the classes of reflections thenrwΠ andswΠ are rep-
resentatives of the other classes of size 12. We can take the homomorphismζ : W→ Z(W)
defined above to satisfyζ (r) = wΠ andζ (s) = 1. The reflection subgroup generated by
the reflections conjugate tor is of typeD4, and containswΠ. Thus classes ofr andrwΠ
together do not generateW, and the same applies for the classes ofs andswΠ. This leaves
8 possible targets for the images of the two classes of reflections under the action of an
automorphism. Sinceγ andα

ζ
generate a copy of the dihedral group of order eight, we

have:
Aut(W)∼= (W/〈wΠ〉)o 〈γ,α

ζ
〉.

For typesBn andDn we use the well known fact that groups of these types are isomor-
phic to En o Symn andE ′

n o Symn, whereEn = 〈x1,x2, . . . ,xn〉 is an elementary abelian
2-group of order 2n, andE ′

n is the subgroup ofEn generated by elements of the formxix j .
Thus involutions have the formβiπ j whereβi is a product ofi distinct transpositions andπ j
is a product ofj distinctxk’s, with the proviso that ifxh appears inπ j and the transposition
(hk) appears inβi thenxk also appears inπ j . It can be shown that ifW is of typeBn then
βiπ j is conjugate to an elementβiπ

′
l where no termxk in π ′l is moved byβi . The same

is true in typeDn provided that 2i < n, although j (and l ) must be even in this case. The
number of elements in the class is

n!
i! j!(n− j−2i)!

If n = 2t then the involutions inDn of the formβtπ j are conjugate either toβt or to βtxkxl ,
where(kl) is some transposition inβt . We obtain two classes of size

(2i)!
2i!

In type Bn the classes of reflections have representativesβ1π0 and β0π1, with sizes
n(n−1) andn respectively. The latter class does not occur in typeDn. The only coinci-
dences of class sizes that involve classes of reflections are as follows.

• In typeB4 the class of(12)(34) has the same size as that of(12).
• In typeD4 the class of(12)(34)x1x2 has the same size as that of(12).
• In typeB8 the classes ofx1x2x3 andx1x2x3x4x5 have the same size as that of(12).
• In typeBn the class ofx1wΠ has the same size as that ofx1.
• In typesBn andD2t the class of(12)wΠ has the same size as that of(12).

The first three cannot give rise to automorphisms as the classes that would contain the
images of the reflections do not generateW. The same applies in the fourth case whenn is
odd, while whenn is even the automorphismα

ξ
interchanges the two classes in question.

In the fifth case the two classes are interchanged by the automorphismα
ζ

of Bn or the
automorphismα

ξ
of D2t . Thus in all cases Aut(W) is generated byA (W) andR(W).

Finally, observing that forn odd the graph automorphism of groups of typeDn is induced
by conjugation bywΠ and that the group of graph automorphisms of typeD4 is isomorphic
to Sym3, we have the following conclusions.

If W is of typeBn, n odd, then

Aut(W)∼= W/〈wΠ〉o 〈α
ζ
〉.

If W is of typeBn, n even, then

Aut(W)∼=
(
(W/〈wΠ〉)o 〈α

ζ
〉
)
×〈α

ξ
〉.

If W is of typeDn, n odd, then

Aut(W) = R(W)∼= W.
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If W is of typeDn, n > 4 even, then

Aut(W)∼=
(
(W/〈wΠ〉)o 〈γ〉

)
×〈α

ξ
〉.

If W is of typeD4 then

Aut(W)∼=
(
(W/〈wΠ〉)oSym3

)
×〈α

ξ
〉. �

We now use the above discussion to prove the results that we actually need.

Proposition 32. Let W be a finite Coxeter group, and letα be an automorphism of W that
preserves reflections. Thenα preserves the set of parabolic subgroups of W.

Proof. By Lemma 14 we know thatα permutes the irreducible components ofW, and by
Proposition 25 it maps each component to a component of the same type. So replacingα

by γα for a suitable graph automorphismγ, we can assume thatα preserves each compo-
nent. So it is sufficient to prove the result for irreducible Coxeter groups. Since the group
of all automorphisms that preserve parabolic subgroups contains the inner and graph auto-
morphisms we have only to consider typesH3 andH4, and it is sufficient to prove that one
element ofR(W) that is not inner by graph preserves the set of parabolic subgroups.

