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1. Suppose that X is an invertible 2 × 2 matrix over the finite field F of 11 elements.
The function θX : M 7→ X−1MX is a linear transformation of the vector space of all
2× 2 matrices over F . Furthermore θ is a homomorphism from the general linear group
GL(2, F ) to GL(4, F ).

(a) Let F := GALOISFIELD(11) and write a MAGMA function that returns the matrix of
X with respect to the ‘standard basis’ of the vector space KMATRIXSPACE(F , 2, 2).

Solution:

F := GF(11) ;
V := KMATRIXSPACE(F , 2, 2) ;
B := BASIS(V ) ;
ϕ := func< X | MATRIX(F , 4, 4, [COORDINATES(V , X −1∗b∗X ) : b in B ]) > ;

(b) Find the image of the generators of GL(2, F ) under the homomorphism θ and
thereby find the order of the images of GL(2, F ) and SL(2, F ) in GL(4, F ).

Solution:

imG := sub< GL(4, F ) | [ ϕ(g) : g in GENERATORS(GL(2, F )) ] > ;
imS := sub< GL(4, F ) | [ ϕ(g) : g in GENERATORS(SL(2, F )) ] > ;
#GL(2, F ), #imG ;
#SL(2, F ), #imS ;

The function ϕ can be turned into a homomorphism as follows.

θ := hom< GL(2, F ) → GL(4, F ) | X 7→ ϕ(X ) > ;
KERNEL(θ) ;
IMAGE(θ) eq imG ;

2. Let σ1, σ2 and σ3 be the Pauli matrices defined over the Gaussian field Q[i].

K<i> := QUADRATICFIELD(−1) ;
σ1 := MATRIX(K , [[0, 1], [1, 0]]) ;
σ2 := MATRIX(K , [[0, i ], [−i , 0]]) ;
σ3 := MATRIX(K , [[1, 0], [0,−1]]) ;

and put

θ := MATRIX(K , [[i , 0], [0, i ]]) ;

Let E be the subgroup of GL(2, K ) generated by σ1, σ2, σ3 and θ. Show that the matrices
θσ1, θσ2, θσ3 generate the quaternion group Q and E is the central product of a cyclic
group of order 4 and Q .

Solution:

G := GL(2, K ) ;
E := sub< G | σ1, σ2, σ3, θ > ;
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Q := sub< G | [θ∗g : g in [σ1, σ2, σ3]] > ;

The following values

(Q .1)2, (Q .2)2, (Q .3)2, Q .1∗Q .2∗Q .3;

are all equal to −I , where I is the identity. Thus Q is the quaternion group.

C := sub<G | θ > ;
E eq sub< G | Q , C> ;
C subset CENTRE(E ) ;
#(C meet Q) eq 2;

3. Let fano be the 7-point plane, and as in the lecture, define a graph (call it Gr1) on the
points and lines by joining each line to the points not on it.

(a) Use MAGMA to show that the automorphism group of Gr1 is isomorphic to the
projective linear group PGL(2, 7).

Solution:

fano := FINITEPROJECTIVEPLANE(2) ;
P := POINTS(fano) ;
L := LINES(fano) ;
vertices1 := {@<−1, i> : i in [1. . 7]@} join {@<−2, j> : j in [1. . 7]@} ;
edges1 := { { ← 1, i>, ← 2, j>} : i , j in [1. . 7] | P [i ] notin L[j ] } ;
Gr1 := GRAPH< vertices1 | edges1 > ;
M1 := AUTOMORPHISMGROUP(Gr1) ;
ISISOMORPHIC(PGL(2, 7), M1) ;

true

(b) Let

P2 := {1. . 7} ;
L2 := {{1 + n, 1 + (n+1) mod 7, 1 + (n+3) mod 7} : n in [0. . 6]} ;

Define a graph Γ2 by joining each triple X in L2 to the points in its complement
in P2. Use MAGMA to show that Gr1 is isomorphic to Γ2.

Solution:

L2 := SETTOSEQUENCE(L2) ;
E2 := &join[{ {i , 7+k} : i in (P2 diff ln) } : k → ln in L2 ] ;
Gr2 := GRAPH< {1. . 14} | E2 > ;
ISISOMORPHIC(Gr1, Gr2) ;

true

4. Let M1 be the automorphism group of the graph Gr1 of Exercise 3.

(a) Check that there are 28 involutions of M1 not in its derived group D .

Solution:

D := DERIVEDGROUP(M1) ;
#{ x : x in M1 | x notin D and ORDER(x ) eq 2 } ;

28
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(b) Check that the involutions form a single conjugacy class in M1 and that each
involution interchanges the orbits of D .

