
The University of Sydney
School of Mathematics and Statistics

Solutions to An Introduction to MAGMA

MagmaMondays: 9 October 2023 Semester 2, 2023

Web Page: https://sites.google.com/view/magma-mondays/
Lecturer: Don Taylor

1. Suppose that letters is a sequence of letters. The following code produces all ‘words’ made
from these letters.

[&∗[letters[i p] : i in [1. . n]] : p in SYM(n)] where n is #letters ;

If you first type

letters := ELEMENTTOSEQUENCE(“aact”) ;

and then use the code above you will see that some ‘words’ appear twice.

(a) Write a few lines of code that produce a sequence of words without duplicates.

Solution:

[&∗[letters[i p] : i in [1. . n]] : p in SYM(n)] where n is #letters ;
SETSEQ(SET($1)) ;

[ctaa, atac, tcaa, acat, taca, taac, caat, cata, aact, aatc, atca, acta]

(b) Change the code so that it produces a sequence of three letter ‘words’.

Solution:

k := 3;
wds := SETSEQ(SET(&cat[[&∗[letters[SETSEQ(A)][i p] : i in [1. . k]] :

p in SYM(k)] : A in SUBSETS({1..#letters}, k)])) ;
wds ;

[tca, cta, tac, aat, ata, caa, aca, taa, cat, aac, act, atc]

2. Write a function expression CATNUM := func< n | . . . > such that CATNUM(n) returns
the nth Catalan number.

Solution:

CATNUM := func< n | BINOMIAL(2∗n, n) div (n+1) > ;
CATNUM(100) ;

896519947090131496687170070074100632420837521538745909320

3. Here is the CATSEQ function from the lecture.

CATSEQ := function(n) ;
if n eq 0 then seq := [1] ;
elif n eq 1 then seq := [1, 1] ;
else

seq := $$(n−1) ;
APPEND(∼seq , &+[INTEGERS()| seq [k+1]∗seq [n−k] : k in [0. . n−1]]) ;

end if ;
return seq ;

end function ;

Copyright © 2024 The University of Sydney 1

Rewrite CATSEQ as a function expression using select.

Solution:

CATSEQ2 := func< n | n eq 0 select [1] else n eq 1 select [1, 1] else
APPEND($$(n−1), &+[$$(n−1)[k+1]∗$$(n−1)[n−k] : k in [0. . n−1]]) > ;

CATSEQ3 := func< n | n eq 0 select [1] else n eq 1 select [1, 1] else
(APPEND(L, &+[L[k+1]∗L[n−k] : k in [0. . n−1]]) where L is $$(n−1)) > ;

There is considerable difference in the timing.

time CATSEQ(8) ;

[1, 1, 2, 5, 14, 42, 132, 429, 1430]

Time: 0.000

time CATSEQ2(8) ;

[1, 1, 2, 5, 14, 42, 132, 429, 1430]

Time: 13.220

time CATSEQ3(8) ;

[1, 1, 2, 5, 14, 42, 132, 429, 1430]

Time: 0.000

4. A hyperoval in a projective plane of even order q is a set of q+2 points, no three of which
are on a line.

(a) Find an example of a hyperoval in the 21-point projective plane. You can begin
with the command

plane, points, lines := FINITEPROJECTIVEPLANE(4) ;

Hint 1. What are points.1 and points.2? What is lines.3?

Hint 2. EXCLUDE(∼S , v) removes the element v from the set S . If you want to re-
move a representative from S and assign it to a variable x , use EXTRACTREP(∼S ,∼x).

Solution: A very direct way to find a hyperoval is to inspect the coordinates of
the points:

[points.i : i in [1. . 21]] ;

It is clear that no three of the four points

X := [points.i : i in [1, 2, 3, 21]] ; X ;

[(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)]
lie on a line. To extend X to a hyperoval you can use MAGMA to find the points not
on any line through a pair of points of X . (For neater output let w be a primitive
element of the field of 4 elements.)

F<w> := GALOISFIELD(4) ;

Begin by letting Y be the set of all points. The object points is not a MAGMA set
(check its type). So we convert it to a set as follows.

Y := SET(points) ;

Note that POINTS(plane) creates the indexed set of points but we don’t use this
because the intrinsic procedure EXCLUDE requires a set or multi-set.

2

Now remove the points on lines through pairs of points of X . The line through the
points u and v is lines ! [u , v].

for i := 1 to 3 do for j := i+1 to 4 do
for p in SET(lines ! [X [i], X [j]]) do EXCLUDE(∼Y , p) ; end for ;

end for ; end for ;
Y ;

{ (1 : w : w^2), (1 : w^2 : w) }

The union of SET(X) with Y is a hyperoval.

(b) Write a function ISHYPEROVAL(P , X) to test whether X is a hyperoval in a projective
plane P .

Solution:

ISHYPEROVAL := func< P , X | #X eq (ORDER(P) + 2) and
forall{ m : m in LINES(P) | #{ x : x in X | x in m } le 2 } > ;

Test this on the set found in part (a).

ISHYPEROVAL(plane, SET(X) join Y) ;

true

(c) Find all the hyperovals in the 21-point projective plane.

Solution: Use MAGMA to create all 54 264 sets of 6 points then use your function
ISHYPEROVAL to select just those that are hyperovals.

plane, points, lines := FINITEPROJECTIVEPLANE(4) ;

Let P be the indexed set of points.

