Algebras and Reductive Groups in MAGMA

https://www.maths.usyd.edu.au/u/don/presentations.html

Don Taylor

The University of Sydney

23 October 2023

Outline

Day 1 • MAGMA overview

- The read-evaluate-print-loop (REPL)
- Interactive programming
 - A simple word game
 - The Catalan numbers
 - Projective planes, graphs, automorphism groups
 - Exploring small groups: the Small Groups Database
- Day 2 The type system and coercion
 - Group theory examples
 - Constructing the Hall–Janko group
 - Group algebras and the group determinant
 - Central extensions of symmetric groups
- Day 3 Structure constant algebras
 - Lattices, root systems
 - Root data, reductive groups

Structure Constant Algebras

Octonions

The octonions

Let *R* be a ring. The (non-associative) algebra $\mathbb{O}(R)$ of *octonions* over *R* has a basis $1 = e_1, e_2, \dots, e_8$, such that

 $e_i^2 = -1$ for $i \ge 2$ and $e_i e_j = \pm e_k$ for $i, j \ge 2$ and $i \ne j$,

where the triples $\{i, j, k\}$ form the lines of a 7-point projective plane on the set $\{2, 3, ..., 8\}$. The signs are determined by setting $e_2e_3 = e_5 = -e_3e_2$ and using the fact that for $i, j \ge 2$ and $i \ne j$, the elements e_i and e_j generate an associative algebra (quaternions) such that $e_ie_j = e_k$ implies $e_{i+1}e_{j+1} = e_{k+1}$ (subscripts modulo 7).

For all things octonion see (1) Conway and Smith. (2003), *On quaternions and octonions: their geometry, arithmetic, and symmetry*. (2) Papers of Robert A. Wilson

> fano := {@ <2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7> : n in [0..6] @};

The octonions in MAGMA

Algebra< R, n | T > creates a *structure constant algebra* with a basis e_1, \ldots, e_n satisfying $e_i e_j = \sum_k a_{ij}^k e_k$, where the sequence T contains the 4-tuples $\langle i, j, k, a_{ij}^k \rangle$ such that $a_{ij}^k \neq 0$.

The structure constant 4-tuple corresponding to $e_2e_3 = e_5$ is <2,3,5,1> and from this we get five more by applying the symmetric group Sym(3) to the first three indices, taking account of the sign.

> T := [<f[1^g],f[2^g],f[3^g],Sign(g)> : g in Sym(3), f in fano];

Next add $e_i^2 = -1$ (for $2 \le i \le 8$), then the relations $e_1e_i = e_ie_1 = e_i$.

> T cat:= [<i,i,1,-1> : i in [2..8]];

> T cat:= [<1,i,i,1> : i in [1..8]] cat [<i,1,i,1> : i in [2..8]];

The octonions over the ring R:

> octonions := func< R | Algebra< R, 8 | T > >;

Note. MAGMA has an intrinsic OctonionAlgebra(K,a,b,c), where K is a field (of odd or zero characteristic) and a, b and c are parameters.

Printing the multiplication table

```
> OZ := octonions(Integers());
```

- > PA<e1,e2,e3,e4,e5,e6,e7,e8> := PolynomialAlgebra(Integers(),8);
- > print Matrix(PA,8,8,
- > [&+[Eltseq(OZ.i*OZ.j)[h] * PA.h : h in [1..8]]: i,j in [1..8]]);

Ε	e1	e2	e3	e4	e5	e6	e7	e8]
E	e2	-e1	e5	e8	-e3	e7	-e6	-e4]
E	e3	-e5	-e1	e6	e2	-e4	e8	-e7]
Ε	e4	-e8	-e6	-e1	e7	e3	-e5	e2]
E	e5	e3	-e2	-e7	-e1	e8	e4	-e6]
E	e6	-e7	e4	-e3	-e8	-e1	e2	e5]
Ε	e7	e6	-e8	e5	-e4	-e2	-e1	e3]
Ε	e8	e4	e7	-e2	e6	-e5	-e3	-e1]

For each line of the Fano plane there is a *quaternion* subalgebra. For example, the quaternion algebra \mathbb{H} of the triple [2, 3, 5] is the linear span of 1, e_2 , e_3 and e_5 and the octonion algebra is $\mathbb{H} \oplus e_8\mathbb{H}$.

