INDUCED W-GRAPHS

ROBERT B. HOWLETT AND YUNCHUAN YIN

ABSTRACT. Let . be the Hecke algebra associated with a Coxeter group W.
Many interesting .7#-modules can be described using the concept of a W-graph,
as introduced in the influential paper [6] of Kazhdan and Lusztig. In particular,
Kazhdan and Lusztig showed that the regular representation of 7 has an
associated W-graph. In [5] it is shown that if W is a parabolic subgroup
of W and V is a module for the corresponding Hecke algebra .77, then a W ;-
graph structure for V' gives rise to a W-graph structure for the induced module
'R, V. Inthe case that W is the identity subgroup and V' has dimension 1,
the construction coincides with that given by Kazhdan and Lusztig for the
regular representation, while for arbitrary J and V of dimension 1 it coincides
with constructions given by Couillens [1] and Deodhar [3]. The present paper
includes a minor reformulation of the results of [5] and some additional results;
notably, we describe how cells in the W ;-graph naturally give rise to subsets
of the induced W-graph that are unions of cells.

1. PRELIMINARIES

Let W be a Coxeter group with S the set of simple reflections, and let 7 be
the corresponding Hecke algebra. We use a variation of the definition given in [6],
taking # to be an algebra over A = Z[q!,¢], the ring of Laurent polynomials
with integer coefficients in the indeterminate ¢, having an A-basis { Ty, | w € W'}
satisfying

Tew if £(sw) > £(w)

Tow + (g —q )T if L(sw) < (w),
for all w € W and s € S. We also define AT = Z|q], the ring of polynomials in
q with integer coefficients, and let a — @ be the involutory automorphism of A
such that § = ¢~!. This involution on A extends to an involution on .7 satisfying
T,=T;'=T,+ (¢ — q) for all s € S. This gives T, = TI:_ll for all w € W.

For each J C S define W; = (J), the corresponding parabolic subgroup of W,
and let Dy = {w € W | l(ws) > L(w) for all s € J}, the set of minimal coset
representatives of W/W . Let ¢ be the Hecke algebra associated with W;. As is
well known, J¢; can be identified with a subalgebra of 7.

Te Tw =

2. DEFINITION OF W-GRAPH

Modifying the definitions in [6] to suit our modified definition of the Hecke al-
gebra, a W-graph is a set I' (the vertices of the graph) with a set © of two-element
subsets of T (the edges) together with the following additional data: for each vertex
v we are given a subset I, of S, and for each ordered pair of vertices §, v we are
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2 ROBERT B. HOWLETT AND YUNCHUAN YIN

given an integer u(d,v) which is nonzero if and only if {4,v} € ©. These data are
subject to the requirement that AT, the free A-module on I'; has an #-module
structure satisfying

—q 1y ifsel,
qv + Z{éemsel(;} ,u(d, 7)5 if s ¢ I’Ya

for all s € S and v € T'. If 74 is the A-endomorphism of AT such that 75() is the
right-hand side of Eq. (1) then this requirement is equivalent to the condition that
for all s, t € S such that st has finite order,

(1) Tsy =

TsTTs - -« = TtTsTt - - -
—_——
m factors m factors

where m is the order of st.

To avoid over-proliferation of symbols, we shall use the name of the vertex set
of a W-graph to also refer to the W-graph itself.

Given a W-graph I' we define

', ={yel'|sel,},
I ={yel|s¢ L}

Observe that the involution a — @ on A determines a semilinear involution v +— T
on AT with the property that ¥ =~ for all y € T'. If s € S and v € T" then

TH=Ty =T+ — )y
thus if v € I'y it follows that

~

F=—0"v+ @ —r=—qy =T,
while if v € ' we find that

TA = (av+ D wld7)8) + (" — )y
oely

=q v+ > u6,7)0
sely
— T
Since . is generated by { T | s € S}, the following proposition is an immediate
consequence of these calculations.

Proposition 2.1. IfT" is a W-graph then the associated F-module AT admits an
involution v — v that fizes all elements of I and is compatible with the involution
h— h of A, in the sense that hv = hU for all h € 7 and v € E.

For use in the final sections of this paper, we make the following definition.

Definition 2.2. An ordered W -graph set I' with a W-graph structure and a partial
order < satisfying the following conditions:

(i) for all 8, v € T such that u(,v) # 0, either 6 < v or v < 6;
(ii) for all s € Sand v € '} theset {0 € 'y | v <6 and u(6,7) # 0} is either
empty or consists of a single element sv;
(iii) for all s € S and v € '}, if sy exists then p(sy,v) = 1.

s
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3. INDUCED MODULES

Suppose now that I' is a W-graph (so that AT is an J¢j-module) and let M be
the ##-module induced from the .7;-module AT'. Thus, identifying AI' with an
A-submodule of M in the obvious way, M has an A-basis {Tyy | d € Dy, v € T},
and we can define an involution on M by setting Tyy = Ty for all d € D; and
v € I'. Since Tj is the identity element of 7 this extends the involution on AT
described in Proposition 2.1, and clearly Tyv = T,v for all d € Dy and v € AT.
Thus for all d € Dy and u € W; we have

Touy = Tyluy = Td(Tu’)I) = Td(Tu’)I) =Tauy (fOI‘ all v € F),
and hence Ty,v = T4, v for all v € AT. Thus hv = A% for all h € # and v € AT,
and so we obtain the following result.

Proposition 3.1. The involution on M defined above is compatible with the invo-
lution on 7.

Proof. Let h € 2 and m € M be arbitrary. Then m = kv for some k € 5 and
v e AT, and so

R = h(ko) = h(kD) = (FE)5 = ho = T,
as required. 0

Our aim is to associate M with a W-graph by finding an appropriate basis of M.
In particular, elements of this W-graph basis will be fixed by the involution.

The following result is well known.

