
An Introduction to MAGMA

https://www.maths.usyd.edu.au/u/don/presentations.html

Don Taylor

The University of Sydney

9 October 2023

https://www.maths.usyd.edu.au/u/don/presentations.html

Outline

Day 1 MAGMA overview
The read-evaluate-print-loop (REPL)
Interactive programming

▶ A simple word game
▶ The Catalan numbers
▶ Projective planes, graphs, automorphism groups
▶ Exploring small groups: the Small Groups Database

Day 2 The type system and coercion
Group theory examples

▶ Constructing the Hall-Janko group
▶ Group algebras and the group determinant
▶ Central extensions of symmetric groups

Day 3 Structure constant algebras
Lattices, root systems
Root data, reductive groups

A little history

MAGMA is a programming language for computer algebra, algebraic
geometry, number theory and combinatorics.

It has extensive support for group theoretic computations and can
handle permutation groups, matrix groups, finitely-presented groups,
and groups of Lie type.

The language was developed by John Cannon and his team at the
University of Sydney and was released in December 1993. It replaced
CAYLEY, also developed by John Cannon.

The MAGMA language

MAGMA can be used both interactively and as a programming
language. The core of MAGMA is programmed in C but a large part of
its functionality resides in package files written in the MAGMA user
language.

The MAGMA Handbook (in .pdf form) runs to more than 6000 pages
and it is quite a daunting task to learn even a small portion of this
material. http://magma.maths.usyd.edu.au/magma/handbook/

So, rather than attempting to cover every aspect of the language I
shall begin with a simple example then describe the syntax and
semantics as we explore various ways to solve and generalise the
problem.

http://magma.maths.usyd.edu.au/magma/handbook/

Before we begin

If MAGMA is installed on your computer, you will interact with it via
the command line.

Typing magma will get you to the MAGMA prompt > and enter the
‘read-evaluate-print-loop’ (REPL).

To exit MAGMA type quit; or press Ctrl-D.

To interrupt a computation, type Ctrl-C.

Typing Ctrl-C twice within 30 seconds exits MAGMA immediately.

Expressions typed at the MAGMA prompt can span more than one line
and will not be evaluated until you type a semi-colon (;) and press
Enter (or Return).

Alternatively, you can use the MAGMA calculator at
http://magma.maths.usyd.edu.au/calc

http://magma.maths.usyd.edu.au/calc

Sets Sequences
Permutations

Functions Procedures

A simple problem

How can you use MAGMA to find an English word composed of the
letters "a", "b", "c", "t", "r" ?

Well, you could look at all 120 permutations of the letters and hope to
recognise which ones (if any) are English words.

First of all, enter the list into MAGMA as a sequence
> letters := ["a","b","c","t","r"]; // a sequence of strings of length 1

Use the symmetric group on {1, 2, 3, 4, 5} to generate all permutations
of the letters, then concatenate them to form ‘words’.
> for p in Sym(5) do &*[letters[i^p] : i in [1..5]]; end for;
abctr
bctra
. . .

(Many commands in MAGMA have synonyms: e.g., Sym is a synonym of
SymmetricGroup, and SL is a synonym of SpecialLinearGroup.)

Explanations

// introduces a comment.

We use a for-loop: for ... do ... end for; to iterate over the
elements of the symmetric group.

letters[i] refers to the i-th element of the sequence;
indexing begins at 1 (not 0).

iˆp applies the permutation p to i.

Strings are a monoid with binary operation *. If X is a sequence,
&*X concatenates the elements of X. (You can also use &cat X.)

[1..5] is the sequence [1,2,3,4,5].

letters := ["a","b","c","t","r"]; is an assignment statement.

MAGMA prints the results of expressions
(such as &*[letters[iˆp]) that are not statements.
Sometimes, for clarity, it is better to use the keyword print.

Checking the dictionary
Looking through 120 possible ‘words’ and then checking the
dictionary doesn’t seem like much fun.