Trace, norm and conjugate

The linear span of e_2, \ldots, e_8 is the space of *pure* octonions.

If $\xi = ae_1 + \eta$, where *a* is a scalar, and η is a pure octonion, the *conjugate* of ξ is $\overline{\xi} = ae_1 - \eta$.

The *norm* of ξ is defined by $\xi \overline{\xi} = \overline{\xi} \xi = \text{norm}(\xi)e_1$. The *trace* of ξ is defined by $\xi + \overline{\xi} = \text{trace}(\xi)e_1$.

Therefore $\xi^2 - \text{trace}(\xi)\xi + \text{norm}(\xi)e_1 = 0$.

```
> conj := func< xi | 2*xi[1]*One(Parent(xi))-xi>;
> norm := func< xi | (xi*conj(xi))[1] >;
> trace := func< xi | 2*xi[1] >;
> F<z1,z2,z3,z4,z5,z6,z7,z8> := FunctionField(Integers(),8);
> OF := octonions(F);
> x := OF![z1,z2,z3,z4,z5,z6,z7,z8];
> norm(x), trace(x), trace(x*0F.3);
z1^2 + z2^2 + z3^2 + z4^2 + z5^2 + z6^2 + z7^2 + z8^2
2*z1
-2*z3
```

Lattices

Root Systems

Lattices

A *lattice* in MAGMA is a free \mathbb{Z} -module contained in \mathbb{Q}^n or \mathbb{R}^n , with a positive definite inner product taking values in \mathbb{Q} or \mathbb{R} .

A subring of a finite dimensional algebra A over \mathbb{Q} is an *order* if it is a lattice in A and contains a basis of A.

An order is *integral* over \mathbb{Z} (i.e., every element is the root of polynomial with coefficients in \mathbb{Z}).

```
> B := Matrix([[1,2,3],[3,2,1]]);
> L := Lattice(B);
> AmbientSpace(L); // returns two objects
Full Vector space of degree 3 over Rational Field
Mapping from: Lat: L to Full Vector space of degree 3 over
Rational Field given by a rule [no inverse]
> Rank(L);
2
```

Integrality

An element of O(Q) is *integral* if its trace and norm are integers.

A subring of $\mathbb{O}(\mathbb{Q})$ is an order if its elements are integral; e.g. $\mathbb{O}(\mathbb{Z})$.

There are seven maximal orders in $O(\mathbb{Q})$ that contain $O(\mathbb{Z})$; they are pairwise isomorphic.

An order containing $\mathbb{O}(\mathbb{Z})$ is spanned by e_i $(1 \le i \le 8)$ and elements of the form $\frac{1}{2}(\pm e_{h_1} \pm e_{h_2} \pm e_{h_3} \pm e_{h_4})$.

Let $\mathbb{O}_{\mathbb{Z}}$ denote the lattice spanned by $\mathbb{O}(\mathbb{Z})$ and $\frac{1}{2}(e_{h_1} + e_{h_2} + e_{h_3} + e_{h_4})$, where $\{h_1, h_2, h_3, h_4\}$ or its complement in $\{1, \ldots, 8\}$ has the form $\{1, i, j, k\}$ and $\{i, j, k\}$ is a line of the Fano plane with 1 and 2 swapped.

> X := { Include({h^pi : h in line}, 2) : line in fano }

> where pi is Sym(8)!(1,2); X;

 $\{1,2,3,5\},\{1,2,4,8\},\{1,2,6,7\},\{1,5,7,8\},\{1,3,6,8\},\{1,3,4,7\},\{1,4,5,6\}$

Conway calls $O_{\mathbb{Z}}$ the *octavian integers*; it is a maximal order.