Lemma 3.2 (Deodhar [2, Lemma 3.2]). Let J C S and s € S, and define

Dy, ,={de Dy |L(sd) <{(d)},

DIS ={deDy|l(sd)>(d) and sd € Dy},

DY, ={deDy|(sd)>{(d) and sd ¢ D, },
so that D is the disjoint union D} U DIS U Df},S. Then sD}:S = Dj,, and if
d e DY then sd = dt for somet € J.

4. THE ELEMENTS Ry 5.y~

For all z, y € Dy and v, 6 € I' we define elements R, s, € A by the formula
(2) Ty'y = Z Ry 5,.y~T0.
ze€Dy, el

We begin by deriving formulas which provide an inductive procedure for calculating
these elements.
If y =1 then T}y = v, and hence

R _J1 ifz=1and =1
=81y = 0 otherwise.

Suppose now that 1 # y € D, so that we may choose s € S with ¢(sy) = ¢(y) — 1.
Then by Lemma 3.2 we have y = sv with v € DIS and £(y) = £(v) + 1, and

Ty’y = Ts(Tiv’y) = Z Rx,é,v,'yTs_lT:v6~
z€Dy, €Tl
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Each x in this expression lies in exactly one of the sets D], Dy, or Dy . When
x € DY, we write t = 2~ sz (an element of .J); in this case T; ' T, = T,T;'. When
x € D7 we have T, 'T, = Tsy, while z € DY gives T, ' T, = Toy + (¢! — ¢) T
Thus we obtain

Ty'y = Z Z R.’L‘,(S,v,'y(rem + (qil - q)TT)(S

serl $€D}’.S
2 2 ReswaTad 43, ) Reson BTy 0
LIS %ED;S oer QCED(}YS
= Z Z st,&v,’yTwa + Z Z (q_l - Q)Rlafs;U”YTI(S
o€l zeDy o€l zeD?,
+Z Z Rsm,é,v,’yTxé + Z Z Rx,é,v,’yTIzﬂtila
o€l zeDT | xzeDG  sery

+ Z Z Rm,é,v,'yTth_l(S

€D sery

= Z Z stﬁ,v,’yTwé + Z Z (q_l - q)Rma(s;Uv’YTI(S

ser zeD7 o€l a:eD}is
+ Z Z Rsm,&v,'mi(S - Z Z qRE,5;U7’YT15
o€l geDT zeDY  sery
+ Z Z Rm,é,v,’yTr ((]716+ Z N(aa(;)a)
€D sery 0er;,
= Z Z Ryz.504 10 + Z Z (q_l - q)Rw,é,vﬁTw(s
ser zeD7 o€l QTED;S
+ Z Z Rsx,é,v,'mié - Z Z qRE,5;U7’7T15
€l zeD} | w€Dj , 6Ty
D STV SNETED SIb S ST L
zeDY , ser z€DY , 9eTy sel'y

Comparing this with Eq. (2) gives us the following result.

Proposition 4.1. Let v, 6 €T and x,y € Dy. If s € S is such that £(sy) < {(y)
then

Rz 5,59,7 ifx e Dy,
RS‘T";’S%’Y + (q_l - Q)Rz,ﬁ,sy,'\/ foL' € DIS
Radyn = 4" Russyy ifx e DS’S and § € T
—qRa 5,5y, + Z+ 14(8,0) Ry 0,5y ifx € DY, and § €Ty,
oer;

where t = ™ sz.

We can use induction on ¢(y) to establish that R, s, = 0 unless z < y in the
Bruhat partial order on W; this follows from the fact that if sy < y and = < sy
then both z < y and sz < y (see Deodhar [2, Theorem 1.1]). It is also easily seen
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that

1 ifd=x
Respny =
S {o if 6 41,

and if £(y) — ¢(z) = k then the coefficient of ¢ in R s, ~ is zero for |j| > k, and
also zero for |j| =k if § # .

5. THE CONSTRUCTION OF THE W-GRAPH BASIS

As is the preceding section, we assume that I' is a W;-graph and M the induced
J¢-module.

Theorem 5.1. The module M has a unique basis {Cy~ | w € Dy, v € T'} such
that Cy y = Cw for allw € Dy and v € ', and

Cory = Z P, 5.w~Ty0

yeDy,0€l

for some elements Py 5.~ € AT with the following properties:
(1) Py,é,w,'y =01fy %\ w;

B 1 if § =7,
() Poguy =14 T0=7
0 if 6 #;

(iii) Py.s5w, has zero constant term if (y,0) # (w,7).

We shall show that the basis elements C, , can be identified with the vertices
of a W-graph for the module M; we shall denote this W-graph by A. Before giving
the proof of Theorem 5.1, we describe the additional data associated with A.

Given y, w € Dy and 6,y € T with (y,0) # (w,7), we define an integer
w(y, 6, w, ) as follows. If y < w then p(y, d, w,y) is the coefficient of ¢ in — P 5.+,
and if w < y then it is the coefficient of ¢ in —P, 4 y,5. If neither y < w nor w <y
then

5a7 1fy=?U,
(Y, 6, w,y) = #(8,7) :
0 if y # w.

We write (y,0) < (w,v) if y < w and u(y, §,w,v) # 0.
The subset of S associated with the vertex Cy, , of A is

I(w,v) ={s €S |{(sw) <l(w)or sw=wt for some t € I, }

and the integer associated with the pair of vertices (Cy 5, Cyw.~) is p(y, 9, w,7) (as
defined above). Thus {Cy s,Cy ~} is an edge of A if and only if u(y,d, w,7y) # 0,
and this occurs if and only if either (y,d) < (w,7) or (w,v) < (y,9), or y = w and
{d,~} is an edge of T".

Modifying slightly the notation introduced in Section 2, we define

Ay ={(w,y) €Dy xT|sel(wy)}
={(w,y)|weDj orwe D(},s with t € I, },
and similarly Af = {(w,7) € D; xT'| s ¢ I(w,7) }.

Our proof of Theorem 5.1 will also incorporate a proof of the following result,
which will be an important component of the subsequent proof that A is a W-graph.
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Theorem 5.2. Letv € Dy and v € T. Then for all s € S such that {(sv) > £(v)
and sv € Dy we have

Tsz,'y = qCU,'y + Csv,'y + Z /,I,(Z, 57 v, ’Y)Cz,&
where the sum is over all (z,9) € A such that (z,0) < (v,7).

