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The octonions
Let R be a ring. The (non-associative) algebra O(R) of octonions over R
has a basis 1 = e1, e2, . . . , e8, such that

e2
i = −1 for i ⩾ 2 and

eiej = ±ek for i, j ⩾ 2 and i ̸= j,

where the triples {i, j, k} form the lines of a 7-point projective plane
on the set {2, 3, . . . , 8}. The signs are determined by setting
e2e3 = e5 = −e3e2 and using the fact that for i, j ⩾ 2 and i ̸= j, the
elements ei and ej generate an associative algebra (quaternions) such
that eiej = ek implies ei+1ej+1 = ek+1 (subscripts modulo 7).

For all things octonion see (1) Conway
and Smith. (2003), On quaternions and
octonions: their geometry, arithmetic, and
symmetry. (2) Papers of Robert A. Wilson 6

2

5
8

73

> fano := {@ <2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7> : n in [0..6] @};



The octonions in MAGMA

Algebra< R, n | T > creates a structure constant algebra with a basis
e1, . . . , en satisfying eiej =

∑
k ak

ijek, where the sequence T contains the
4-tuples ⟨ i, j, k, ak

ij ⟩ such that ak
ij ̸= 0.

The structure constant 4-tuple corresponding to e2e3 = e5 is <2,3,5,1>
and from this we get five more by applying the symmetric group
Sym(3) to the first three indices, taking account of the sign.
> T := [<f[1^g],f[2^g],f[3^g],Sign(g)> : g in Sym(3), f in fano];

Next add e2
i = −1 (for 2 ⩽ i ⩽ 8), then the relations e1ei = eie1 = ei.

> T cat:= [ <i,i,1,-1> : i in [2..8] ];
> T cat:= [ <1,i,i,1> : i in [1..8] ] cat [<i,1,i,1> : i in [2..8] ];

The octonions over the ring R:
> octonions := func< R | Algebra< R, 8 | T > >;

Note. MAGMA has an intrinsic OctonionAlgebra(K,a,b,c), where K is a
field (of odd or zero characteristic) and a, b and c are parameters.



Printing the multiplication table

> OZ := octonions(Integers());
> PA<e1,e2,e3,e4,e5,e6,e7,e8> := PolynomialAlgebra(Integers(),8);
> print Matrix(PA,8,8,
> [&+[Eltseq(OZ.i*OZ.j)[h] * PA.h : h in [1..8]]: i,j in [1..8]]);

[ e1 e2 e3 e4 e5 e6 e7 e8]
[ e2 -e1 e5 e8 -e3 e7 -e6 -e4]
[ e3 -e5 -e1 e6 e2 -e4 e8 -e7]
[ e4 -e8 -e6 -e1 e7 e3 -e5 e2]
[ e5 e3 -e2 -e7 -e1 e8 e4 -e6]
[ e6 -e7 e4 -e3 -e8 -e1 e2 e5]
[ e7 e6 -e8 e5 -e4 -e2 -e1 e3]
[ e8 e4 e7 -e2 e6 -e5 -e3 -e1]

For each line of the Fano plane there is a quaternion subalgebra. For
example, the quaternion algebra H of the triple [2, 3, 5] is the linear
span of 1, e2, e3 and e5 and the octonion algebra is H ⊕ e8H.



Trace, norm and conjugate
The linear span of e2, . . . , e8 is the space of pure octonions.

If ξ = ae1 + η, where a is a scalar, and η is a pure octonion, the
conjugate of ξ is ξ = ae1 − η.

The norm of ξ is defined by ξξ = ξξ = norm(ξ)e1.
The trace of ξ is defined by ξ+ ξ = trace(ξ)e1.

Therefore ξ2 − trace(ξ)ξ+ norm(ξ)e1 = 0.