A Moufang loop

The units in \mathbb{O}_Z are the elements of norm 1. They form a *Moufang loop* \mathcal{M} of order 240.

```
> X join:= {{1..8} diff x : x in X };
> X := { SetToSequence(x) : x in X };
> OQ := octonions(Rationals());
> B := Basis(OQ);
> M := { a*x : x in B, a in {1,-1} };
> M join:= {(a*B[p[1]]+b*B[p[2]]+c*B[p[3]]+d*B[p[4]])/2 :
> a,b,c,d in {1,-1}, p in X};
> #M, forall{ <x,y> : x,y in M | x*y in M };
240 true
```

Exercise. Show that the elements of \mathcal{M} satisfy the alternative laws: $(xy)x = x(yx), x(xy) = x^2y, (xy)y = xy^2$ but \mathcal{M} is not associative.

Exercise. Show that every element of \mathcal{M} has an inverse.

A root system

The *reflection* r_{α} in the hyperplane orthogonal to a non-zero vector α in a vector space *V* with inner product (u, v) is given by

$$vr_{\alpha} = v - \llbracket v, \alpha \rrbracket \alpha$$
 where $\llbracket v, \alpha \rrbracket = \frac{2(v, \alpha)}{(\alpha, \alpha)}$.

In $\mathbb{O}(\mathbb{Q})$ we have $(u, v) = u\overline{v} + v\overline{u}$ and so $vr_{\alpha} = -\alpha\overline{v}\alpha/\alpha\overline{\alpha}$. > ref := func< a, v | -a*conj(v)*a / norm(a) >; > refmat := func< a | MatrixRing(BaseRing(P),Dimension(P))! > [ref(a,x) : x in Basis(P)] where P is Parent(a) >;

Claim. The Moufang loop \mathcal{M} is a root system. That is

• $0 \notin \mathcal{M}$.

- For all $\alpha \in \mathcal{M}$ the reflection r_{α} leaves \mathcal{M} invariant.
- For all α , $\beta \in \mathcal{M}$ the *Cartan coefficient* $[\![\alpha, \beta]\!]$ is an integer.

Exercise. Use MAGMA to check the claim.

Simple roots

First find a set of positive roots (i.e., the roots on one side of a hyperplane)

```
> z := OQ![2^i : i in [1..8]];
> P := {@ v : v in M | InnerProduct(z,v) gt 0 @}; #P;
120
```

A *simple root* is a positive root that is not the sum of positive roots.

```
> S := P diff {@ u+v : u,v in P | u+v in P @};
> for s in S do print s; end for;
(-1/2 -1/2 -1/2 0 1/2 0 0 0)
( 0 0 1 0 0 0 0 0 0)
( 1 0 0 0 0 0 0 0 0)
( 1 0 0 0 -1/2 0 -1/2 -1/2 1/2)
( 0 0 0 1 0 0 0 0 0)
( -1/2 0 0 -1/2 -1/2 1/2 0)
```

Root systems, Coxeter groups, Dynkin diagrams The *Cartan matrix* of a root system is $([\alpha_i, \alpha_i])$.

```
> V := VectorSpace(OQ);
> SV := ChangeUniverse(S,V);
> C := Matrix(Integers(),8,8,[2*(a,b)/(b,b) : a,b in SV]);
> C; // Cartan matrix
[2-1-1-10000]
[-1 2 0 0 0 0 0 -1]
[-1 0 2 0 0 0 0 0]
[-1 0 0 2 0 0 -1 0]
[0 0 0 0 2 -1 0 0]
[0 0 0 0 -1 2 -1 0]
\begin{bmatrix} 0 & 0 & -1 & 0 & -1 & 2 & 0 \end{bmatrix}
[0-1000002]
```

The octavian ring $O_{\mathbb{Z}}$ is the E_8 root lattice.

```
> W := CoxeterGroup(C);
> DynkinDiagram(W);
E8 8 - 2 - 1 - 4 - 7 - 6 - 5
|
3
```

The automorphism group of $O_{\mathbb{Z}}$

 $w \in O_{\mathbb{Z}}$ has order 3 if and only if its norm is 1 and trace is -1.

```
> M3 := [ x : x in M | trace(x) eq -1 ];
> forall{ w : w in M3 | w^3 eq 1 };
true
```

If *w* has order 3, the map $x \mapsto \overline{w}xw$ is an automorphism of $\mathbb{O}_{\mathbb{Z}}$.