Proof. We address the uniqueness part of Theorem 5.1 first. Fix w € Djyand v € T,
and observe that the equation C\, , = Cy, , can be written in the form

Z Px,é,w,’yTxgz Z P,@,w,’y Z Rac,é,y,f)Tx57

zeD y yeD z€D y
serl oel éer

or, equivalently, as

Py 5wy = E E Py.owyRasy,0

yeD; 0l

for all z € Dy and 6 € T. Recall that Ry 5.6 = 1, and if (y,0) # x,d) then
R, 546 = 0 unless x < y. Since also Py g, is required to be zero unless y < w,
we obtain

(3) Peswn = Prown = . PyrowrResyo-
{y,0 |lz<y<w}

Conditions (ii) and (iii) in Theorem 5.1 specify the elements P, 5., when z = w,
and in view of Condition (iii) they are then recursively determined for x < w by
Eq. (3): the point is that the right hand side is known by the inductive hypothesis,
and since P, 5. .~ is required to be in AT and have zero constant term it must
equal the sum of the terms on the right hand side of Eq. (3) with positive exponent
of q. So there is at most one family of elements P, ;.- satisfying the required
conditions.

Turning now to the existence part of the proof, we give a recursive procedure
for constructing elements P, 5.,y satisfying the requirements of Theorem 5.1. We
start with the definition

o if (y,0) # (1,9),
vOLy = Yy g (y,0) = (1,7).

for all y € Dy and v, 6 € I'. This gives Cy, = 7, so that Cy, ., = Cy, holds
for w =1, as do Conditions (i), (ii) and (iii).

Now assume that w # 1 and that for all v € D; with £(v) < ¢(w) the elements
P, 5v~ have been defined (for all € D; and v, § € I') so that the requirements
of Theorem 5.1 are satisfied. Thus the elements C, ., are known when ¢(v) < {(w).
We may choose s € S such that w = sv with £(w) = £(v) 4 1; note that v € D by
Lemma 3.2. In accordance with the formula in Theorem 5.2 we define

(4) Cw,'y = (Ts - Q)Cv,”/ - Z M(Za 97 v, ’7)02:,6'

(2,0)=(v,7)
(z,0)eA;
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Since Ty — ¢ = Ts — ¢, induction immediately gives Cy,, = Cly . We define P, ;

and P/, by
(5) (T Z y,0,w 'y
yeD
éer
(6) Z (291)7 Ze*zp//éw,'y
(2,0)<(v,7) yEDy
(z,0)eAT o€l

/!

and define Py Saw,y = Py,é w,y Py75,w7’Y'

If y € Dy then

Ty —qT, ifyeDj,
(T@ - Q),‘Ty = Tsy - q_lTy if Y€ Dj,s
Ty(Tt - Q) if Yy € D9,5

where we have written t = y~!sy € J in the case y € D&s. Thus we see that

(Ts — q)Co,y = Z Pyswq(Tsy —qTy)5 + Z Py 505 (Toy — q_lTy)é

veD], veD;,
ser ser

+ Y PyownTy(Ti — q)6
yGD‘iS
éerlr

-1
= E (Psy,6,00 — a0 Pyswq)Tyd + E (Psy,6,0,y = aPy,6,0,7)Ty0
yeD7 yeDT,
sel 6er

+ Z Py,é),v,’yTy(Tt - Q)a

yeD
fer

Now for allt € J and 6 €T,

(—q—qHo ifoel,
Ti —q)0 = .
(e —a) S u(6,0)8 if 0 eIy,

sery

and therefore

ZP,QU,"/ Tt_qe Z q_ql y,@v’yT9+Z 69 ’Lj@’U?’YT(S

oel 0er, oery
del,

- Z ((—q — 0 )Pysuq t Z Py, U,V)Ty&

ser, oery
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Now comparing Eq. (5) with the expression for (Ts — ¢)C, , obtained above we
obtain the following formulas:

Pay.s.0y = 4Py 6,04 ifye Djsu
(7) Py s~ = Poy sy =4 Pysoy ifye Dy,
e (_q_qil)Pyév,fy‘F Z+ w(6,0)Py 0.0, ifye D(},s and 6 € I'y,
0T
0 © if ye DY, and § € T} .

Since C, p = Zy s Py.5,2,6Ty0, we have

Z (ZQU’Y ZQ—Z Z ZG'U’Y y6z0T§

(2,0)=(v,7) yeD 1 (2,0)<(v,7)
(2,0)EAT 0T (z,0)eA7

and by comparison with Eq. (6)

(8) sz,évw,’v = Z (2, 0,0,7)Py 520
(2,0)=(v,7)
(z,0)eA,
We must check that with P}
Pys5>wa’7 = Py,5,w,’y - Py,&,’w,'y
Theorem 5.1.

In the second and third cases of Eq. (7), observe that y ¢ T’} whereas v € '}
Hence y # v, and the inductive hypothesis guarantees that Py s, is an element of
AT with zero constant term; so ¢7' Py 5., € AT. Tt follows that P, 5, - € A" in
all cases, and since also P's € AT we deduce that Py 5.~ € A*.

With regard to Condition (i), the inductive hypothesis tells us that the right
hand side of Eq. (7) is nonzero only if y < v or sy < v. Since w = sv with
(w) = £(v) + 1, both of these conditions imply that y < w. Hence P by =0
unless y < w. Similarly, the right hand side of Eq. (8) is nonzero only 1f y < z for
some z < w; SO PH& w,y = 0 unless y < w. Hence Condition (i) is satisfied.

The above remarks show, in particular, that = 0 in all cases. Since

sy and Pls  given by Eq’s (7) and (8), the elements
lie in A+ and satisfy Conditions (i), (ii) and (iii) of

w, 5 w,y
w §§ v we see that P, 5., = 0, and since w € D7 (by the choice of s) the second

case in Eq. (7) gives

1 ifd=~

Pw w, *P w :P'u v,y —
Sy T Fwdwey T S0 {0 if 5 # .

