The University of Sydney School of Mathematics and Statistics

Algebras and Reductive Groups in MAGMA

MagmaMondays: 23 October 2023

Semester 2, 2023

Web Page: https://sites.google.com/view/magma-mondays/ Lecturer: Don Taylor

1. Recall from the lecture that the octonions over a ring R have a basis e_1, e_2, \ldots, e_8 such that $e_i^2 = 1$ (for $i \ge 2$) and $e_i e_j = \varepsilon(i, j, k) e_k$ for a choice of signs $\varepsilon(i, j, k) = \pm 1$ where $\{i, j, k\}$ belongs to

fano := {@ <2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7> : n in [0..6] @};

Let $A = \mathbb{O}(\mathbb{Q})$ denote the algebra of octonions over the rational field \mathbb{Q} ,

- (a) Let *a* be the matrix corresponding to the permutation (2, 3, 4, 5, 6, 7, 8). Show that *a* is an automorphism of *A* that permutes the vectors $\pm e_i$. **Hint:** PERMUTATIONMATRIX (\ldots)
- (b) Let b_0 be the permutation (2,7)(3,4). Show that b_0 is an automorphism of the 7point plane defined by *fano*. Then find a diagonal matrix $d = \text{diag}(\pm 1, \pm 1, \dots, \pm 1)$ such that db is an automorphism of A that permutes the vectors $\pm e_i$, where b is the permutation matrix of b_0 .
- (c) Let G be the subgroup of $GL(8, \mathbb{Q})$ generated by the matrices a and db. Show that the order of G is 1344 and that G has a normal abelian subgroup E of order 8 such that the quotient G/E is isomorphic to SL(3, 2). Furthermore, this extension is *non-split*; that is, there is no subgroup of G isomorphic to SL(3, 2).
- 2. Let \mathcal{M} be the set of elements of norm 1 in the integral octonions.
 - (a) Show that the elements of \mathcal{M} satisfy the alternative laws: $(xy)x = x(yx), x(xy) = x^2y, (xy)y = xy^2$ but \mathcal{M} is not associative.
 - (b) Show that every element of \mathcal{M} has an inverse.
 - (c) The *reflection* r_{α} in the hyperplane orthogonal to α is

$$vr_{\alpha} = v - \llbracket v, \alpha
rbracket \alpha$$
 where $\llbracket v, \alpha
rbracket = \frac{2(v, \alpha)}{(\alpha, \alpha)}.$

In $\mathbb{O}(\mathbb{Q})$ we have $(u, v) = u\overline{v} + v\overline{u}$ and so for $\alpha \in \mathcal{M}$ we have $vr_{\alpha} = -\alpha\overline{v}\alpha$.

 $\begin{array}{l} \textit{norm} := \textit{func} < \xi \mid (\xi * \textit{conj}(\xi))[1] >; \\ \textit{ref} := \textit{func} < a, v \mid -a * \textit{conj}(v) * a \ / \ \textit{norm}(a) >; \\ \textit{refmat} := \textit{func} < a \mid \mathsf{MATRIXRING}(\mathsf{BASERING}(P), \mathsf{DIMENSION}(P)) ! \\ & \quad [\textit{ref}(a, x) : x \ \textit{in} \ \mathsf{BASIS}(P)] \ \textit{where} \ P \ \textit{is} \ \mathsf{PARENT}(a) >; \end{array}$

Use MAGMA to check that \mathcal{M} is a root system. That is,

- $0 \notin \mathcal{M}$,
- For all $\alpha \in \mathcal{M}$ the reflection r_{α} leaves \mathcal{M} invariant,
- For all $\alpha, \beta \in \mathcal{M}$ the *Cartan coefficient* $[\![\alpha, \beta]\!]$ is an integer.

3. If w has order 3, the map $x \mapsto \overline{w}xw$ is an automorphism of $\mathbb{O}_{\mathbb{Z}}$. The matrix of this automorphism is *autmat*(w), where

```
\begin{array}{l} \textit{aut} := \textit{func} < \textit{a}, \textit{v} \mid a^{3} \textit{ eq 1 select } a^{2} * \textit{v} * \textit{a} \textit{ else 0 >};\\ \textit{autmat} := \textit{func} < \textit{a} \mid \textsf{MATRIXRING}(\textsf{BASERING}(\textit{P}), \textsf{DIMENSION}(\textit{P})) !\\ & [\textit{aut}(a, x) : \textit{x} \textit{ in } \textsf{BASIS}(\textit{P})] \textit{ where } \textit{P} \textit{ is } \textsf{PARENT}(a) >; \end{array}
```

Let *gens* be the set of all automorphisms of $\mathbb{O}_{\mathbb{Z}}$ constructed from the elements of order 3 in \mathcal{M} and let G be the group they generate.

- (a) Show that the elements of gens are involutions and that G can be generated by three of them.
- (b) Find the orbits of G on \mathcal{M} and their lengths.
- (c) Show that the set M_4 of elements of order 4 in \mathcal{M} is a root system of type E_7 .
- (d) Let *i* be an element of M_4 and let G_0 be its stabiliser in *G*. Find the lengths of the orbits of G_0 on M_4 .
- 4. Find all semisimple root data (up to isomorphism) of type A_3 . (Hint: Let C be a Cartan matrix of type A_3 and consider factorisations $C = AB^{\top}$.)
- 5. The Magma code

P < x > := POLYNOMIALRING(RATIONALS()); $F < \tau > := NUMBERFIELD(x^2 - x - 1);$

creates the field F generated over the rationals by the element τ such that $\tau^2 = \tau + 1$. Then the code

 $H < i, j, k > := QUATERNIONALGEBRA < F \mid -1, -1 >;$

creates the algebra of quaternions over F with basis 1, i, j, k such that

$$i^2 = j^2 = k^2 = ijk = -1.$$

Let

$$\pi := (1/2)*(-1 + i + j + k);$$

$$\sigma := (1/2)*(\tau^{-1} + i + \tau * j);$$

$$X := \{H \mid 1, \pi, \sigma\};$$

and let I be the smallest multiplicatively closed subset of H containing X.

- (a) Show that I is isomorphic to SL(2,5).
- (b) Show that I is a root system (when considered as a subset of H). What is its Cartan type?
- 6. Let p be a prime and let S be the simply connected group of Lie type A and rank 1 over the finite field of p elements. For p = 2, 3, 5 find the dimensions of the highest weight representations of S (as computed by MAGMA)?