6048

1

Exercise. Show that the elements gens are involutions and that G can be generated by three of them.

Exercise. Find the orbits of G on \mathcal{M} and their lengths.

The map $x \mapsto \overline{x}$ is an anti-automorphism of $O_{\mathbb{Z}}$; its matrix is

```
> conjmat := MatrixRing(Rationals(),8)![ conj(b) : b in Basis(OQ) ];
> #sub<GL(8,Rationals()) | G, conjmat >;
12096
```

Exercise^{*} Find the full automorphism group of $O_{\mathbb{Z}}$.

Root Data Groups of Lie Type

Root data

A reductive group is defined by a *root datum* and a field.

A *root datum* is a 4-tuple $\Re = (X, \Phi, Y, \Phi^*)$ where *X* and *Y* are lattices in duality with respect to a pairing $\langle -, - \rangle : X \times Y \to \mathbb{Z}$, and $\Phi \subset X$ and $\Phi^* \subset Y$ are root systems with a bijection $\Phi \to \Phi^* : \alpha \mapsto \alpha^*$ such that $\langle \alpha, \alpha^* \rangle = 2$. For $\alpha \in \Phi$, the *reflections*

$$s_{\alpha}: X \to X: x \mapsto x - \langle x, \alpha^{\star} \rangle \alpha \quad \text{and} \\ s_{\alpha}^{\star}: Y \to Y: y \mapsto y - \langle \alpha, y \rangle \alpha^{\star}$$

satisfy $\Phi s_{\alpha} = \Phi$ and $\Phi^{\star} s_{\alpha}^{\star} = \Phi^{\star}$.

The *Weyl group* of \mathcal{R} is $\langle s_{\alpha} \mid \alpha \in \Phi \rangle$.

The root datum is completely determined by its *simple roots* and *simple coroots*.

```
> RD := RootDatum("E7" : Isogeny := "SC"); RD;
RD: Simply connected root datum of dimension 7 of type E7
```

Simple roots, Cartan matrices, isogeny

Let e_1, e_2, \ldots, e_d be a basis for *X*, let f_1, f_2, \ldots, f_d be the dual basis for *Y* and use these bases to identify *X* and *Y* with the standard lattice \mathbb{Z}^d .

Choose a base of simple roots $\alpha_1, \ldots, \alpha_\ell$ for Φ . Then $\alpha_i = \sum_{j=1}^d a_{ij}e_j$ and $\alpha_i^* = \sum_{j=1}^d b_{ij}f_j$ and $C = \langle \alpha_i, \alpha_j^* \rangle = AB^\top$, where $A = (a_{ij})$ and $B = (b_{ij})$.

Conversely, a pair of $\ell \times d$ matrices *A* and *B* such that AB^{\top} is a Cartan matrix determines a root datum \mathcal{R} . The rows of *A* are the simple roots and the rows of *B* are the corresponding coroots.

The *semisimple rank* of \mathcal{R} is ℓ , the number of simple roots; the *reductive rank* is *d*, the rank *d* of *X*.

Isogeny: the root datum is *semisimple* if $\ell = d$; it is *adjoint* if $X = \mathbb{Z}\Phi$; it is *simply connected* if $Y = \mathbb{Z}\Phi^*$.

Adjoint and simply connected root data are necessarily semisimple.