Hence Condition (ii) is satisfied.

It remains to check that Condition (iii) is satisfied. We may assume that y < w,
since otherwise the required conclusion follows from Conditions (i) and (ii).

So suppose that y < w, and consider first the case that y € DIS. Then
(2,0) = (y,9) is not permitted in the sum in Eq. (8), since (z,0) € A; implies
that z ¢ Dj{s. Hence all the summands have zero constant term (by the induc-
tive hypothesis), and so P/, has zero constant term. Furthermore, y # w
gives sy # v; so Pgy 50~ has zero constant term, and hence so does P; 5w,y So
Condition (iii) holds in this case.

Next, suppose that y € D;_ and (y,6) A (v,7). In this case it is again true

that (z,0) = (y,d) cannot occur in Eq. (8), and so P

5,7 has zero constant term.
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Furthermore, (y,d) 4 (v,7) also implies that the coefficient of ¢ in P, 5, ~ is zero,
whence q’le,Mﬁ has zero constant term. Again Py 5.~ has zero constant term
since sy # v; SO P;, Sy has zero constant term, and the desired conclusion follows.

If y € Dy and (y,6) < (v,7) then (2,0) = (y,6) does arise in Eq. (8). Since
P, 5.5 =1, the corresponding summand is exactly u(y, d,v,y). Since all the other
summands have zero constant term it follows that the constant term of P; ,
is u(y,0,v,7). This is also the constant term of P;#;,wﬁ, since p(y,d,v,7) is the
coefficient of ¢ in —P, 5, while Py 5., has zero constant term. So P, s, has
zero constant term.

Finally, suppose that y € D(},s~ If § € T/ —that is, t ¢ Is—then (y,6) ¢ A7, and
so (z,0) = (y,6) is not allowed in Eq. (8). Hence /s,  has zero constant term.
Since in this case we also have that P@Z, sy = 0, the desired conclusion follows.
So it remains to consider § € I'; . In this case (z,0) = (y,0) occurs in Eq. (8) if
and only if (y,d) < (v,7). So, as above, we see that P/';  _ has constant term
w(y, 0,v,7) if (y,d) < (v,7), and zero in the other case. Turning to P;,&wﬁ,
that the summands p(6,6)P, 9.~ all have zero constant term, while the constant
term of (—q — ¢~ ') Py 5., is the coefficient of ¢ in P, 5, ~, which is u(y,d,v,7) if
(y,0) < (v,7) and zero otherwise. S0 Py 5w,y = P, 5., ,— Py 5., - has zero constant
term in either case, as required. [

we see

Observe that the formula for Cy, 4 in Theorem 5.1 may be written as

Cw,’y = T'w'Y + z P’y,é,w,'yTvyéa

{y,0ly<w}

and inverting this gives

(9) Twy = Cuwqy+ Z Qy.5.0.~Cy.s
{y,8ly<w}

where the elements Qy 5w, (defined whenever y < w) are given recursively by
Quswy = —Pyswy — Z Qy5,2,0P20,0,
{z,0ly<z<w}

In particular, Qy s, is in AT, has zero constant term, and has coefficient of ¢

equal o ji(y, 6,w,7).
We now state the main result of this paper.

Theorem 5.3. The elements Cy, , give M a W-graph structure, as described above.

Proof. For all (z,0), (w,y) € Dj x T we define

w(z,0,w,v) if (z,0) < (w,v) or z =w,
&(z,0,w,y) =11 if (z,0) = (rw,v) and £(z) > ¢(w) for some 1 € S,
0 otherwise.

We start by using induction on ¢(w) to prove that for all s € S
_q_lown/ if (wa"/) € As_»

@Cuqy+ > &(z,0,w,7)Cop if (w,7) ¢ Ay .
(z,0)EAS

(10) T@Ow,'y =
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Ifwe DIS then (w,v) ¢ A, , and Eq. (10) follows immediately from Theorem 5.2
(applied with v replaced by w), since the only (z,0) € A; with £(z,0,w,~) # 0 and
£(z) 2 l(w) is (z,0) = (sw,7).

If w € Dy, which implies that (w,7) € Ay, then writing v = sw and applying
Theorem 5.2 gives

Cw,'y = (Ts - q>Cv,v - Z,u(z, 6; Ua’Y)Cz,tS,

where (z,0) < (v,7) and (z,0) € A; for all terms in the sum. The inductive
hypothesis thus gives T5C, s = —C. s, and since also Ts(Ts — q) = —¢ ' (Ts — q) it
follows that T,C, = —q_lC’wm as required.

Now suppose that w € DLO,’S, and as usual let us write sw = wt, where t € J.
Suppose first that t € I, so that (w,v) € A;. By Eq. (9) above,

Cuwy =Twy — Z Qy,5,0,~+Cy,s,

{y,dly<w}
and since TsTyy + ¢ 1Ty = T (Tyy + ¢ 1) = 0 we find that
(11) Tecw,’y + 4710111,7 = - Z Qy,é,w,’y(Tecy,(s + qilc ,5)-
{y,0ly<w}
By the inductive hypothesis,
0 if (y,9) € A;
TsCy7§ + q_lc( 0 = 1 . _
(@+a"Cys + > &(2,0,y,0)C.0 if (y,0) ¢ Ay,
(z,0)EAS
and so Eq. (11) gives
(12) Tscw,'y + qilcw,'y = - Z Qy,é,w,fy(q + qil)cy,é + X
(y,0)¢AT
y<w

for some X in the A-module spanned by the elements C, ¢ for (z,6) € A;. Now
since Ty = T, ' + (g — g7 1) it follows that

(Ts + q_l)cw,'y = (Ts + q_l)cw,v
= Z vaéswvv(q_l + Q)Cy,5 + X?

