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▶ The Catalan numbers
▶ Projective planes, graphs, automorphism groups
▶ Exploring small groups: the Small Groups Database
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Group theory examples

▶ Constructing the Hall–Janko group
▶ Group algebras and the group determinant
▶ Central extensions of symmetric groups
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Root data
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Types Coercion
Signatures



MAGMA’s type system

(Almost) every object in MAGMA belongs to a category, also known as
the type of the object. In addition, every object has a parent.
> A := Alt(4); // the alternating group on {1,2,3,4}
> A;
Permutation group G acting on a set of cardinality 4
Order = 12 = 2^2 * 3

(1, 2)(3, 4)
(1, 2, 3)

> Type(A), Type(A.1);
GrpPerm GrpPermElt
> Parent(A.1):Minimal;
GrpPerm: A, Degree 4, Order 2^2 * 3
> Generic(A);
Symmetric group acting on a set of cardinality 4
Order = 24 = 2^3 * 3



Signatures
There are a large number of built-in functions (intrinsics) in MAGMA

with the same name. So the name alone is not enough to determine
which function MAGMA will use. The signature of the function (the
number and types of the arguments) will also be used.
> G := Sym(4);
> Order(G), #G, Order(G.1);
24 24 4
> P := FiniteProjectivePlane(5);
> Order(P);
5

To see the signatures, type the function name followed by a
semicolon.
To see all functions with a given prefix, type the first few letters
followed by typing the tab key once or twice.
> Vector
Vector VectorSpaceOverQ VectorsLimit
VectorAction VectorSpaceWithBasis
VectorSpace Vectors



Coercion
Suppose that V is a vector space of dimension 3 over the rational
numbers. In MAGMA the elements of V are triples of rational numbers;
i.e., row vectors. However, a triple [2,3,7] represented as a sequence
will not be recognised as an element of V.
> V := VectorSpace(Rationals(),3);
> v := [2/5,3,7/3];
> v in V;

> > v in V;
∧

Runtime error in ’in’: Bad argument types

In order to have MAGMA recognise v as an element of V it must be
coerced into V.
> V!v in V;
true
> Type(v), Type(V), Type(V!v), ExtendedType(V);
SeqEnum ModTupFld ModTupFldElt ModTupFld[FldRat]



Automatic coercion and matrices
Matrices can be defined in a variety of ways.
> F<i> := QuadraticField(-1);
> P1 := Matrix(F,[[0,1], [1,0]]);
> P2 := Matrix([ [0,i], [-i,0] ]);
> P3 := Matrix(2,2,[F| 1,0, 0,-1]);

These are the Pauli spin matrices (of type AlgMatElt). They generate
a group of order 16. When used to construct the group they will
automatically be coerced to type GrpMatElt.
> D := sub< GL(2,F) | P1,P2,P3 >;
> #D, Type(P1), Type(D.1), P1 eq D.1;
16 AlgMatElt GrpMatElt true

On the other hand, you could also instruct MAGMA to regard them as
elements of the vector space of 2 × 2 matrices.
> M1 := KMatrixSpace(F,2,2)!P1; Type(M1); // etc.
ModMatFldElt

But M1, M2, M3 will not be recognised as elements of D.



The Hall–Janko Group



The discovery
In 1968 Zvonimir Janko announced the possible existence of two
new finite simple groups. He assumed (i) the centre of a Sylow
2-subgroup is cyclic and (ii) the centralizer of the central involution
(i.e., an element of order 2) has a normal subgroup of order 25 whose
quotient is the alternating group Alt(5).

If there is one class of involutions, the group order is 50 232 960.
Otherwise there are two classes of involutions and the order is
604 800: some people call it J2, others call it the Hall–Janko group HaJ.

The existence of HaJ was established by Marshall Hall and David
Wales. They produced three permutations on 100 vertices. Sir Peter
Swinnerton-Dyer verified by computer that the permutations generate
a simple group satisfying Janko’s conditions.

The group HaJ is a subgroup of index 2 in the automorphism group
of a graph on 100 points. This is the construction we investigate in the
next few slides.



The Fano plane and the graph with 14 vertices
The first step is to revisit the construction of the graph built from the
points, lines and flags of the 7-point plane.
> fano := FiniteProjectivePlane(2);
> P := Points(fano);
> L := Lines(fano);

Using just the points and lines, construct a graph with 14 vertices
and 28 edges. This time we use an indexed set {@ · · · @} of vertices.
> vertices1 := {@<-1,i> : i in [1..7]@} join {@<-2,j> : j in [1..7]@};
> edges1 := { {<-1,i>,<-2,j>} : i,j in [1..7] | P[i] notin L[j] };
> Gr1 := Graph< vertices1 | edges1 >;
> M1 := AutomorphismGroup(Gr1);
> CompositionFactors(M1);

G
| Cyclic(2)
*
| A(1, 7) = L(2, 7)
1



Explanation
The output of CompositionFactors(M1) shows that the automorphism
group of Gr1 has a normal subgroup which is isomorphic to the
simple group L(2,7) of linear fraction transformations of the
projective line over the field of 7 elements. The quotient is the cyclic
group of order 2. (In fact M1 ≃ PGL(2, 7).)