А Мадма example

```
> RD := RootDatum("G2");
> A := SimpleRoots(RD); A;
[1 0]
[0 1]
> B := SimpleCoroots(RD); B;
[ 2 -3]
[-1 2]
> CartanMatrix(RD) eq A*Transpose(B);
true
> RD eq RootDatum(A,B);
true
```

Exercise. Find all semisimple root data (up to isomorphism) of type A_3 . (Hint: Let *C* be a Cartan matrix of type A_3 and consider factorisations $C = AB^{\top}$.)

Groups of Lie type

Suppose that RD is a root datum (X, Φ, Y, Φ^*)

If A is a ring, GroupOfLieType(RD,A) creates a group of *Lie type*.

The generators are *root elements* $x_{\alpha}(a)$ and *torus elements* $y \otimes t$, where $\alpha \in \Phi$, $a \in A$, $y \in Y$ and $t \in A$ ($t \neq 0$).

```
> RD := RootDatum("G2");
> F := GaloisField(5);
> G := GroupOfLieType(RD,F);
> Random(G);
x2(2) x3(2) x6(1) x4(4) x5(3) x1(3)
(2 1)
n1 n2 n1 n2 n1
x3(2) x6(3) x4(3) x5(3) x1(1)
```

(2, 1) is the torus element $(f_1 \otimes 2)(f_2 \otimes 1)$; elt<G | Vector(F, [2,1])>.

n1 n2 n1 n2 n1 is the Weyl group element corresponding to the product of reflections $s_{\alpha_1}s_{\alpha_2}s_{\alpha_1}s_{\alpha_2}s_{\alpha_1}$; elt<G | 1,2,1,2,1 >.

Highest weight representations

The *weight lattice* is $\Lambda = \{x \in \mathbb{Q}\Phi \mid \langle x, \alpha^* \rangle \in \mathbb{Z} \text{ for all } \alpha \in \Phi \}$. It has a basis $\varpi_1, \ldots, \varpi_\ell$ of fundamental weights dual to the simple coroots. A weight $\lambda \in \Lambda$ is *dominant* if $\langle \lambda, \alpha^* \rangle \ge 0$ for all simple roots α ; i.e., a non-negative linear combination of the fundamental weights.

Let *L* be a finite-dimensional rational **G**-module, where **G** is a reductive group. Then $L = \bigoplus_{\lambda} L_{\lambda \in \Lambda}$, where

 $L_{\lambda} = \{ v \in L \mid v(y \otimes t) = t^{\langle \lambda, y \rangle} v \text{ for all } y \in Y, t \in K^{\times} \}$

and λ is a *weight of L* if $L_{\lambda} \neq 0$. If **G** is semisimple and λ is a dominant weight, there is an irreducible **G**-module whose *highest weight* is λ . The restriction to a finite group of Lie type need not be irreducible.

```
> G := GroupOfLieType(RD,GF(3));
```

```
> rho := HighestWeightRepresentation(G,[3,0]); rho;
```

Mapping from: GrpLie: G to GL(77, GF(3)) given by a rule [no inverse]

> IsIrreducible(Image(rho));

false

Symbolic computation

```
> RD := RootDatum("G2" : Isogeny := "SC");
```

If *t* is a field element, the MAGMA code for $x_{\alpha_i}(t)$, where α_i is the *i*th root in the group **G** of Lie type is elt<**G** | <i,t>>.

Using the function field (i.e., the ring of fractions of the polynomial ring) of the finite field \mathbb{F}_5 we can carry out symbolic calculations.

```
> FF<w,z> := FunctionField(GF(5),2);
> G := GroupOfLieType(RD,FF);
> elt<G| <1,w> * elt<G|<2,z>;
x2(z) x3(w*z) x6(w^{3}z^{2}) x4(w^{2}z) x5(w^{3}z) x1(w)
> std := StandardRepresentation(G); std(TorusTerm(G,3,z));
Γ
        0
             0
                  0
                       0
                            0
                                0]
   z
E
   0 z^2
             0
                  0
                       0 0
                                01
E
        0 1/z 0
                       0
   0
                           0
                                01
E
        0
                  1
                       0
                                0]
   0
             0
                           0
E
   0 0
             0
                  0
                       z
                           0 01
Г
   0 0
             0
                  0
                       0 1/z^2 0]
   0
                  0
                               1/z]
        0
             0
                       0
                            0
```

Application: constructive recognition

Given a matrix group H with generators Y, construct an isomorphism between H and a 'standard copy'. Use this this to write an arbitrary element of H as a *straight-line program* (SLP) in Y.