(,0)¢AT
y<w
and comparing with Eq. (12) shows that for all (y,d) with y < w and (y, ) ¢ A5,
(13) Qy.swy = Qysw,y-

Since Qy,5,w,y is in AT and has zero constant term, Eq. (13) forces Qy5wy =0
whenever y < w and (y,d) ¢ A, . Thus the right hand side of Eq. (11) is zero, since
TsCy s + Cys = 0 whenever (y,d) € A;. So

Tscw,v = _q_lcw,'yu

as required.
Now suppose that ¢t ¢ I, so that (w,v) ¢ A;. Replacing v by 6 in Eq. (9) we
obtain
C’w,@ :Twe - Z Qy,ﬁ,w,@cy,éz

{y,d|ly<w}
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for all 8 € I". It follows that
(14) (Ts - Q)Cwn/ - Zﬂ(& V)Cwﬁ

0eT;

is the sum of

(15) (TS - Q)Tw’)’ - Z M(97 V)Twa
oer,

and

- Z (Qy,é,w,'y(Ts - Q)Oy,é - Zﬂ(ga 7)@y,6,w,90y76> .

{y,8ly<w} o’y
Using the inductive hypothesis to evaluate (Ts — ¢)Cy s, this last expression can be
written as the sum of the following three terms:

(16) - Z Z Qy,é,w,"/f(z79ay75)cz,97

(y,6)<eAs+ (z,0)EAT
y w

(17) Z Qy,&ww(q_l"‘Q)Cy,év

(y,0)eAs
y<w

(18) > wl0,7)Qy.w0Cys-
{y.6)[y<w)
9er;

Now the expression (15) is zero, since

(Ts — )Ty — Y 1(6,7)Tu =T, <,Tt7 - u(9,7)9),
oer; oery,

and t ¢ I,. Observe that the coefficient of each Cy s in the sum of the expressions
(16), (17) and (18) is in AT, and the only contributions to the constant terms of
these coefficients come from (17) when (y,0) < (w,7). However, the expression
(14) is invariant under the involution m — 71; hence the total coefficient of each
Cy,s in the sum of (16), (17) and (18) must be a constant (since no other elements
of A* are invariant under the involution). So we conclude that

(T = )Cury — Y _pt(0,7)Cuwip = Y 1y, 8,w,7)Cy.s.
oer, (y,0)eA;
(y,6)=<(w,7)
Since p(0,v) = p(w, 0, w, ), and the condition 6§ € T'; is equivalent to (w,0) € A,
this may be rewritten as

Tscw,'y = qu,’y + Zu(y, 57 w, ’Y)Cy,é'

where the sum is over all (y,d) € A, such that (y,0) < (w,7) or y = w. To deduce
that Eq. (10) holds, it remains to check that that there is no z € D such that
(z,7) € A; and ¢(z) = ¢(w) + 1, with z = rw for some r € S.

Clearly these conditions cannot hold with r = s, as sw ¢ D j; so we may suppose
that r # s. Now (z,7) € A, implies that either ¢(sz) < £(z) or sz = zu for some
u € I,. In the former case we would have both /(sz) < £(z) and {(rz) < {(z),
implying that ¢(srz) = ¢(z) — 2, a contradiction since srz = rzt and rz € Dj.
The other case gives a similar contradiction, since ¢(s(zu)) = €(z) < £(zu) and
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L(r(zu)) = L(wu) < £(zu), whereas the length of srzu = rztu is greater than or
equal to ¢(rz), and hence is not £(zu) — 2.

We have now completed the proof of Eq. (10), and to complete the proof of The-
orem 5.3 it remains to show that for all s € S we have &(z,0,w,v) = p(z,0,w,~)
whenever (z,0) € A; and (w,vy) ¢ A;. This is true by definition whenever
£(z) < ¢(w), both sides being zero unless (z,0) < (w,v) or z = w. If £(z) > {(w)
then both sides are zero unless (w, ) < (z,8).

So we must show that (w,v) < (z,0) with (z,0) € A and (w,7) ¢ A, implies
that (z,0) = (rw,~), where r € S and £(z) = {(w) + 1, and u(z,0,w,v) = 1. In
fact we shall show that this holds with » = s (which is the only possibility, as could
be shown directly by an argument similar to the one used above).

Since (z,0) € A, we have that T;C, g = —C 9, whence

(19) Z Pys.oTsT,0 = — Z P, s...0T,0.

yeD 5,6€T yeDy,6€T

If w e DY, so that (w,v) ¢ Ay gives v ¢ Ty (where t = w™'sw), then comparing
the coefficients of T,y gives Py .9 = 0 (since T, Ty = TwTiy = ¢Twy + X,
where X is a combination of terms of the form 7,0 with § € T';"). This contradicts
(w,7v) < (2,0). The only alternative is w € DIS, and in this case comparison of
the coefficients of Ty, on the two sides of Eq. (19) gives

(¢ =4 ) Pawirz0 + Purzo = =4 Powny.z0,
which reduces to
qPsw~,20 = —Puy,2,0-
Since (w, ) < (z,0) the coefficient of ¢ in P, . ¢ is nonzero; so the constant term of

Py ~.2 0 is nonzero. So (sw,~y) = (z,0) and —P, ~,..0 = g, whence p(w,v,z,0) =1,
as required. ([

It is convenient to distinguish three kinds of edges of the W-graph A. Firstly,
there is an edge from the vertex C, ~ to the vertex C,, s whenever there is an edge
from v to d in I'. We call these horizontal edges. Next, if s € S and w is in either
DIS or D;}S then there is an edge joining C, , and Cs, . We call these vertical
edges. All other edges are called transverse.

Proposition 5.4. Suppose that vertices Cy, and C. ¢ of A are joined by a trans-
verse edge, and suppose that £(w) < (z). Then I(z,0) C I(w,7).