Solution:

T := { x : x in M1 | x notin D and ORDER(x ) eq 2 } ;
t := REP(T ) ;
T eq t M1 ;

true

OO := ORBITS(D) ;
forall{ x : x in T | OO[1]x eq OO[2] } ;

true

(c) Check that there are 28 symmetric matrices in SL(3, 2). Find a connection between
these 28 matrices and the conjugacy class of 28 involutions in M1.

Solution:

S := SL(3, 2) ;
U := { g : g in S | g eq TRANSPOSE(g) } ;
#U ;

28

A symmetric matrix J ∈ SL(3, 2) defines a symmetric bilinear form (u, v) 7→ uJv⊤

on the vector space of dimension 3 over F2. Equivalently, J corresponds to a
polarity of the projective plane, interchanging points and lines; i.e., an element of
order 2 in the automorphism group of SL(3, 2). Using the points P and lines L
from exercise 3

V := VECTORSPACE(GF(2), 3) ;
ψ := function(J )

inv := ONE(SYM(14)) ;
for i := 1 to #P do

inv ∗:= SYM(14) ! (i , 7+INDEX(L, L ! ELTSEQ(V ! ELTSEQ(P [i ]) ∗ J ))) ;
end for ;
return inv ;

end function ;

{ψ(J ) : J in U } eq T ;

true

(d) The stabiliser in M1 of a vertex v in the graph Gr1 is the subgroup

H := STABILIZER(M1, 1) ;

Find the orbits of the stabiliser on the vertices of the graph.

Solution:

OO := ORBITS(H) ; OO;

[

GSet{@ 1 @},

GSet{@ 9, 12, 10 @},

GSet{@ 8, 14, 11, 13 @},

GSet{@ 2, 3, 5, 6, 7, 4 @}

]
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(e) By exploring the action of H on its orbits (or otherwise) show that H is isomorphic
to Sym(4).

(Hint: ORBITACTION(H , orb), returns f , H1, K , where f is a homomorphism from H
to the group H1 defined by the action of H on orb, and K is the kernel of f .)

Solution:

f , H1, K := ORBITACTION(H , OO[3]) ;
H1 ;

Permutation group H1 acting on a set of cardinality 4

Order = 24 = 2^3 * 3

(2, 3)

(1, 4)

(2, 4)

K ;

Permutation group K acting on a set of cardinality 14

Order = 1

The kernel of the action of H on the orbit of length 4 is 1; i.e., H acts faithfully on
this orbit. The order of H is 24 and therefore it is the group of all permutations of
the 4 elements of the orbit.

5. Let Gr2 be the graph on 36 vertices defined in the lecture. For this exercise you will need
to hunt through the MAGMA Handbook to find out how to construct a semidirect product
and a Chevalley group of type G2.

**(a) Show that the automorphism group of Gr2 is isomorphic to the group SU(3, 3) of
3× 3 unitary matrices (with coefficients in the field F9 of 9 elements) extended by
the field automorphism σ : F9 → F9 : x 7→ x3.

Solution: We build on the code from Exercise 3.

F := [ <i , j> : i , j in [1. . 7] | P [i ] in L[j ] ] ;
vertices2 := {@ <0, 0> @} join vertices1

join {@ <i , j> : i , j in [1. . 7] | P [i ] in L[j ] @} ;
edges2 := {{<0, 0>, ← 1, i>} : i in [1. . 7] }

join { {<0, 0>, ← 2, i>} : i in [1. . 7] } join edges1
join { { ← 1, i>,<j , k>} : i , j , k in [1. . 7] | P [i ] in L[k ] and P [j ] in L[k ] }
join { { ← 2, i>,<j , k>} : i , j , k in [1. . 7] | P [j ] in L[k ] and P [j ] in L[i ] }
join { {f , g} : f , g in F | f [1] ne g [1] and f [2] ne g [2]

and (P [f [1]] in L[g [2]] or P [g [1]] in L[f [2]]) } ;
Gr2 := GRAPH< vertices2 | edges2 > ;
M2 := AUTOMORPHISMGROUP(Gr2) ;

Now construct the semidirect product of SU(3, 3) by the field automorphism.

S := SU(3, 3) ;
A := AUTOMORPHISMGROUP(S) ;
f := hom< C → A | hom<S → S | x 7→ FROBENIUSIMAGE(x , 1) > > ;
G := SEMIDIRECTPRODUCT(S , C , f ) ;
check , _ := ISISOMORPHIC(G, M2) ; check ;

true
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*(b) Show that the automorphism group of the graph Gr2 is isomorphic to the group of
Lie type G2(2).