If we know that *H* is a homomorphic image of a simply connected finite group of Lie type G(q) we can do the following.

- Identify the Lie type of *H*.
- Use the Liebeck–O'Brien algorithm to construct a Curtis–Steinberg–Tits (CST) presentation for *H*.
- Construct a homomorphism ρ : G(q) → H using the CST generators of G(q).
- Construct $\varphi : H \to G(q)$ such that $\rho(\varphi(h)) = h$. For $h \in H$, $\varphi(h)$ will be a word in the Steinberg generators of G(q).

Recognising $Aut(\mathbb{O}(q))$

Let *C* be the algebra of octonions over the finite field \mathbb{F}_q of *q* elements and suppose that *q* is odd. We shall construct $A = \operatorname{Aut}(C)$ as a matrix group and then find an explicit isomorphism with a group of Lie type defined by Chevalley–Steinberg generators.

```
> q := 5;
> C := octonions(GF(q));
```

In order to proceed we need some automorphisms.

An *orthogonal pair* is an ordered pair (a, b) of elements of norm 1 in *C* such that *a* and *b* are orthogonal to 1 and to each other. Equivalently, (a, b) is an orthogonal pair if $a^2 = b^2 = -1$ and ab = -ba. Thus the linear span of 1, *a*, *b* and *ab* is a 'quaternion algebra'.

Theorem. *The automorphism group of* **C** *acts transitively on the set of orthogonal pairs.*

For a proof, see the function on the next slide.

Transitivity on orthogonal pairs

Given orthogonal pairs p1 and p2, the following function returns the matrix of an automorphism of O(q) transforming p1 to p2.

```
> orthogPairAut := function(p1,p2)
    a1, b1 := Explode(p1);
>
    a2, b2 := Explode(p2);
>
> C := Parent(a1);
> V := VectorSpace(C);
    B1 := [V| One(C), a1, b1, a1*b1];
>
>
    B1perp := OrthogonalComplement(V,sub<V|B1>);
>
    assert exists(c1){ c : v in B1perp | norm(c) ne 0 where c is C!v;
    mu := norm(c1):
>
    B1 cat:= [V| c1, c1*a1, c1*b1, c1*(a1*b1)];
>
    B2 := [V| One(C), a2, b2, a2*b2];
>
    B2perp := OrthogonalComplement(V,sub<V|B2>);
>
    assert exists(c2){ d : v in B2perp | norm(d) eq mu where d is C!v};
>
    B2 cat:= [V| c2, c2*a2, c2*b2, c2*(a2*b2)];
>
    return Matrix(B1)^-1*Matrix(B2);
>
> end function;
```

Warning! No error checking.

Another version of orthogPairAut

```
> orthogPairAut2 := function(p1,p2)
>
    extendBasis := function(p : lambda := 0) // local function
>
      a, b := Explode(p);
>
      assert a^2 eq -1 and b^2 eq -1 and a*b eq -b*a; // error check
>
    C := Parent(a):
   V := VectorSpace(C);
>
    B := [V| One(C), a, b, a*b];
>
>
      Bperp := OrthogonalComplement(V,sub<V|B>);
      c := (lambda eq 0) select rep{c : v in Bperp | norm(c) ne 0
>
            where c is C!v}
>
        else rep{c : v in Bperp | norm(c) eq lambda where c is C!v};
>
      return B cat [V| c*C!x : x in B], norm(c);
>
>
    end function:
    B1, lambda := extendBasis(p1);
>
    B2, _ := extendBasis(p2 : lambda := lambda);
>
    return Matrix(B1)^-1*Matrix(B2);
>
> end function:
```

 $\mathbb{O}(q) = \mathbb{B} \oplus c\mathbb{B}$ where \mathbb{B} is the quaternion algebra.