Proof. Let s € I(z,0), and suppose, for a contradiction, that s ¢ I(w,~v). Since
the edge is not horizontal we have either (w,v) < (z,60) or (z,0) < (w,v), and
the assumption ¢(w) < ¢(z) means that the former alternative holds. So we have
(w,7v) < (2,0), with (2,0) € A; and (w,v) € A}. We showed in the course of the
previous proof that these conditions imply that (z,60) = (sw,~). This means that
the edge {Cwﬁ, C, o} is vertical rather than transverse, and so we have the desired
contradiction. ]

Proposition 5.5. Suppose that the W j-graph T' admits a partial order < satisfying
the conditions of Definition 2.2. Then the induced W -graph A admits a partial order
< satisfying Definition 2.2 and having the following properties:

(i) if 6, yeT andy, w € Dy are such thaty < w and 6 < 7, then Cy s < Cy 3
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(i) ifd,yeTl and y, w € D}:s for some s € S, then Cy s < Cy  implies that
Csy,5 < Csw,'y;

(ili) if y € DY, and w € DIS for some s € S, then Cys5 < Cy . implies
that Cy 5 < Cow s, for ally € T and 6 € F;" such that to exists, where
t=y sy

(iv) if (y,9), (w,y) € Dy x T satisfy Py 5w~ 7# 0 then Cy 5 < Cy 5.

Proof. We define < on A to be the minimal transitive relation satisfying the re-
quirements (i), (ii) and (iii). It is clear that Cy s < C,, implies that y < w, with
equality only if § < . Hence the fact that the relation < on I' is antisymmetric
implies the same for the relation < on A.

We prove first that Condition (iv) is satisfied, using induction on ¢(w). In the
case ¢(w) = 0 the assumption that P,s.~, # 0 forces (y,d) = (w,7), and so
Cys < Cy,. So suppose that ¢(w) > 0, and choose s € S with {(sw) < {(w).
Recall that Py 5wy = P, 5., = Py 5.,,; hence either Ps  _#£0or P, 5, #0.
# 0 then by Eq. (8) there exists a pair (z,6) with (z,0) < (sw,~)
and P,s5.¢ # 0. The inductive hypothesis then yields both Cys < C,¢ and
C,6 < Couw,y, and since also Cyy 4 < Cy 4 it follows that Cy 5 < Cy 4, as required.
So we may assume that P, 5 # 0.

Suppose first that y € DIS. By Eq. (7) either Py 5w~ 7# 0 0r Psy 55w,y # 0,
and so the inductive hypothesis yields that either Cy s < Cswy or Coy 5 < Cou y-
Since Cy 5 < Cyy,5 we obtain Cy s < Cyy,~ in either case, and hence Cy 5 < Cy .

Now suppose that y € D} .. Again Eq. (7) and the inductive hypothesis combine
to yield that either Cy s < Csyy O Cgy 5 < Csyy. The former alternative yields
Cy,s < Cyu, as in the previous cases, while the latter alternative yields the same
result since (ii) above holds.

Finally, suppose that y € DS’S, and let t = y~1lsy € J. By Eq. (7) we see that
either Py 54w,y 7# 0, which yields C, s < Cy, as in the previous cases, or else
§ € Ty and pu(6,0)Py.p 51,4 # 0 for some 0 € T'y". Thus {0,4} is an edge of I' with
t € Is and t ¢ Iy, and by Conditions (i), (ii) of Definition 2.2 it follows that either
0 =t6 or § < 6. Moreover, since Py g sw,y 7 0 the inductive hypothesis yields that
Cyo < Cowy. 6 <0 then Cys < Cyg, and so Cy s < Csy < Cuppy. 6 =10
then Cy s < Cy,, follows from Cy g < Ciy .y, in view of (iii) above.

It remains to show that A is an ordered W-graph in the sense of Definition 2.2.

Let Cy 5, Cuw,y € A with p(y,d,w,v) # 0. If y = w then u(y, s, w,vy) = p(d,7),
and since I is an ordered W -graph it follows that v and ¢ are comparable, whence
so are (w,7) and (w,d) = (y,9). If y # w then u(y, d, w,y) is a coefficient of one or
other of the polynomials P, 5., and P, .5, and so (iv) above implies that (w,~)
and (y, ) are comparable. So Condition (i) of Definition 2.2 holds.

Let s € S and (w,v) € A, and suppose that (y,d) € A; with Cy, , < C, 5 and
w(y, 0, w,~v) #0. We must show that (y, ) is the unique such element of A} .

Suppose first that the edge {Cy 5,Cy,} is transverse. Since s € I(y,d) and
s ¢ I(w,7), it follows from Proposition 5.4 that ¢(w) £ £(y), and so (y,d) < (w,7).
But this implies that P, 5.,y # 0, and in view of (iv) this contradicts the assump-
tion that Cy, 4 < Cys. So {Cys5,Cy .~} is either vertical or horizontal.

If the edge {Cys5,Cw } is vertical then § = v and y = rw for some r € S.
Since Cy.y < Cy .~ we have w < y; so £(w) < £(rw). Now since s € I(rw,~) and
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s ¢ I(w,~) it follows readily that r = s. So (y,0) = (sw,~); moreover, this case
can only arise if w € DIS.

Now suppose that {C} 5, Cy ~} is horizontal, so that y = w and {J,~} is an edge
of . Since T" is an ordered W -graph, Condition (i) of Definition 2.2 yields that
either v < § or 6 < ~; however, the latter alternative would give C,, s < Cly ~,
contradicting our assumption that Cy, 4 < Cy 5 = Cy 5. Now since s € I(w, ) and
s ¢ I(w,vy) we see that w € D(}ys, and t = w™lsw is in I5 and not in I,. Since I
satisfies Condition (ii) of Definition 2.2 it follows that § = t.

We have shown that

sw,y) ifwe D*S
(y,0) = Ewt )) v e DY
y VY Iwe J,s

where t = w™lsw. So (y,d) is uniquely determined. In accordance with Defini-
tion 2.2, we write Cy 5 = sCly .