L(2,7) is often written as PSL(2, 7). It is isomorphic to the group
SL(3, 2) of 3 × 3 matrices over the field of 2 elements.
> IsIsomorphic(SL(3,2),PSL(2,7));
true Homomorphism of SL(3, GF(2)) into GrpPerm: $, Degree 8,
Order 2^3 * 3 * 7 induced by

[1 1 0]
[0 1 0]
[0 0 1] |–> (1, 2)(3, 8)(4, 7)(5, 6)

[0 0 1]
[1 0 0]
[0 1 0] |–> (1, 7, 2)(3, 6, 4)



SL(3, 2)
Composition factors are simple groups and therefore SL(3, 2) is the
derived group of M1.
> D1 := DerivedGroup(M1);
> tf, _ := IsIsomorphic(D1,SL(3,2)); tf;
true

The orbits of D1 are the points and lines of the Fano plane.
> Orbits(D1);
[

GSet{@ 1, 7, 4, 5, 6, 2, 3 @},
GSet{@ 8, 14, 12, 13, 9, 11, 10 @}

]

A GSet is a set with a group action.

If G is a permutation group, GSet(G) is the set on which it acts.

Conversely, if X is a GSet, then Group(X) is the group acting on X.



Exercises

Exercise 1. Check that there are 28 involutions of M1 not in D. They
form a single conjugacy class and interchange the orbits of D.
(Hint: Class(M1,t))

Exercise 2. Check that there are 28 symmetric matrices in SL(3, 2).
(Hint: Transpose) Is this a coincidence?

Exercise 3. The stabiliser in M1 of a vertex v is the subgroup
{ g ∈ M1 | vg = v }.
> H := Stabilizer(M1,1);

Find the orbits of the stabiliser on the vertices of the graph.

Exercise 4. By exploring the action of H on its orbits (or otherwise)
show that H is isomorphic to Sym(4).
(Hint: OrbitAction(H,orb), returns f, S, K, where f is a
homomorphism from H to the group S defined by the action of H on
orb, and K is the kernel of f.)



The graph with 36 vertices

In the previous lecture we extended the graph on the points P and
lines L of the Fano plane by including the flags F and an additional
vertex ⋆.

Recall that a flag is an incident point-line pair.
> F := [ <i,j> : i,j in [1..7] | P[i] in L[j] ];

To define the edges we joined

⋆ to all of P and L,

a point to the 4 lines not through it,

a point to the 9 flags which have their line through it,

a line to the 9 flags which have their point on it,

flags (p1, ℓ1) and (p2, ℓ2) if p1 ̸= p2, ℓ1 ̸= ℓ2, p1 ∈ ℓ2 and p2 ∈ ℓ1.



The graph in MAGMA

Represent ⋆ by the pair <0, 0>, the point P[i] by <-1, i>,
the line L[j] by <-2, j>, the flag (P[i],L[j]) by <i, j>.
> vertices2 := {@ <0,0> @} join vertices1
> join {@ <i,j> : i,j in [1..7] | P[i] in L[j] @};
> edges2 := {{<0,0>,<-1,i>} : i in [1..7] }
> join { {<0,0>, <-2,i>} : i in [1..7] } join edges1
> join { {<-1,i>,<j,k>} : i,j,k in [1..7] | P[i] in L[k]
> and P[j] in L[k] }
> join { {<-2,i>,<j,k>} : i,j,k in [1..7] | P[j] in L[k]
> and P[j] in L[i] }
> join { {f,g} : f, g in F | f[1] ne g[1] and f[2] ne g[2]
> and (P[f[1]] in L[g[2]] or P[g[1]] in L[f[2]]) };

The graph constructor returns the graph, the vertex set and the edge
set but we ignore the vertex and edge sets.
> Gr2 := Graph< vertices2 | edges2 >;



The graph

36 vertices
degree 14
252 edges ⋆
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SU(3, 3)

> M2 := AutomorphismGroup(Gr2);
> CompositionFactors(M2);

G
| Cyclic(2)
*
| 2A(2, 3) = U(3, 3)
1

> D2 := DerivedGroup(M2);

The derived group D2 of M2 is a subgroup of index 2 isomorphic to the
group SU(3, 3) of 3 × 3 unitary matrices with coefficients in the Galois
field F9 of order 9.