P := POINTS(plane) ;
hyperovals := { H : h in SUBSETS({1. . 21}, 6) | ISHYPEROVAL(plane, H)

where H is P [SETSEQ(h)] } ;
#hyperovals ;

168

(d) Find the orbits of the groups PGL(3, 4) and PSL(3, 4) on the set of hyperovals.

Solution: Using the set hyperovals just constructed we can find a representative
and print the length of its orbits.

h1 := REP(hyperovals) ;
G := PGL(3, 4) ;
S := PSL(3, 4) ;
#(h1

G), #(h1
S) ;

168 56

Thus PGL(3, 4) acts transitively on hyperovals and since PSL(3, 4) is a normal
subgroup of index 3, it has 3 orbits of length 56.

O1 := h1
S ;

exists(h2){ h : h in hyperovals | h notin O1} ;

true

O2 := h2
S ;

exists(h3){ h : h in hyperovals | h notin O1 and h notin O2} ;

true

O3 := h3
S ;

3

hyperovals eq O1 join O2 join O3 ;

true

5. The points and lines of the 21-point plane can be identified with the 1- and 2-dimensional
subspaces of a vector space of dimension 3 over the field of 4 elements. In this represen-
tation an example of a hyperoval is the set of singular points of a quadratic form together
with its radical. You can use the following code to construct the form and the quadratic
space.

P<x , y , z> := POLYNOMIALRING(GALOISFIELD(4), 3) ;
f := x∗y + z 2 ;
V := QUADRATICSPACE(f) ;

Find 6 vectors that represent the points of the hyperoval. Check that they do indeed
form a hyperoval. (Hint. RADICAL(V) is the radical of V and QUADRATICNORM(v) is the
value of the quadratic form at the vector v .)

Solution: First find the subspaces.

ss := { sub<V | v > : v in V | v ne 0 and QUADRATICNORM(v) eq 0 } ;
ss join:= {RADICAL(V)} ;

Next choose representative vectors.

H := { W .1 : W in ss } ;

6. Let G be a group. Write a function that returns exactly one representative of {x, x−1} for
all x ∈ G. Test your function on the cyclic groups of orders 2,3,4, and 5 and the dihedral
groups of orders 6, 8, 10 and 12.

Solution:

f := func< G | [REP(X) : X in { {x , x −1} : x in G }] > ;
for n := 2 to 5 do n, f (CYCLICGROUP(n)) ; end for ;
for n := 3 to 6 do 2∗n, f (DIHEDRALGROUP(n)) ; end for ;

7. A non-empty subset S of a group G is product-free if ab /∈ S for all a, b ∈ S.

Using the functions

prodfree := func< S | forall{<a, b> : a, b in S | a∗b notin S } > ;
checkmax1 := function(G)

for a in G do
if a eq ONE(G) then continue ; end if ;
found := true ;
for b in G do

if b eq ONE(G) or b eq a then continue ; end if ;
if prodfree({a, b}) then found := false ; continue ; end if ;

end for ;
if found then return true, a ; end if ;

end for ;
return false, _ ;

end function ;

defined in the lecture find the groups in the Small Groups Database that contain a
maximal product-free set of size 1.

4

Solution:

SGD := SMALLGROUPDATABASE() ;
time for n := 2 to 63 do

for j := 1 to NUMBEROFSMALLGROUPS(SGD, n) do
G := SMALLGROUP(SGD, n, j) ;

found , witness := checkmax1(G) ;
if found then print n, j , witness ; end if ;

end for ;
end for ;

This takes approximately 2.17 seconds on my machine.

8. Write a function checkmax2 that can be used to find the groups in the Small Groups
Database that contain a maximal product-free set of size 2.

Make a conjecture about the classification of all finite group with a maximal product-free
set of size 2.

Solution: The following function checks if G contains elements a and b such that
{ a, b } is product-free and maximal with respect to inclusion. It uses the function
prodfree defined in the previous question.

checkmax2 := function(G)
ss := SETSEQ(SET(G)) ;
n := #ss ;
for i → a in ss do // dual iteration

if a eq ONE(G) then continue ; end if ;
for j := i+1 to n do

b := ss[j] ;
if b eq ONE(G) then continue ; end if ;
S := { a, b } ;
if prodfree(S) then

found := true ;
for x in G do

if x eq ONE(G) or x in S then continue ; end if ;
if prodfree({a, b, x}) then found := false ; continue ; end if ;

end for ;
if found then return true, a, b ; end if ;

end if ;
end for ;

end for ;
return false, _, _ ;

end function ;

time for n := 2 to 100 do
d := NUMBEROFSMALLGROUPS(SGD, n) ;
for j := 1 to d do

G := SMALLGROUP(SGD, n, j) ;
found , a, b := checkmax2(G) ;
if found then print n, j , a, b ; end if ;

end for ;
end for ;

5

This takes almost half an hour of CPU time on my machine. The program finds 11 groups
with a maximal product-free set of size 2. The largest order is 16. It can be proved that
there are no other groups.

The groups that contain a maximal product-free set of size 3 are known. The largest
order is 24. It is unknown which groups have a maximal product-free set of size great
then 3. It is conjectured that if a group has a maximal product-free set of size k, its order
is at most 3(k + 1)2.

6