It remains to check that A satisfies Condition (iii) of Definition 2.2; that is, we
must show that if (w,y) € Al and C, 5 = sCy  then pu(y,d,s,7) = 1. Iif w € DG
with w™'sw = ¢ then sC,, - is defined if and only if ¢y is defined, in which case
5Cy,y = Cuy,t. Moreover, in this case we have that p(w,ty,w,vy) = u(ty,v) =1,
since I" satisfies Condition (iii) of Definition 2.2. On the other hand, if w € D;S
then s(w,v) = (sw,~), and the desired conclusion that p(sw,~y,w,~vy) = 1 follows
from Theorem 5.2. O

6. INDUCING CELLS

Let (w,y) € Dy x T, and let s € S. If (w,y) € Ay then TsCyyr = —q ' Cy -,
and so

(20) —7" Y PrswrTyd =Y PyowsTT,0.
yeD, yED 5
ser éerl

We also have

Tyyd ifye DIS
Te,0 —q¢ HT,6 if ye D7

TSTy(S — y_1+ (q q ) Yy 1 Y 375 3
—q T,0 ify e D7y, and 6 € I}

qTy0 + Yger- n(0,8)T,0 if y € Dy and § € I

where ¢ = y~1sy. Substituting this into Eq. (20) and equating coefficients yields a
proof of the following result.

Proposition 6.1. Let s € S and (w,y) € A;. Ify € Dg,s and § € T, where
t=y lsy, then Pysu~=0. Ify € DT then Py s~ = —qPsy 5w~ for all§ €T.

Note that this simplifies our original inductive formulas for the polynomials
Py 5w~ In particular, in the situation of Eq. (8) we have that P”(y,d,w,v) = 0
when y € DY, and § € ;.

Let <r be the preorder on I" defined (as in [6]) by the rule that § <r v if and
only if there exists a finite sequence § = g, 71, --., & = 7 of elements of I" with
pw(viz1,7vi) # 0 and I(y;—1) € I(v;) for all i € {1,2,...,k}.

Proposition 6.2. Lety, w € Dy and §, v € I' with 6 £r . Then Py s = 0.
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Proof. Use induction on ¢(w). Since § # v the case £(w) = 0 follows from (i) and
(ii) of Theorem 5.1. So assume that ¢(w) > 0, and let w = sv where s € S and
l(v) = L(w) — 1.

The inductive hypothesis immediately implies that the terms on the right hand
side of Eq. (7) are zero, with the possible exception of the terms p(d,6)Py 0~ in
the sum that appears in the third case (when y € Dj and § € T';). In all of
these terms we have that I SZ Iy, since t € Is and t ¢ Ip. So either 6 <r 6 or
else 11(d,0) = 0. By the inductive hypothesis, either § <r v or else P, g, = 0.
But since § £r v we cannot have both § <p 6 and 0 <r ~; so either u(d,6) =0 or
Pyov~ = 0. So all the terms u(d,0)P, ¢, are zero, and so Py 5., = 0.

All the elements z appearing on the right hand side of Eq. (8) satisfy z < v, and
so the inductive hypothesis tells us that if § £r 0 then P, ;5. ¢ = 0. Furthermore, if
6 ZLr v then P, g, ~ =0, and so u(z,6,v,v) = 0. Since 6 £r v we must have either
6 £r v or & £r 0, and so all the terms (2, 0,v,7)Py 5,0 are zero. So P/; =0,
and hence P, 5., = 0, as required. O

Suppose now that C, ¢ and Cy , vertices of A that are adjacent and satisfy
I(z,0) € I(w,7y). If w = z then s € I(w,0) and s ¢ I(w,~) forces sw = wt for
some t € Iy with ¢t ¢ I,. So in this case § and v are adjacent vertices of I" with
Iy ¢ I,. In particular, § <pr v. The same conclusion holds trivially if the edge
{C.,6,Cu,} is vertical, since in this case § = . If the edge is transverse then by
Proposition 5.4 we deduce that ¢(z) < £(w), and so we must have (z,0) < (w,7).
Thus P; ¢~ 7# 0, and so § <r v by Proposition 6.2.

Let <A be the preorder relation on the W-graph A generated by the requirement
that C, g <p Cy, whenever C, g and C,, - are adjacent and I(z,6) € I(w,v). The
above calculations have proved the following theorem.

Theorem 6.3. If C, ¢ and C,,  are vertices of A with C, 9 <p Cy then 0 <p 7.

Vertices 0, v € T are said to be equivalent if 6 <p v and v <p 6, and the
corresponding equivalence classes are called the cells of I'. The cells of A are
similarly defined, using the preorder <,. Theorem 6.3 shows that if A is a cell in
I then the set {Cy | w € Dy and v € A} is a union of cells in A. In the case
that I is the Kazhdan-Lusztig W -graph for the regular representation, this result
(and Theorem 6.3) have been proved by Meinolf Geck [4].

7. CONNECTION WITH KAZHDAN-LUSZTIG POLYNOMIALS

The following result, which follows from Theorem 5.1 above, is a reformulation
of Theorem 1.1 of [6]:

Theorem 7.1. The algebra € has a unique basis {Cy | w € W} such that
Cy = Cy for allw and Cyy =37,y PywTy for some elements p, ., € A* with the
following properties::
(i) Pyw =0y £ w;
(11) Pw,w = ]-;
(ili) pyw has zero constant term if y # w.

The polynomials p, ., are related to the polynomials P, ., of [6] (the genuine
Kazhdan-Lusztig polynomials) by py .(¢) = (fq)e(w)’e(y)Pym,(qQ). That is, to
get py.w from P, ., replace ¢ by g%, apply the bar involution, and then multiply
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by (—q)*®) =4 The quantity pu(y,w), which is the coefficient of g2 (“(w)=£)~1)
in P, ,, is the coefficient of ¢ in (—1)*®)=¢W)p, ... However, since Kazhdan and
Lusztig show that f, ., is nonzero only when ¢(w) — ¢(y) is odd, p(y,w) is the
coefficient of g in —py 4.

The elements C, form a W-graph basis for ¢, and Eq. (2.3a) of [6] (or Theo-
rem 5.2 above) shows the W-graph is ordered, in the sense of Definition 2.2, relative
to the Bruhat order on W.