Let W be of typeH4 and letΠ = {a,b,c,d}, with the following diagram:

5

a b c d
.

Let λ = 1
2(1+

√
5), and definea′ = (3λ +2)a+(3λ +3)b+2(λ +1)c+(λ +1)d. It can

be checked thata′ ∈Φ anda′ ·c= a′ ·d = 0; furthermore,a′ ·b= 1
2(λ −1) =−cos(2π/5).

So there is an automorphismρ ∈ R(W) that fixesrb, rc andrd and takesra to ra′ . If we
define

w1 = rbrarcrbrarbrdrcrbrarbrarcrbrardrcrbra,

w2 = rcrbrarbrardrcrbrarbrarcrbrarbrdrcrbrarbra,

w3 = rbrarbrardrcrbrarbrarcrbrarbrdrcrbrarbrarcrbra,

then a straightforward calculation reveals that

{w1a′,w1c,w1d}= {a,d,c},
{w2a′,w2b,w2d}= {a+λb,a,d},
{w3a′,w3b,w3c}= {c,λa+(λ +1)b+c,a},

and therefore

ρ(W{a,c,d}) = w−1
1 W{w1a′,w1c,w1d}w1 = w−1

1 W{a,d,c}w1,

ρ(W{a,b,d}) = w−1
2 W{w2a′,w2b,w2d}w2 = w−1

2 W{a,b,d}w2,

ρ(W{a,b,c}) = w−1
3 W{w3a′,w3b,w3c}w3 = w−1

3 W{a,b,c}w3.

In particular, these are all parabolic subgroups. It is obvious thatρ(W{b,c,d}) is parabolic,
and soρ preserves maximal parabolic subgroups. Since the result is known for groups of
lower rank apart fromH3, the proof forH3 is all that remains to be done.

So now letW be a group of typeH3, and letΠ = {a,b,c}, arranged as forH4. Let
a′ = (λ +1)a+(λ +1)b+c. It is readily checked thata′ ∈Φ, and also thata′ ·c= 1

2(λ −1)
anda′ ·b = 0. So there is an automorphismρ that interchangesrb andrc and takesra to
ra′ . If w = rbrarbra then{wa′,wb} = {c,a}, and soρ(W{a,c}) is a parabolic subgroup. If
w = rcrbra then{wa′,wc} = {λa+b,b}, and soρ(W{a,b}) is a parabolic subgroup. Soρ
preserves maximal parabolic subgroups, and hence all parabolic subgroups, since the result
is already known for smaller rank. �
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Proposition 33. Suppose that W is a finite irreducible Coxeter group of rank at least three,
and suppose thatα is a nonidentity automorphism inA (W). If W′ is a maximal parabolic
subgroup of W such thatα(W′) is also a parabolic subgroup thenα(w) = w for all w∈W′.

Proof. Let α = α f where f ∈H , and letz be the element ofW of maximal length. Sup-
pose thatW′ is a maximal parabolic subgroup such thatα(w) 6= w for at least one element
w∈W′, and suppose, for a contradiction, thatα(W′) is a parabolic subgroup. It is trivial
to check that inner automorphisms commute with all elements ofA (W); so without loss
of generality we may assume thatW′ = WJ for someJ⊆ Π.

LetV ′ be the subspace ofV spanned by the root system ofα(WJ), and letv be a nonzero
element of the orthogonal complement ofV ′ in V. Thenwv= v for all w∈ α(WJ), and in
particularα(ra)v= v for all rootsa∈Φ+

J . There is at least onea∈Φ+
J such thatα(ra) 6= ra,

since otherwise we would haveα(w) = w for all w∈WJ. Moreover,α(ra) 6= ra implies that
α(ra) = raz. Now sincezacts onV as multiplication by−1, if α(ra) = raz thenrav =−v,
which implies thatv is a scalar multiple ofa. Since there is at least one sucha∈ Φ+

J , it is
unique. Fix this roota, and note that it is orthogonal toV ′.