> conj := func< xi | 2*xi[1]*One(Parent(xi))-xi>;
> norm := func< xi | (xi*conj(xi))[1] >;
> trace := func< xi | 2*xi[1] >;
> F<z1,z2,z3,z4,z5,z6,z7,z8> := FunctionField(Integers(),8);
> OF := octonions(F);
> x := OF![z1,z2,z3,z4,z5,z6,z7,z8];
> norm(x), trace(x), trace(x*OF.3);
z1^2 + z2^2 + z3^2 + z4^2 + z5^2 + z6^2 + z7^2 + z8^2
2*z1
-2*z3



Lattices

Root Systems



Lattices

A lattice in MAGMA is a free Z-module contained in Qn or Rn, with a
positive definite inner product taking values in Q or R.

A subring of a finite dimensional algebra A over Q is an order if it is a
lattice in A and contains a basis of A.

An order is integral over Z (i.e., every element is the root of
polynomial with coefficients in Z).
> B := Matrix([[1,2,3],[3,2,1]]);
> L := Lattice(B);
> AmbientSpace(L); // returns two objects
Full Vector space of degree 3 over Rational Field
Mapping from: Lat: L to Full Vector space of degree 3 over

Rational Field given by a rule [no inverse]
> Rank(L);
2



Integrality

An element of O(Q) is integral if its trace and norm are integers.

A subring of O(Q) is an order if its elements are integral; e.g. O(Z).

There are seven maximal orders in O(Q) that contain O(Z); they are
pairwise isomorphic.

An order containing O(Z) is spanned by ei (1 ⩽ i ⩽ 8) and elements
of the form 1

2(±eh1 ± eh2 ± eh3 ± eh4).

Let OZ denote the lattice spanned by O(Z) and 1
2(eh1 + eh2 + eh3 + eh4),

where {h1, h2, h3, h4} or its complement in {1, . . . , 8} has the form
{1, i, j, k} and {i, j, k} is a line of the Fano plane with 1 and 2 swapped.
> X := { Include( {h^pi : h in line}, 2 ) : line in fano }
> where pi is Sym(8)!(1,2); X;
{1,2,3,5},{1,2,4,8},{1,2,6,7},{1,5,7,8},{1,3,6,8},{1,3,4,7},{1,4,5,6}

Conway calls OZ the octavian integers; it is a maximal order.



A Moufang loop

The units in OZ are the elements of norm 1. They form a
Moufang loop M of order 240.
> X join:= {{1..8} diff x : x in X };
> X := { SetToSequence(x) : x in X };
> OQ := octonions(Rationals());
> B := Basis(OQ);
> M := { a*x : x in B, a in {1,-1} };
> M join:= {(a*B[p[1]]+b*B[p[2]]+c*B[p[3]]+d*B[p[4]])/2 :
> a,b,c,d in {1,-1}, p in X};
> #M, forall{ <x,y> : x,y in M | x*y in M };
240 true

Exercise. Show that the elements of M satisfy the alternative laws:
(xy)x = x(yx), x(xy) = x2y, (xy)y = xy2 but M is not associative.

Exercise. Show that every element of M has an inverse.



A root system

The reflection rα in the hyperplane orthogonal to a non-zero vector α
in a vector space V with inner product (u, v) is given by

vrα = v − [[v,α]]α where [[v,α]] =
2(v,α)
(α,α)

.

In O(Q) we have (u, v) = uv + vu and so vrα = −αvα/αα.
> ref := func< a, v | -a*conj(v)*a / norm(a) >;
> refmat := func< a | MatrixRing(BaseRing(P),Dimension(P))!
> [ref(a,x) : x in Basis(P)] where P is Parent(a) >;

Claim. The Moufang loop M is a root system. That is

0 /∈ M.

For all α ∈ M the reflection rα leaves M invariant.

For all α,β ∈ M the Cartan coefficient [[α,β]] is an integer.

Exercise. Use MAGMA to check the claim.