Let’s see how MAGMA can help. In this case it will depend on the
operating system. Unfortunately, because of the System call, this won’t
run in the online calculator.

If MAGMA is running on MacOS or Linux you can do the following.
> letters := ["a","b","c","t","r"]; // a sequence of strings of length 1
> for p in Sym(5) do
> word := &*[letters[i^p] : i in [1..5]];
> cmd := "grep -w " cat word cat " /usr/share/dict/words";
> System(cmd);
> end for;
bract

On Windows, find a word list somewhere (say words.txt), then use
> cmd := "findstr \"\\\<" cat word cat "\\\>\" words.txt";

More work

Suppose you modify the problem and ask for the five letter words
composed of the letters "h","r","s","u","k","n".

For each subset of five letters, apply the previous solution.
> letters := ["h","r","s","u","k","n"];
> S := Sym(5);
> for n := 1 to 6 do
> X := Remove(letters,n); // remove the n-th letter
> for p in Sym(5) do
> word := &*[X[i^p] : i in [1..5]];
> cmd := "grep -w " cat word cat " /usr/share/dict/words";
> System(cmd);
> end for;
> end for;
hunks

Functions and procedures

Now suppose you want to solve the word puzzle for other
combinations of letters.

Instead of typing ever more variations of the code into the REPL the
thing to do is to create a function or procedure, store it in a file, then
load the file whenever you need it.

In MAGMA a function takes arguments and returns one or more values.
A procedure is similar except that it doesn’t return any values.

The first step will be to write a procedure findwds (details on the next
slide) in a file called wordgame.m. (You only need to print the result,
so use a procedure, not a function.)

To load the file and use the procedure, type the commands
> load "wordgame.m";
> findwds("abctr");
bract

First version

> findwds := procedure(str)
> letters := Eltseq(str); // change the string to a sequence
> m := #letters; // m is the number of letters
> for p in Sym(m) do
> word := &*[letters[i^p] : i in [1..m]];
> cmd := "grep -w " cat word cat " /usr/share/dict/words";
> System(cmd);
> end for;
> end procedure;

MAGMA has a ‘flat’ namespace. The MAGMA kernel and all packages
are loaded at startup. The functions and procedures (such as Eltseq)
in these packages are called intrinsics; they are always available.
> load "wordgame.m";
> findwds("torecv");
vector
covert

Second version
Modify the procedure to take both a string argument str and an
integer argument k giving the length of the words we are looking for.
> findwds2 := procedure(str,k)
> letters := Eltseq(str);
> m := #letters;
> if k gt m then k := m; end if;
> R := Subsets({1..m},m-k);
> S := Sym(k);
> for A in R do
> X := [letters[i] : i in [1..m] | i notin A];
> for p in S do
> word := &*[X[i^p] : i in [1..k]];
> cmd := "grep -w " cat word cat " /usr/share/dict/words";
> System(cmd);
> end for;
> end for;
> end procedure;

> findwds2("torxcv",4);
torc

Explanations

if ss is a sequence, a set, a group, etc., #ss is its length.

if ... then ... else ... end if;

if ... then ... elif ... else ... end if;

Sequence constructor: [f(x) : x in O | condition on x]

Set constructor: { f(x) : x in O | condition on x }

Set(L) changes a sequence L to a set.

SetToSequence(S) changes a set S to a sequence.

What happens if there are repeated letters?
> findwds2("tocrxc",4);
torc
torc
croc
croc

Exercise. Write a version of the code that removes duplicates.

Catalan numbers

Definition

The nth Catalan number is the number of balanced strings of n left
and n right brackets, where ‘balanced’ means that each left bracket
has a matching right bracket (to its right) and the string in between is
balanced. The empty string is balanced.

We shall use MAGMA to construct sets of balanced strings. It turns out
that

cn =
1

n + 1

(
2n
n

)
.