Exercise⋆. Use MAGMA to show that M2 is isomorphic to SU(3, 3)
extended by the automorphism σ : x 7→ x3 of F9.

Exercise⋆⋆. Show that M2 is isomorphic to the group of Lie type G2

over the field of two elements.



Vector spaces and hermitian forms
The group SU(3, 3) acts on a vector space of dimension 3 over F9 and
preserves an hermitian form.
> J, sigma := StandardHermitianForm(3,3);
> J;
[ 0 0 1]
[ 0 1 0]
[ 1 0 0]
> sigma;
Mapping from: GF(3^2) to GF(3^2) given by a rule [no inverse]
> V := UnitarySpace(J,sigma);
> U := SU(3,3);
> forall{ g : g in Generators(U) | IsIsometry(V,g) };
true

We see from J that (1, 0, 0) is isotropic and (0, 1, 0) is non-isotropic.
> u := V![1,0,0]; v := V![0,1,0];
> DotProduct(u,u), DotProduct(v,v);
0 1



Permutation representations of SU(3, 3) on lines

The isotropic and non-isotropic 1-dimensional subspaces (i.e., lines)
of V afford representations of degrees 28 and 63 of SU(3, 3).
> iso := sub<V|u>^U;
> noniso := sub<V|v>^U;
> #iso, "+", #noniso, "= total number of 1-subspaces:",(9^3-1) div (9-1);
28 + 63 = total number of 1-subspaces: 91

The graph Gr2 constructed from the Fano plane has 36 vertices. It can
be combined with the representation of degree 63 and a new point ∅
to create a regular graph of degree 36 on 100 vertices.

∅ 36 63

14

21 12

24



New edges 1
It will be more convenient to label the vertices with the integers
1, 2, . . . , 100.

Convert the edges of the graph on 36 points to the new labelling.
> edges := { {Index(vertices2,x) : x in edge} : edge in edges2 };

The 63 new vertices are the non-isotropic lines of the unitary space V.
The stabiliser in SU(3, 3) of a non-isotropic line contains a unique
central involution. These involutions are the elements of a conjugacy
of size 63 in SU(3, 3). In MAGMA the conjugacy classes are represented
by triples < order, size, representative >.
> exists(t){ c[3] : c in Classes(M2) | c[1] eq 2 and c[2] eq 63 };
true
> X := Conjugates(M2,t);

Convert X from a set to a sequence. This will allow us to refer to
individual elements.
> X := SetToSequence(X);



New edges 2

The group M1 is the stabiliser of a vertex of the graph Gr2. It contains a
conjugacy class of 21 involutions that belong to X.
> edges join:= {{i,j+36} : i in [1..36],j in [1..63] | i^X[j] eq i};

We also need the edges between the elements of X. If t ∈ X, the edges
just defined join t to 12 elements of Gr1. So we need to join t to 24
elements of X.
> for i in { Order(s*t) : s in X } do
> i,#{ s : s in X | Order(s*t) eq i };
> end for;
1 1
2 6
3 32
4 24

> edges join:= {{i+36,j+36} : i,j in [1..63] | Order(X[i]*X[j]) eq 4};



The Wales graph for HaJ
Finally we add the edges from vertex 100 to Gr1, create the graph,
check that it is regular and find its automorphism group.
> edges join:= { {i,100} : i in [1..36] };
> WalesGraph := Graph< 100 | edges >;
> IsRegular(WalesGraph);
> JJ2 := AutomorphismGroup(WalesGraph);
> CompositionFactors(JJ2);

G
| Cyclic(2)
*
| J2
1

Exercise Check Janko’s conditions for the derived group J2 of JJ2:
the centre of a Sylow 2-subgroup is cyclic and the centraliser C of a
central involution has a normal subgroup E such that C/E ≃ Alt(5).

Hint 1: SylowSubgroup, Centre, Centraliser, quo<C|E>.
Hint 2: to find E, check out pCore(C,2). What is C/E?



The Group Determinant



Groups, polynomials, matrices

Suppose that G is a finite group of order n.
For each g ∈ G let xg be an indeterminate.

The determinant of the n × n matrix
(
xgh−1

)
g,h∈G is

the group determinant of G.

What is the group determinant of the dihedral group of order 8?