Applying Theorem 7.1 with W replaced by W yields a W ;-graph basis for the
regular representation of 5¢;. The representation of J# obtained by inducing the
regular representation of 7 is, of course, the regular representation of 7. Apply-
ing our procedure for inducing W-graphs yields a W-graph basis for # consisting
of elements C,  (for w € D; and v € W) such that m = Cy,y and

(21) Cw,fy = Z Z Py,é,w,’yTyC57

yeDy 0eW s

where the polynomials Py 5., satisfy the conditions given in Theorem 5.1. By
Proposition 5.5 there is a partial order on the set A = {C,,, | w e Dy, v € W;}
such that for all y, w € D; and 9§, v € Wy,
(i) if y <w and § < 7 then Cy 5 < Cyy -,
(ii) if Cy5 < Cypy and if y, w € Djs for some s € §, then Cyy 5 < Cou ~,
(iii) if Cys < Cyuy with w € D}is and y € DY, for some s € S, and if also
t§ > 6 where t = y~!sy, then Cyis < Cow y-
Furthermore, the partial order on A is defined to be the minimal partial order
satisfying these three properties.
Note that A is in bijective correspondence with W via Cy, 5 < wr.

Proposition 7.2. The above partial order on A corresponds exactly the Bruhat
order on W, in the sense that Cy 5 < Cy  if and only if yo < wy in W.

Proof. Let us check first that the Bruhat order on W does satisfy the properties
(i), (ii) and (iii) above. With regard to (i), it is certainly true that y < w and ¢ <~
implies that yd < wy. Turning to (ii), suppose that y, w € DIS and 6, v € Wy
with yd < w~y. Since w < sw € D; we see that

L(swy) = L(sw) +L(y) =1+ L(w) +L£(y) =1+ L(wy),

and £(syd) = 1+ ¢(yd) similarly. So syé < swy, by Deodhar [2, Theorem 1.1].
For (iii), suppose that w € DIS and y € D&s, and let 6, v € W; with yd < wry.
Suppose also that t§ > §, where t = y~'sy € J. Then

L(syd) = L(ytd) = L(y) + £(t6) = 1+ L(y) + £(6) = 1 + £(yd),

and since also £(swy) = 1+ ¢(w~y) as above, Deodhar [2, Theorem 1.1] again gives
the desired conclusion that yté = syd < sw~.

Since the partial order on A is generated by the properties (i), (ii) and (iii),
and since also the Bruhat order on W satisfies the same properties, it follows that
Cy,s < Cu, implies that yd < wvy for all y, w € Dy and 9, v € Wj.

We must show, conversely, that yé < w~y implies that Cy 5 < Cy 4. In view of
statement IV in [2, Theorem 1.1] it is sufficient to do this when £(w~y) = £(yd) + 1.
Making this assumption, we argue by induction on £(w). Observe that if (w) =0
then wy = v € Wy, and since yé < wy it follows that yd € W;. Hence y = 1, and
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Cys < Cy.~ by Property (i). So suppose that ¢(w) > 0, and choose s € S with
sw < w.

Consider first the possibility that syd > yd. Then we must in fact have syd = wy,
since, using the terminology of [2, Theorem 1.1], Property Z(s, syd, w~) implies that
syd < wy. So either sy = w and § = v, in which case Cy s < Cy 4 by Property (i),
or else y = w and v = td, where t = y~lsy € J, and again Property (i) gives
Cy,é < Cw,’y-

The only alternative is that syd < yd, and in this case we have that syd < sw-y
(by Z(s,yd,wy), in Deodhar’s terminology). If y € D7 then the inductive hy-
pothesis yields that Csy s < Csw,, and Property (ii) gives Cy 5 < Cy . Since
Yy € DIS is not possible given syd < yd, it remains to deal with the case y € D9,5~
Writing t = y~'sy we have syd = ytd < swy, and the inductive hypothesis gives
Cy.t5 < Csw - Note that here t§ < § and sw € D7 ; so applying Property (iii) we
obtain the desired conclusion that Cy s < Cy . O

Equation (21) and Theorem 7.1 give Cs = >y, po,sTp, and we deduce that

Cw,'y = Z Z Py,é,w,'ype,éTy97

yeD ; 0,0eW

since TyTy = Typ for all y € Dy and 0 € W;. The coefficient of Ty in this
expression is D sy Py.6w~Pe,s, and for this to be nonzero there must exist a
0 € Wy such that P, s~ and pg s are both nonzero. Now pg s # 0 implies that
6 < 6 by Theorem 7.1, and Py 5., 7 0 gives y0 < w, by Propositions 5.5 and 7.2.
These combine to give yf < yd < wry. So if the coefficient of Tyg in Cy, ~ is nonzero
then yf < w~y. Furthermore, the coefficient is a polynomial in ¢ whose constant
term is nonzero only if there exists a § € W such that P, 5.,y and pg s both have
nonzero constant terms. This only occurs when (y,d) = (w,7) and 6 = §; that is,
the constant term is nonzero only if y§ = w~y. Hence by the uniqueness assertion
in Theorem 7.1 we deduce that C, , = Cy~, and

(22) Py, wy = Z Py,J,w,'yp&é
EW

for all y, w € Dy and 0, v € W.

Since the elements C,, , produced by our construction coincide with the elements
Cy~ of the Kazhdan-Lusztig construction, the W-graph data of our construction
must also agree with Kazhdan-Lusztig. So if y0 < w-y then p(y6, wy), the coefficient
of ¢ in —pyg v, must equal the element p(y, §, w,~) of our construction. That is, if
y < w then p(yd, wy) equals the coefficient of ¢ in —P, g4, ~, while if y = w then it
equals p(6,), which is the coefficient of ¢ in —pg . Eq. (22) above confirms this.

8. CONCLUDING REMARKS

The computer algebra package Magma has been used to calculate the polynomi-
als Py 5w, when W is of type Eg and W of type Ds, for W y-graphs corresponding
to each of the irreducible characters of W ;. Explicit matrices representing the gen-
erators of 7 in the induced representations were found, and the defining relations
checked.

It seems plausible that Eq. (22) may be useful for computation of Kazhdan-
Lusztig polynomials, but we are yet to investigate this.
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