Using MAGMA the 50th Catalan number is
> print Binomial(100,50) div 51;

Note that div is used for integer division and MAGMA can deal with
very large numbers.

Real numbers

Using Stirling’s approximation for n! we have an asymptotic
approximation

cn ∼ 22n/n
√
π n.

To use π in MAGMA we specify the precision.
> pi := Pi(RealField(10));

Here is a function which returns Stirling’s approximation to the nth
Catalan number.
> approxCat := func< n | 2^(2*n)/(n*Sqrt(pi*n)) >;
> print approxCat(15);
10427688.40

func< x, y, z | expression > defines a function which returns the
value of the expression in the arguments x, y, z.

A recurrence relation

A balanced string of brackets is either empty or has the form (S)T,
where S and T are themselves balanced. Therefore the Catalan
numbers satisfy the recurrence relation (for n > 0)

cn+1 =

n∑
k=0

ck cn−k where c0 = 1.

Recursion in MAGMA

You can use $$ to refer to a MAGMA function within its own body.

The following function uses recursion to return the sequence of the
first n Catalan numbers.
> CatSeq := function(n);
> if n eq 0 then seq := [1];
> elif n eq 1 then seq := [1,1];
> else
> seq := $$(n-1);
> Append(~seq, &+[seq[k+1]*seq[n-k] : k in [0..n-1]]);
> end if;
> return seq;
> end function;

Instead of $$ you can place the directive
> forward CatSeq;

in your file, somewhere before the function definition. Then you can
refer to CatSeq within its own definition.

More explanations

Procedures can modify their arguments. Such an argument is
prefixed with a tilde (∼) both in the definition and when called.

The command Append(∼seq,num) is a call to the intrinsic
procedure Append that modifies seq by including num in the set.

Sequences can be indexed by other sequences.
X := letters[Setseq(A)];

Errors
> CatSeq(A)

> > CatSeq(A);
^

User error: Identifier ’A’ has not been declared or assigned

Exercises

Exercise. Write a function expression CatNum that returns the nth
Catalan number.

The expression y := (n gt 1) select 11 else 0;
assigns 11 to y if n is greater than 1
otherwise it assigns 0 to y.

Exercise. Rewrite CatSeq as a function expression using select.

Random processes
S → (S)S

S → ε

is a grammar that describes balances strings. We can use this to
design a procedure that displays a random balanced string.
> produce := procedure()
> seq := ["S"];
> rhs := ["(","S",")","S"];
> X := { 1 };
> repeat
> i := Random(X);
> if Random(1) gt 0 then Insert(~seq,i,i,rhs);
> else Remove(~seq,i); end if;
> X := { i : i in [1..#seq] | seq[i] eq "S"};
> until IsEmpty(X);
> print #seq gt 0 select &*seq else "eps";
> end procedure;

Recursion in sequences
A recurrence relation for the Legendre polynomials Pn(z) is

nPn(z) = (2n − 1)zPn−1(z) + (n − 1)Pn−2(z), P0(z) = 1, P1(z) = z.

To set this up in MAGMA we need the polynomial ring in the
indeterminate z over the rational numbers. We don’t need to keep a
name for the ring itself so we use the underscore character.
> _<z> := PolynomialRing(Rationals());

The MAGMA function Self(n) refers to the nth entry of a sequence
within its constructor. The following code creates the sequence of the
first 8 Legendre polynomials.
> L := [n eq 0 select 1 else n eq 1 select z else
> ((2*n-1)*z*Self(n)-(n-1)*Self(n-1))/n : n in [0..7]]; L[7];
231/16*z^6 - 315/16*z^4 + 105/16*z^2 - 5/16

Note that MAGMA sequences are indexed from 1, not 0.

Geometry

Graphs Groups

The 7-point plane

A projective plane consists of a set of points and a set of lines such that
every pair of distinct points lies on a unique line and every pair of
distinct lines meet in a unique point.