There is a MAGMA intrinsic to compute dihedral groups. The default is
to represent them as permutation groups.
> D8 := DihedralGroup(4);
> D8;
Permutation group D8 acting on a set of cardinality 4
Order = 8 = 2^3

(1, 2, 3, 4)
(1, 4)(2, 3)



A group determinant function
> groupDet := function(G)
> n := #G;
> P := PolynomialRing(Integers(),n : Global);
> AssignNames(~P,["x" cat IntegerToString(i) : i in [1..n]]);
> L := Setseq(Set(G)); L := [h*g : g in L] where h is L[1]^-1;
> M := ZeroMatrix(P,n,n);
> for i -> x in L, j -> y in L do
> k := Index(L,x*y^-1);
> M[i,j] := P.k;
> end for;
> return M, Determinant(M);
> end function;

> _, B := groupDet(D8); // D8 is our dihedral group of order 8
> Factorisation(B);
[

<x1 + x2 - x3 - x4 - x5 - x6 + x7 + x8, 1>,
<x1 + x2 - x3 - x4 + x5 + x6 - x7 - x8, 1>,
<x1 + x2 + x3 + x4 - x5 - x6 - x7 - x8, 1>,
<x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, 1>,
<x1^2 - 2*x1*x2 + x2^2 + x3^2 - 2*x3*x4 + x4^2 - x5^2 +

2*x5*x6 - x6^2 - x7^2 + 2*x7*x8 - x8^2, 2>
]



Explanations

P := PolynomialRing(R,n) — the ring of polynomials in n
indeterminates P.1, . . . , P.n with coefficients in R.

AssignNames — names for printing.

P<[x]> := PolynomialRing(R,n) will assign names x[1],x[2],...
which can be used for input as well as printing.

Setseq is a synonym for SetToSequence.

the where ... is ... clause introduces a variable local to the
expression to its left.

for i -> x in L do — this is dual iteration; i is the index of the
element x in L.

return statements can return more than one value.

use _ to ignore a return value.



The group determinant of Q8

There are many ways to construct the quaternion group Q8 in MAGMA.
For example, by generators and relations.
> Q8<r,s> := Group< x,y | x^2 = y^2, x^y = x^-1 >;

The group Q8 is the unique Sylow 2-subgroup and therefore the
largest normal 2-subgroup of SL(2, 3).
> S := SL(2,3);
> Q8 := pCore(S,2);
> M,gD := groupDet(Q8);
> Factorisation(gD);
[

<x1 - x2 - x3 - x4 + x5 + x6 - x7 + x8, 1>,
<x1 - x2 - x3 + x4 + x5 - x6 + x7 - x8, 1>,
<x1 + x2 + x3 - x4 + x5 - x6 - x7 - x8, 1>,
<x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, 1>,
<x1^2 - 2*x1*x5 + x2^2 - 2*x2*x3 + x3^2 + x4^2 - 2*x4*x7

+ x5^2 + x6^2 - 2*x6*x8 + x7^2 + x8^2, 2>
]



Naming generators

> S := SL(2,3);
> S.1;
[1 1]
[0 1]

> S<a,b> := SL(2,3);
> print a, b;
[1 1]
[0 1]

[0 1]
[2 0]

> P<x> := PolynomialRing(Rationals());
> F<a> := NumberField(x^2 - x - 1);
> a^2;
a + 1



Central Extensions



Definitions

A central extension of a group G is a group Γ with a homomorphism π

from Γ onto G such that the kernel of π is contained in the centre of Γ .

Let π : Γ → G be a central extension and let A = kerπ. Choose a
transversal i.e., a set T = { xg | g ∈ G } of coset representatives for A in Γ

such that π(xg) = g.

Then xgxh = α(g, h)xgh, for some α : G × G → A. It follows from the
associativity of G that α(xy, z)α(x, y) = α(x, yz)α(y, z). That is,
α ∈ Z2(G, A) is a 2-cocycle. The image of α in H2(G, A) does not
depend on the choice of transversal.

Conversely, if A is an abelian group and α ∈ Z2(G, A), there exists a
central extension π : Γ → G with kerπ = A and a transversal
{ xg | g ∈ G } with π(xg) = g such that xgxh = α(g, h)xgh.



Central extensions of symmetric groups
To find the central extensions of Sym(5) by a group of order 2, for
example, first construct the second cohomology group.
> G := Sym(5);
> CM := CohomologyModule(G,A) where A is TrivialModule(G,GF(2));
> H2 := CohomologyGroup(CM,2);
> Dimension(H2);
2

Thus H2 = H2(Sym(5), C2) is a vector space of dimension 2 over the
field F2. It has four elements, each of which defines a central
extension.
> E0 := Extension(CM,Zero(H2));
> print Type(E0);
GrpFP
> P0 := CosetImage(E0,sub<E0|>);
> flag, phi := IsIsomorphic(P0,DirectProduct(CyclicGroup(2),G)); flag;
true

Exercise. Find the other extensions and describe their structure.
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