Simple roots

First find a set of positive roots (i.e., the roots on one side of a
hyperplane)
> z := OQ![2^i : i in [1..8]];
> P := {@ v : v in M | InnerProduct(z,v) gt 0 @}; #P;
120

A simple root is a positive root that is not the sum of positive roots.
> S := P diff {@ u+v : u,v in P | u+v in P @};
> for s in S do print s; end for;
(-1/2 -1/2 -1/2 0 1/2 0 0 0)
( 0 0 1 0 0 0 0 0)
( 0 1 0 0 0 0 0 0)
( 1 0 0 0 0 0 0 0)
( 0 0 0 -1/2 0 -1/2 -1/2 1/2)
( 0 0 0 1 0 0 0 0)
(-1/2 0 0 -1/2 -1/2 1/2 0 0)
( 0 0 -1/2 0 -1/2 -1/2 1/2 0)



Root systems, Coxeter groups, Dynkin diagrams
The Cartan matrix of a root system is

(
[[αi,αj]]

)
.

> V := VectorSpace(OQ);
> SV := ChangeUniverse(S,V);
> C := Matrix(Integers(),8,8,[2*(a,b)/(b,b) : a,b in SV]);
> C; // Cartan matrix
[ 2 -1 -1 -1 0 0 0 0]
[-1 2 0 0 0 0 0 -1]
[-1 0 2 0 0 0 0 0]
[-1 0 0 2 0 0 -1 0]
[ 0 0 0 0 2 -1 0 0]
[ 0 0 0 0 -1 2 -1 0]
[ 0 0 0 -1 0 -1 2 0]
[ 0 -1 0 0 0 0 0 2]

The octavian ring OZ is the E8 root lattice.
> W := CoxeterGroup(C);
> DynkinDiagram(W);
E8 8 - 2 - 1 - 4 - 7 - 6 - 5

|
3



The automorphism group of OZ

w ∈ OZ has order 3 if and only if its norm is 1 and trace is −1.
> M3 := [ x : x in M | trace(x) eq -1 ];
> forall{ w : w in M3 | w^3 eq 1 };
true

If w has order 3, the map x 7→ wxw is an automorphism of OZ.
> aut := func< a, v | a^3 eq 1 select a^2*v*a else 0 >;
> autmat := func< a | MatrixRing(BaseRing(P),Dimension(P))!
> [aut(a,x) : x in Basis(P)] where P is Parent(a) >;
> forall <s,t,w> : s,t in S, w in M3 | aut(w,s*t) eq aut(w,s)*aut(w,t);
true

> reps := [ Rep(Q) : Q in {{x,x^-1} : x in M3}];
> gens := [ autmat(w) : w in reps ];
> G := sub<GL(8,Rationals()) | gens >;
> CompositionFactors(G); #G;

G
| 2A(2, 3) = U(3, 3)
1

6048



Exercises

Exercise. Show that the elements gens are involutions and that G can
be generated by three of them.

Exercise. Find the orbits of G on M and their lengths.

The map x 7→ x is an anti-automorphism of OZ; its matrix is
> conjmat := MatrixRing(Rationals(),8)![ conj(b) : b in Basis(OQ) ];
> #sub<GL(8,Rationals()) | G, conjmat >;
12096

Exercise⋆ Find the full automorphism group of OZ.



Root Data
Groups of Lie Type



Root data
A reductive group is defined by a root datum and a field.

A root datum is a 4-tuple R = (X,Φ, Y,Φ⋆) where X and Y are lattices
in duality with respect to a pairing ⟨−,−⟩ : X × Y → Z, and Φ ⊂ X
and Φ⋆ ⊂ Y are root systems with a bijection Φ → Φ⋆ : α 7→ α⋆ such
that ⟨α,α⋆ ⟩ = 2. For α ∈ Φ, the reflections

sα : X → X : x 7→ x − ⟨x,α⋆ ⟩α and

s⋆α : Y → Y : y 7→ y − ⟨α, y⟩α⋆

satisfy Φsα = Φ and Φ⋆s⋆α = Φ⋆.

The Weyl group of R is ⟨sα | α ∈ Φ⟩.

The root datum is completely determined by its simple roots and simple
coroots.
> RD := RootDatum("E7" : Isogeny := "SC"); RD;
RD: Simply connected root datum of dimension 7 of type E7



Simple roots, Cartan matrices, isogeny

Let e1, e2, . . . , ed be a basis for X, let f1, f2, . . . , fd be the dual basis for Y
and use these bases to identify X and Y with the standard lattice Zd.