If b∈ Φ+
J andb 6= a thenrba = α(rb)a = a. Hencea is orthogonal toΦ+

J \{a}. Thus
ra generates a component ofWJ of typeA1, and every other component ofWJ is contained
in α(WJ). Furthermore,ra is not conjugate inW to any other reflectionrb ∈ WJ, since
f (ra) = z 6= f (rb). SoW is of typeBn or F4 andWJ is of typeA1×An−2, wheren is the
rank ofW. LetK = J\{a}, and note thatWK is a parabolic subgroup ofα(WJ). Thusα(WJ)
is also of typeA1×An−2. If n > 3 then the centre ofα(WJ) has order two and is generated
by a reflection; however, this contradicts the fact thatraz is not a reflection, since it acts as
multiplication by−1 on the spaceV ′, which has dimension greater than 1. Son = 3, and
W is of typeB3. Writing b for the unique element ofJ\{a} we find that the two reflections
in α(WJ) arerb andrbraz. But these are conjugate inW, whereas in typeB3 the parabolic
subgroups of typeA1×A1 are generated by a pair of non-conjugate reflections. �

Proposition 34. Let W be a finite irreducible Coxeter group of rank n, and suppose that W
is not of type A5. Letα ∈ Aut(W), and suppose that for every reflection r∈W the element
α(r) lies in a parabolic subgroup of W of rank less than n−1. Thenα ∈ R(W).

Proof. Suppose thatα /∈R(W). The image of a proper parabolic subgroup under the action
of an element ofR(W) is clearly always a proper parabolic subgroup. So we may replaceα

by αβ for anyβ ∈ R(W) without affecting either the hypotheses of the proposition or the
assumption thatα /∈R(W). SinceW is not of typeA5 we may assume thatα ∈A (W). Let
α = α f , where f ∈H . Now f 6= 1 sinceα 6= 1, and so there exists a simple reflectionra

such thatf (ra) = z. It follows thatraz= α(ra) lies in a parabolic subgroupW′ of rank less
thann−1. If V ′ is the subspace ofV spanned by the root system ofW′ then all elements of
W′ act trivially on the quotient spaceV/V ′, which has dimension at least 2. Sorazhas 1 as
a repeated eigenvalue, contradicting the fact that it acts as−1 on the(n−1)-dimensional
space{v∈V | v·a = 0}. �

Note that ifW is of typeA5 then the automorphisms that do not preserve reflections take
them to conjugates of the central element of a parabolic subgroup of typeA3

1. However, to
deal with typeA5 we have the following fact.

Proposition 35. Let W be a Coxeter group of type A5, and let α ∈ Aut(W). If there
exists a nontrivial proper parabolic subgroup W′ of W such thatα(W′) is also a parabolic
subgroup of W thenα is inner.

Proof. We can identifyW with the symmetric group of degree 6, and, modifyingα by an
appropriate inner automorphism, we may assume that the action ofα on the generators
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r i = (i, i +1) (for 1≤ i ≤ 5) is as follows:

(12) 7→ (13)(24)(56)

(23) 7→ (16)(25)(34)

(34) 7→ (14)(23)(56)

(45) 7→ (16)(24)(35)

(56) 7→ (12)(34)(56).

If W′ is a nontrivial proper parabolic subgroup such thatα(W′) is also parabolic then
α(W′) certainly contains an element from the conjugacy class ofW containing the element
(12)(34)(56). Henceα(W′) is of typeA3

1 or A1×A3. Sinceα2 is inner, it suffices now
to check that neitherα(〈r1, r3, r5〉) norα(〈r1, r2, r3, r5〉) is a parabolic subgroup. We leave
this straightforward task to the reader. �

Suppose thatW is a nearly finite Coxeter group of rankn with no infinite edge labels.
Suppose thata∈Π is such thatJ = Π\{a} is irreducible and of finite type, and letα be an
automorphism ofW. From Corollary 12 we know thatα(WJ) is a maximal finite parabolic
subgroup. Replacingα by its composite with an inner automorphism permits us to assume
thatα(WJ) = WK for someK ⊆ Π. Clearly the rank ofWK is at mostn−1.

We claim thatWK is of the same type asWJ. This depends on the following fact, whose
proof we omit.

Proposition 36. Suppose that W is an irreducible finite Coxeter group that is abstractly
isomorphic to a direct product of two nontrivial Coxeter groups. Then W is either of type Bk
for some odd k> 1 or I2(2m) for some odd m> 1. The factors are of types A1 and Dk in
the former case (or A1 and A3 if k = 3), and of types A1 and I2(m) in the latter case.

This can be proved, for example, by an examination of the list of normal subgroups of
finite irreducible Coxeter groups given by Maxwell [13]. The proposition tells us that if
an irreducible finite Coxeter group is abstractly isomorphic to a reducible Coxeter group,
then the rank of the reducible group is one greater than the rank of the irreducible group.