Solution:

check := ISISOMORPHIC(M2, CHEVALLEYGROUP(“G”, 2, 2)) ; check ;

true

6. Check Janko’s conditions for the derived group of the automorphism group of the Wales
graph on 100 vertices (defined in the lecture). That is, the centre of a Sylow 2-subgroup
is cyclic and the centraliser C of a central involution has a normal subgroup E such that
C/E ≃ Alt(5).

(Hint. You can use the MAGMA intrinsics SYLOWSUBGROUP, CENTRE, CENTRALISER, pCORE

and quo<C |E>. Use the on-line Handbook at

http://magma.maths.usyd.edu.au/magma/handbook/

to find out how these commands work.)

Solution: The Wales graph can be constructed using the code from Exercises 3, 5 and
the following.

edges := { {INDEX(vertices2, x ) : x in edge} : edge in edges2 } ;
exists(t ){ c [3] : c in CLASSES(M2) | c [1] eq 2 and c [2] eq 63 } ;
edges := { {INDEX(vertices2, x ) : x in edge} : edge in edges2 } ;
exists(t ){ c [3] : c in CLASSES(M2) | c [1] eq 2 and c [2] eq 63 } ;
X := SETSEQ(CONJUGATES(M2, t )) ;

edges join:= {{i , j+36} : i in [1. . 36], j in [1. . 63] | i X [j ] eq i} ;
edges join:= {{i+36, j+36} : i , j in [1. . 63] | ORDER(X [i ]∗X [j ]) eq 4} ;
edges join:= { {i , 100} : i in [1. . 36] } ;
WALESGRAPH := GRAPH< 100 | edges > ;
JJ2 := AUTOMORPHISMGROUP(WALESGRAPH) ;
J2 := DERIVEDGROUP(JJ2) ;
S2 := SYLOWSUBGROUP(J2, 2) ;
Z := CENTRE(S2) ;
#Z ;

2

C := CENTRALISER(J2, Z .1) ;
E := pCORE(C , 2) ;
#E ;

32

check := ISISOMORPHIC(quo<C |E>, ALT(5)) ; check ;

true

7. Factorise the group determinants of the five groups of order 12. (You can get the groups
from the Small Groups Database.)

Warning. This can take rather a long time. Are there faster ways to factorise the group
determinant?

Solution:
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groupDet := function(G)
n := #G ;
P := POLYNOMIALRING(INTEGERS(), n : GLOBAL) ;
ASSIGNNAMES(∼P , [“x” cat INTEGERTOSTRING(i ) : i in [1. . n]]) ;
L := SETSEQ(SET(G)) ; L := [h∗g : g in L] where h is L[1]−1 ;
M := ZEROMATRIX(P , n, n) ;
for i → x in L, j → y in L do

k := INDEX(L, x∗y−1) ;
M [i , j ] := P .k ;

end for ;
return M , DETERMINANT(M ) ;

end function ;
for d := 1 to NUMBEROFSMALLGROUPS(12) do

“Group”, d ;
G := SMALLGROUP(12, d ) ;
time M , D := groupDet (G) ;
// time Factorisation(D);

end for ;

8. Using MAGMA’s cohomology intrinsics find all central extensions of Sym(5) by the cyclic
group of order 2 and describe their structure.

Solution:

G := SYM(5) ;
CM := COHOMOLOGYMODULE(G, A) where A is TRIVIALMODULE(G, GF(2)) ;
H2 := COHOMOLOGYGROUP(CM, 2) ;
DIMENSION(H2) ;

2

extns := [ EXTENSION(CM, v ) : v in [H2| [0, 0], [1, 0], [0, 1], [1, 1]] ] ;
permgps := [ COSETIMAGE(E , sub<E |>) : E in extns ] ;
[#DERIVEDGROUP(X ) : X in permgps ] ;

[ 60, 60, 120, 120 ]

[#CENTRE(X ) : X in permgps ] ;

[ 2, 2, 2, 2 ]

[ CENTRE(X ) subset DERIVEDGROUP(X ) : X in permgps ] ;

[ false, false, true, true ]

[exists{t : t in X | ORDER(t ) eq 2 and t notin DERIVEDGROUP(X )} : X in permgps] ;

[ true, true, true, false ]

check := ISISOMORPHIC(permgps[1], DIRECTPRODUCT(CYCLICGROUP(2), G)) ; check ;

true

Thus permgps[1] is the direct product C2 × Sym(5). It can be shown that permgps[2] is
the semidirect product of Alt(5) by a cyclic group of order 4, where the element of order
4 acts on Alt(5) as an involution from Sym(5).
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