The smallest projective plane is the Fano plane whose points are the
1-dimensional subspaces and whose lines are the 2-dimensional
subspaces of a vector space of dimension 3 over the field of 2
elements.

Projective planes in MAGMA

If the plane is finite, there is an integer n (the order of the plane) such
that every line has n + 1 points and every point lies on n + 1 lines.
Thus there are n2 + n + 1 points and n2 + n + 1 lines.

The Fano plane is the unique projective plane of order 2.
> fano := FiniteProjectivePlane(2);
> P := Points(fano);
> L := Lines(fano);

The points and lines are represented by their (normalised)
homogeneous coordinates.
> p := P[2];
> l := L[3];
> p; l, p in l;
(0 : 1 : 0)
< 0 : 0 : 1 >
true

Defining a graph from the Fano plane

A flag in a projective plane is a point-line pair (p, ℓ)
such that p lies on ℓ.

We shall construct a graph whose vertices are the points P, the lines L
and the flags F of the Fano plane plus an additional vertex ⋆.

Join ⋆ to all of P and L.

Join a point to the 4 lines not through it.

Join a point to the 9 flags which have their line through it.

Join a line to the 9 flags which have their point on it.

Join flags (p1, ℓ1) and (p2, ℓ2) if p1 ̸= p2, ℓ1 ̸= ℓ2, p1 ∈ ℓ2 and p2 ∈ ℓ1.

The graph

36 vertices
degree 14
252 edges ⋆

7 7

21

9

3

9

3

8

4 4points lines

flags

Creating the graph in MAGMA : vertices

To build a graph in MAGMA we need a set of vertices and a set of edges.
In an undirected graph the edges are pairs of vertices.

For the graph from the Fano plane we represent the vertices as pairs
of integers.

Represent

⋆ by the pair <0, 0>,

the point P[i] by <-1, i>,

the line L[j] by <-2, j>,

the flag (P[i],L[j]) by <i, j>.
> vertices := { <0,0> }
> join { <-1,i> : i in [1..7] }
> join { <-2,j> : j in [1..7] }
> join { <i,j> : i,j in [1..7] | P[i] in L[j] };

Creating the graph in MAGMA : edges

> F := [<i,j> : i,j in [1..7] | P[i] in L[j]];

> edges := {{<0,0>,<-1,i>} : i in [1..7] }
> join { {<0,0>, <-2,i>} : i in [1..7] }
> join { {<-1,i>,<-2,j>} : i,j in [1..7] | P[i] notin L[j]}
> join { {<-1,i>,<j,k>} : i,j,k in [1..7] | P[i] in L[k]
> and P[j] in L[k] }
> join { {<-2,i>,<j,k>} : i,j,k in [1..7] | P[j] in L[k]
> and P[j] in L[i] }
> join { {f,g} : f, g in F | f[1] ne g[1] and f[2] ne g[2]
> and (P[f[1]] in L[g[2]] or P[g[1]] in L[f[2]]) };

The graph constructor returns three values: the graph, the vertex set
(type GrphVertSet) and the edge set (type GrphEdgeSet).
> Gr, V, E := Graph< vertices | edges >;

The automorphism group

> A := AutomorphismGroup(Gr);
> IsTransitive(A);
true
> CompositionFactors(A);

G
| Cyclic(2)
*
| 2A(2, 3) = U(3, 3)
1

> H := Stabiliser(A,1);
> CompositionFactors(H);

G
| Cyclic(2)
*
| A(1, 7) = L(2, 7)
1

> check, _ := IsIsomorphic(SU(3,3),DerivedGroup(A)); check;
true

Small Groups

Product-free sets

Let G be a group. A non-empty subset S of G is product-free if ab /∈ S
for all a, b ∈ S.

Which finite groups have a maximal (by inclusion) product-free set of
size 1, of size 2, of size 3, . . . ?