Hence in our situation above,WK must be irreducible. As we noted in the proof of
Proposition 25, if two irreducible finite Coxeter groups are abstractly isomorphic then they
are of the same type. SoWJ andWK are of the same type. Thus we have proved the
following result.

Theorem 37. If W is a nearly finite Coxeter group of rank n, and WJ a standard parabolic
subgroup of W that is irreducible and of rank n−1, then any automorphism of W will map
WJ to a conjugate of a standard parabolic subgroup WK of the same type as WJ.

The following is Lemma 9 in [9].

Lemma 38. If W is any infinite irreducible Coxeter group then the only graph automor-
phism that is inner is the identity.

Our objective is to prove the following result.

Theorem 39. Suppose that W is a nearly finite Coxeter group with finite edge labels, and
suppose that J= Π\{a} is irreducible and of finite type. Suppose also that mab is odd for
at least one b∈ J. Then all automorphisms of W are inner by graph, and indeed

Aut(W) = Inn(W)oGr(W),

whereGr(W) is the group of all graph automorphisms of W.

Proof. Since Lemma 38 above tells us that Inn(W)∩Gr(W) = {1}, the assertion that
Aut(W) = Inn(W) o Gr(W) will follow once it has been shown that all automorphisms
are inner by graph. By Theorem 29 it suffices to prove that all automorphisms preserve
reflections.
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Suppose, for a contradiction, thatα ∈ Aut(W) does not preserve reflections. By The-
orem 37 we may assume thatα(WJ) = WK for someK ⊆ Π of the same type asJ. Let
β : WK →WJ be an isomorphism that takes simple reflections to simple reflections. Since
ra is conjugate to an element ofWJ there exists at least one reflectionr ∈WJ such thatα(r)
is not a reflection; hence the automorphismγ of WJ given byw 7→ β (α(w)) is not inR(WJ).

Let us first assume thatJ and K are not of typeA5. By Proposition 34 there is a
b∈ J such thatγ(b) does not lie in any parabolic subgroup ofWJ of rank less thann−2,
wheren is the rank ofW. So α(rb) does not lie in any parabolic subgroup ofWK of
rank less thann− 2. Sincemab 6= ∞ there exists at least one maximal finite parabolic
subgroupW′ containing bothra and rb. Suppose there are more than one of these, say
W′ andW′′. Thenα(W′) andα(W′′) are distinct proper parabolic subgroups ofW, and so
α(W′)∩α(W′′) is a parabolic subgroup ofW of rank at mostn−2 (by Lemma 7). Fur-
thermore,α(W′)∩α(W′′) is not contained inWK , sinceW′ ∩W′′ is not contained inWJ.
Soα(W′)∩α(W′′)∩WK has rank at mostn−3 and is a parabolic subgroup ofWK contain-
ing α(rb). This contradiction shows that there is a unique maximal finite parabolic sub-
groupW′ containingra andrb. Since there is obviously a maximal finite standard parabolic
subgroup containingra andrb, it follows from Lemma 12 thatW′ = WL for someL ⊆ Π.
If WL has rankn−2 or less thenα(WL)∩WK has rankn−3 or less and is a parabolic sub-
group ofWK containingrb; as before, this is a contradiction. SoL = Π\{c} for somec∈ J;
moreover,α(WL)∩WK has rankn−2.

SinceWJ is not of typeA5, there is a reflection preserving automorphismδ of WJ such
thatδγ ∈A (WJ). Now

(δγ)(WL∩J) = δ (β (α(WL∩WJ))) = δ (β (α(WL)∩WK))

is a maximal parabolic subgroup ofWJ, by Proposition 32. So by Proposition 33 it follows
that(δγ)(w) = w for all w∈WL∩J. Sincerb ∈WJ∩L andδ preserve reflections, it follows
that γ(rb) is a reflection, and henceα(rb) is a reflection. This is a contradiction, and
completes the proof in the case thatJ andK are not of typeA5.

So suppose thatJ andK are of typeA5. LetWL be a maximal finite standard parabolic
subgroup ofW containingra andrb. Thenα(WL)∩WK is the intersection of two maximal
finite subgroups ofW, and hence is a nontrivial proper parabolic subgroup ofWK . So
β (α(WL)∩WK) = γ(WL∩J) is a proper parabolic subgroup ofWJ. By Proposition 35 it
follows thatγ is inner, contradicting the fact thatγ /∈ R(WJ). �
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