Choose a base of simple roots α1, . . . , αℓ for Φ.
Then αi =

∑d
j=1 aijej and α⋆

i =
∑d

j=1 bijfj and C = ⟨αi,α⋆
j ⟩ = AB⊤,

where A =
(
aij
)

and B =
(
bij
)
.

Conversely, a pair of ℓ× d matrices A and B such that AB⊤ is a Cartan
matrix determines a root datum R. The rows of A are the simple roots
and the rows of B are the corresponding coroots.

The semisimple rank of R is ℓ, the number of simple roots; the reductive
rank is d, the rank d of X.

Isogeny: the root datum is semisimple if ℓ = d; it is adjoint if X = ZΦ;
it is simply connected if Y = ZΦ⋆.

Adjoint and simply connected root data are necessarily semisimple.



A MAGMA example

> RD := RootDatum("G2");
> A := SimpleRoots(RD); A;
[1 0]
[0 1]
> B := SimpleCoroots(RD); B;
[ 2 -3]
[-1 2]
> CartanMatrix(RD) eq A*Transpose(B);
true
> RD eq RootDatum(A,B);
true

Exercise. Find all semisimple root data (up to isomorphism) of
type A3. (Hint: Let C be a Cartan matrix of type A3 and consider
factorisations C = AB⊤.)



Groups of Lie type
Suppose that RD is a root datum (X,Φ, Y,Φ⋆)

If A is a ring, GroupOfLieType(RD,A) creates a group of Lie type.

The generators are root elements xα(a) and torus elements y ⊗ t, where
α ∈ Φ, a ∈ A, y ∈ Y and t ∈ A (t ̸= 0).
> RD := RootDatum("G2");
> F := GaloisField(5);
> G := GroupOfLieType(RD,F);
> Random(G);
x2(2) x3(2) x6(1) x4(4) x5(3) x1(3)
(2 1)
n1 n2 n1 n2 n1
x3(2) x6(3) x4(3) x5(3) x1(1)

(2, 1) is the torus element (f1 ⊗ 2)(f2 ⊗ 1); elt<G | Vector(F,[2,1])>.

n1 n2 n1 n2 n1 is the Weyl group element corresponding to the
product of reflections sα1sα2sα1sα2sα1 ; elt<G | 1,2,1,2,1 >.



Highest weight representations
The weight lattice is Λ = { x ∈ QΦ | ⟨x,α⋆ ⟩ ∈ Z for all α ∈ Φ }. It has a
basis ϖ1, . . . , ϖℓ of fundamental weights dual to the simple coroots.
A weight λ ∈ Λ is dominant if ⟨λ,α⋆ ⟩ ⩾ 0 for all simple roots α; i.e., a
non-negative linear combination of the fundamental weights.

Let L be a finite-dimensional rational G-module, where G is a
reductive group. Then L =

⊕
λ Lλ∈Λ, where

Lλ = { v ∈ L | v(y ⊗ t) = t⟨λ,y⟩v for all y ∈ Y, t ∈ K× }

and λ is a weight of L if Lλ ̸= 0. If G is semisimple and λ is a dominant
weight, there is an irreducible G-module whose highest weight is λ.
The restriction to a finite group of Lie type need not be irreducible.
> G := GroupOfLieType(RD,GF(3));
> rho := HighestWeightRepresentation(G,[3,0]); rho;
Mapping from: GrpLie: G to GL(77, GF(3)) given by a rule [no inverse]
> IsIrreducible(Image(rho));
false



Symbolic computation
> RD := RootDatum("G2" : Isogeny := "SC");

If t is a field element, the MAGMA code for xαi(t), where αi is the ith
root in the group G of Lie type is elt<G | <i,t> >.