Checking if a set is product-free is easy.
> prodfree := func< S | forall{<a,b> : a,b in S | a*b notin S } >;

Finding all the groups with a product-free set of size 1, 2 or 3 is
harder.

Looking for maximal product-free sets

We’ll start with maximal product-free sets of size 1.
> checkmax1 := function(G)
> for a in G do
> if a eq One(G) then continue; end if;
> found := true;
> for b in G do
> if b eq One(G) or b eq a then continue; end if;
> if prodfree({a,b}) then found := false; continue; end if;
> end for;
> if found then return true, a; end if;
> end for;
> return false, _;
> end function;

Let’s check a few cyclic groups.
> [checkmax1(CyclicGroup(n)) : n in [2 .. 10]];
[true, true, true, false, false, false, false, false, false]

Looking further

The results so far suggest that the only cyclic groups containing a
product-free set of size 1 are C2, C3 and C4. (Actually, it’s quite easy
to prove this directly.)

Are there any other groups with a product-free set of size 1?
> [checkmax1(DihedralGroup(n)) : n in [3 .. 10]];
[false, false, false, false, false, false, false, false]

None there. So where else can we look?

Databases

MAGMA has a large number of databases containing information that
may be used in searches for interesting examples or which form an
integral part of certain algorithms.

Examples of current databases include factorisations of integers of the
form pn ± 1, p a prime; modular equations; strongly regular graphs;
maximal subgroups of simple groups; integral lattices; K3 surfaces;
best known linear codes and many others.

We shall use MAGMA’s Small Groups Database to get a supply of
groups to check for small product-free sets.

Perhaps we can spot a pattern that will lead to a proof of their
classification.

Using the Small Groups Database
The number of groups of order n in the database is returned by
> NumberOfSmallGroups(n).

To extract a copy of the j-th group of order n use
> G := SmallGroup(n,j).

Find the groups of order at most 50 that contain a product-free set of
size 1.
> for n := 2 to 50 do
> for j := 1 to NumberOfSmallGroups(n) do
> G := SmallGroup(n,j);
> found, witness := checkmax1(G);
> if found then print n,j,witness; end if;
> end for;
> end for;

(For efficiency, first open the database, then pass the reference as the first
argument to the database functions.)
> SGD := SmallGroupDatabase();

The structure of the groups

The output from the previous command is
2 1 G.1
3 1 G.1
4 1 G.2
8 4 G.3

We know that the groups of orders 2, 3 and 4 are cyclic. What is the
structure of the group of order 8?
> G := SmallGroup(8,4);
> IsAbelian(G);
false
> G;
GrpPC of order 8 = 2^3
PC-Relations:

$.1^2 = $.3,
$.2^2 = $.3,
$.2^$.1 = $.2 * $.3

Coset action

To convert G to a permutation group we can look at its regular
representation. This is equivalent to its action on the cosets of the
identity subgroup.
> f, H, K := CosetAction(G, sub<G | >);
> f;
Homomorphism of GrpPC : G into GrpPerm: H, Degree 8 induced by

G.1 |–> (1, 6, 2, 5)(3, 8, 4, 7)
G.2 |–> (1, 4, 2, 3)(5, 7, 6, 8)
G.3 |–> (1, 2)(3, 4)(5, 6)(7, 8)

> H;
Permutation group H acting on a set of cardinality 8

(1, 6, 2, 5)(3, 8, 4, 7)
(1, 4, 2, 3)(5, 7, 6, 8)
(1, 2)(3, 4)(5, 6)(7, 8)

> K; // the kernel of f
GrpPC : K of order 1
PC-Relations:

Identifying the group

> #{ x : x in H | Order(x) eq 2 };
1

So H is the quaternion group.

> Q := Group< a, b | a^2 = b^2, b^a = b^-1 >;
> IsIsomorphic(PCGroup(Q),H);
true Mapping from: GrpPC to GrpPerm: H
Composition of Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: H

Why can’t we use IsIsomorphic(Q,H); ?

	Outline