Automorphisms

The lines of the Fano plane provide a supply of orthogonal pairs.

```
> p1 := <C.2,C.3>;
> auts := [orthogPairAut(p1,<C.i,C.j>) : pp in fano[2..7] |
> true where i,j is Explode(pp)];
> L := sub< GL(8,q) | auts >; #L;
1344
```

Not quite large enough. Let's find another automorphism.

```
> a := &+[C.i : i in [3..8]];
> b := C![0,0,3,2,3,0,2,0];
> a^2 eq -1, b^2 eq -1, a*b + b*a eq 0;
true true true
> g := orthogPairAut(p1,<a,b>);
> A := sub<GL(8,q) | L, g >;
> LieType(A,5);
true <"G", 2, 5>
```

Exercise. Use MAGMA to find **b** (or equivalent).

The group $G_2(q)$

```
> G := GroupOfLieType("G2",q : Isogeny := "SC");
> flag, _, _, _, _, X, _ :=
                    ExceptionalConstructiveRecognition(A,"G",2,5);
>
> rho := Morphism(G,X[1],X[2] : GS);
> rho(elt<G|<1,2»);</pre>
[1 0 0 0 0 0 0 0]
[04303322]
[0 1 4 4 3 2 4 3]
[0 4 2 4 3 4 2 4]
[0 2 2 2 1 0 2 2]
[0 3 2 0 0 4 1 4]
[0 4 0 2 3 0 4 1]
[0 3 2 1 3 1 4 1]
> f := Inverse(rho);
> f(A.1);
x2(1) x3(2) x6(3) x5(3) n2 n1 n2 n1 n2 x2(4) x3(3) x5(2)
```

Miscellaneous properties of $Aut(\mathbb{O}(q))$

```
> FactoredOrder(A):
[ <2, 6>, <3, 3>, <5, 6>, <7, 1>, <31, 1> ]
> M := GModule(A);
> DirectSumDecomposition(M);
Г
   GModule of dimension 1 over GF(5),
   GModule of dimension 7 over GF(5)
]
Borel subgroup
> bgens := [ elt<G| <1,1» ,elt<G|<2,1» ];</pre>
> borel := sub<A | [rho(x) : x in bgens] >;
> FactoredOrder(borel);
[ <5, 6> ]
Torus
> tgens := [TorusTerm(G,i,2) : i in [1,2]];
> torus := sub< A | [rho(x) : x in tgens] >;
> FactoredOrder(torus);
[<2, 4>]
```

The stabiliser of a vector

MAGMA cannot compute the stabiliser of C.2 directly nor can C.2 be coerced directly into the module M. Instead, we do the following.

```
> A1 := Stabiliser(A,Vector(C.2));
> CompositionFactors(A1);
    G
    | A(2, 5) = L(3, 5)
    1
```

The group A1 $\simeq PSL(3, 5)$ is not maximal. It has index 2 in its normaliser.

```
> N1 := Normaliser(A,A1);
> Index(N1,A1);
2
```

However, N1 is maximal because the action of A on the cosets of N1 is primitive.

```
> B := CosetImage(A,N1);
> IsPrimitive(B);
true
```

Links

Magma Resources

The MAGMA Handbook http://magma.maths.usyd.edu.au/magma/handbook/

Literate MAGMA programming https://www.maths.usyd.edu.au/u/don/code/Magma/magmatex.html

MAGMA package examples https://www.maths.usyd.edu.au/u/don/software.html

Editing utilities http://magma.maths.usyd.edu.au/magma/extra/

User-defined types. An example https://www.maths.usyd.edu.au/u/don/code/Magma/Nearfields.pdf