Using the function field (i.e., the ring of fractions of the polynomial
ring) of the finite field F5 we can carry out symbolic calculations.
> FF<w,z> := FunctionField(GF(5),2);
> G := GroupOfLieType(RD,FF);
> elt<G| <1,w» * elt<G|<2,z»;
x2(z) x3(w*z) x6(w^3*z^2) x4(w^2*z) x5(w^3*z) x1(w)
> std := StandardRepresentation(G); std(TorusTerm(G,3,z));
[ z 0 0 0 0 0 0]
[ 0 z^2 0 0 0 0 0]
[ 0 0 1/z 0 0 0 0]
[ 0 0 0 1 0 0 0]
[ 0 0 0 0 z 0 0]
[ 0 0 0 0 0 1/z^2 0]
[ 0 0 0 0 0 0 1/z]



Application: constructive recognition

Given a matrix group H with generators Y, construct an isomorphism
between H and a ‘standard copy’. Use this this to write an arbitrary
element of H as a straight-line program (SLP) in Y.

If we know that H is a homomorphic image of a simply connected
finite group of Lie type G(q) we can do the following.

Identify the Lie type of H.

Use the Liebeck–O’Brien algorithm to construct a
Curtis–Steinberg–Tits (CST) presentation for H.

Construct a homomorphism ρ : G(q) → H using the CST
generators of G(q).

Construct φ : H → G(q) such that ρ(φ(h)) = h. For h ∈ H, φ(h)
will be a word in the Steinberg generators of G(q).



Recognising Aut(O(q))

Let C be the algebra of octonions over the finite field Fq of q elements
and suppose that q is odd. We shall construct A = Aut(C) as a matrix
group and then find an explicit isomorphism with a group of Lie type
defined by Chevalley–Steinberg generators.
> q := 5;
> C := octonions(GF(q));

In order to proceed we need some automorphisms.

An orthogonal pair is an ordered pair (a, b) of elements of norm 1 in C
such that a and b are orthogonal to 1 and to each other. Equivalently,
(a, b) is an orthogonal pair if a2 = b2 = −1 and ab = −ba. Thus the
linear span of 1, a, b and ab is a ‘quaternion algebra’.

Theorem. The automorphism group of C acts transitively on the set of
orthogonal pairs.

For a proof, see the function on the next slide.



Transitivity on orthogonal pairs
Given orthogonal pairs p1 and p2, the following function returns the
matrix of an automorphism of O(q) transforming p1 to p2.
> orthogPairAut := function(p1,p2)
> a1, b1 := Explode(p1);
> a2, b2 := Explode(p2);
> C := Parent(a1);
> V := VectorSpace(C);
> B1 := [V| One(C), a1, b1, a1*b1 ];
> B1perp := OrthogonalComplement(V,sub<V|B1>);
> assert exists(c1){ c : v in B1perp | norm(c) ne 0 where c is C!v};
> mu := norm(c1);
> B1 cat:= [V| c1, c1*a1, c1*b1, c1*(a1*b1) ];
> B2 := [V| One(C), a2, b2, a2*b2 ];
> B2perp := OrthogonalComplement(V,sub<V|B2>);
> assert exists(c2){ d : v in B2perp | norm(d) eq mu where d is C!v};
> B2 cat:= [V| c2, c2*a2, c2*b2, c2*(a2*b2) ];
> return Matrix(B1)^-1*Matrix(B2);
> end function;

Warning! No error checking.



Another version of orthogPairAut

> orthogPairAut2 := function(p1,p2)
> extendBasis := function(p : lambda := 0) // local function
> a, b := Explode(p);
> assert a^2 eq -1 and b^2 eq -1 and a*b eq -b*a; // error check
> C := Parent(a);
> V := VectorSpace(C);
> B := [V| One(C), a, b, a*b];
> Bperp := OrthogonalComplement(V,sub<V|B>);
> c := (lambda eq 0) select rep{c : v in Bperp | norm(c) ne 0
> where c is C!v}
> else rep{c : v in Bperp | norm(c) eq lambda where c is C!v};
> return B cat [V| c*C!x : x in B], norm(c);
> end function;
> B1, lambda := extendBasis(p1);
> B2, _ := extendBasis(p2 : lambda := lambda);
> return Matrix(B1)^-1*Matrix(B2);
> end function;

O(q) = B ⊕ cB where B is the quaternion algebra.



Automorphisms

The lines of the Fano plane provide a supply of orthogonal pairs.
> p1 := <C.2,C.3>;
> auts := [orthogPairAut(p1,<C.i,C.j>) : pp in fano[2..7] |
> true where i,j is Explode(pp)];
> L := sub< GL(8,q) | auts >; #L;
1344

Not quite large enough. Let’s find another automorphism.
> a := &+[C.i : i in [3..8]];
> b := C![0,0,3,2,3,0,2,0];
> a^2 eq -1, b^2 eq -1, a*b + b*a eq 0;
true true true
> g := orthogPairAut(p1,<a,b>);
> A := sub<GL(8,q) | L, g >;
> LieType(A,5);
true <"G", 2, 5>

Exercise. Use MAGMA to find b (or equivalent).



The group G2(q)

> G := GroupOfLieType("G2",q : Isogeny := "SC");
> flag, _, _, _, _, X, _ :=
> ExceptionalConstructiveRecognition(A,"G",2,5);
> rho := Morphism(G,X[1],X[2] : GS);
> rho(elt<G|<1,2»);
[1 0 0 0 0 0 0 0]
[0 4 3 0 3 3 2 2]
[0 1 4 4 3 2 4 3]
[0 4 2 4 3 4 2 4]
[0 2 2 2 1 0 2 2]
[0 3 2 0 0 4 1 4]
[0 4 0 2 3 0 4 1]
[0 3 2 1 3 1 4 1]
> f := Inverse(rho);
> f(A.1);
x2(1) x3(2) x6(3) x5(3) n2 n1 n2 n1 n2 x2(4) x3(3) x5(2)



Miscellaneous properties of Aut(O(q))
> FactoredOrder(A);
[ <2, 6>, <3, 3>, <5, 6>, <7, 1>, <31, 1> ]
> M := GModule(A);
> DirectSumDecomposition(M);
[

GModule of dimension 1 over GF(5),
GModule of dimension 7 over GF(5)

]

Borel subgroup
> bgens := [ elt<G| <1,1» ,elt<G|<2,1» ];
> borel := sub<A | [rho(x) : x in bgens] >;
> FactoredOrder(borel);
[ <5, 6> ]

Torus
> tgens := [TorusTerm(G,i,2) : i in [1,2]];
> torus := sub< A | [rho(x) : x in tgens] >;
> FactoredOrder(torus);
[ <2, 4> ]



The stabiliser of a vector
MAGMA cannot compute the stabiliser of C.2 directly nor can C.2 be
coerced directly into the module M. Instead, we do the following.
> A1 := Stabiliser(A,Vector(C.2));
> CompositionFactors(A1);

G
| A(2, 5) = L(3, 5)
1

The group A1 ≃ PSL(3, 5) is not maximal. It has index 2 in its
normaliser.
> N1 := Normaliser(A,A1);
> Index(N1,A1);
2

However, N1 is maximal because the action of A on the cosets of N1 is
primitive.
> B := CosetImage(A,N1);
> IsPrimitive(B);
true



Links



MAGMA Resources

The MAGMA Handbook
http://magma.maths.usyd.edu.au/magma/handbook/

Literate MAGMA programming
https://www.maths.usyd.edu.au/u/don/code/Magma/magmatex.html

MAGMA package examples
https://www.maths.usyd.edu.au/u/don/software.html

Editing utilities
http://magma.maths.usyd.edu.au/magma/extra/

User-defined types. An example
https://www.maths.usyd.edu.au/u/don/code/Magma/Nearfields.pdf

http://magma.maths.usyd.edu.au/magma/handbook/
https://www.maths.usyd.edu.au/u/don/code/Magma/magmatex.html
https://www.maths.usyd.edu.au/u/don/software.html
http://magma.maths.usyd.edu.au/magma/extra/
https://www.maths.usyd.edu.au/u/don/code/Magma/Nearfields.pdf

	Outline

