
The University of Sydney
School of Mathematics and Statistics

Solutions to Algebras and Reductive Groups in MAGMA

MagmaMondays: 23 October 2023 Semester 2, 2023

Web Page: https://sites.google.com/view/magma-mondays/
Lecturer: Don Taylor

1. Recall from the lecture that the octonions over a ring R have a basis e1, e2, . . . , e8 such
that e2i = 1 (for i ≥ 2) and eiej = ε(i, j, k)ek for a choice of signs ε(i, j, k) = ±1 where
{i, j, k} belongs to

fano := {@ <2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7> : n in [0. . 6] @} ;

Let A = O(Q) denote the algebra of octonions over the rational field Q,

(a) Let a be the matrix corresponding to the permutation (2, 3, 4, 5, 6, 7, 8). Show that
a is an automorphism of A that permutes the vectors ±ei.

Hint: PERMUTATIONMATRIX( . . . )

Solution: First construct the octonions as a structure constant algebra as in the
lecture.

T := [<f [1g ], f [2g ], f [3g ], SIGN(g)> : g in SYM(3), f in fano] ;
T cat:= [ <i , i , 1,−1> : i in [2. . 8] ] ;
T cat:= [ <1, i , i , 1> : i in [1. . 8] ] cat [<i , 1, i , 1> : i in [2. . 8] ] ;
octonions := func< R | ALGEBRA< R , 8 | T > > ;
A := octonions(RATIONALS()) ;

Convert the permutation to a permutation matrix over the rationals.

a := PERMUTATIONMATRIX(RATIONALS(), SYM(8) ! (2, 3, 4, 5, 6, 7, 8)) ;

Check that a preserves multiplication of basis elements.

B := BASIS(A) ;
forall{<u , v> : u , v in B | (u∗v )∗a eq (u∗a)∗(v∗a) } ;

true

BB := B cat [−v : v in B ] ;
forall{e : e in BB | e∗a in BB } ;

(b) Let b0 be the permutation (2, 7)(3, 4). Show that b0 is an automorphism of the 7-
point plane defined by fano. Then find a diagonal matrix d = diag(±1,±1, . . . ,±1)
such that db is an automorphism of A that permutes the vectors ±ei, where b is
the permutation matrix of b0.

Solution: First change the ‘lines’ of the 7-point plane to 3-element sets instead
of triples.

sfano := {@{2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7} : n in [0. . 6]@} ;
b0 := SYM(8) ! (2, 7)(3, 4) ;

Check that b0 preserves the lines.

forall{ln : ln in sfano | ln b0 in sfano } ;

true

To find the diagonal matrix, define a function isAuto(A, g) to check whether a matrix
g is an automorphism of A.
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isAuto := func< A, g |
forall{<u , v> : u , v in BASIS(A) | (u∗v )∗g eq (u∗g)∗(v∗g) } > ;

Convert b to a permutation matrix.

b := PERMUTATIONMATRIX(RATIONALS(), b0) ;

A moments thought shows that we only need to find the signs at positions 2, 3, 4
and 7.

for s2, s3, s4, s7 in [1,−1] do
d0 := DIAGONALMATRIX(RATIONALS(), [1, s2, s3, s4, 1, 1, s7, 1]) ;
if isAuto(A, d0∗b) then s2, s3, s4, s7 ; d := d0 ; end if ;

end for ;

1 1 -1 -1

-1 -1 1 1

(c) Let G be the subgroup of GL(8,Q) generated by the matrices a and db. Show that
the order of G is 1 344 and that G has a normal abelian subgroup E of order 8
such that the quotient G/E is isomorphic to SL(3, 2). Furthermore, this extension
is non-split ; that is, there is no subgroup of G isomorphic to SL(3, 2).

Solution: Using the matrix d found in the previous part of this exercise we have

G := sub<GL(8, RATIONALS()) | a, d∗b > ;
#G ;

1344

E := pCORE(G, 2) ;
#E ;

8

S := quo< G | E > ;
check := ISISOMORPHIC(S , SL(3, 2)) ; check ;

true

Use the second cohomology group to find the type of the extension.

S32 := SL(3, 2) ;
V := GMODULE(S32) ;
CM := COHOMOLOGYMODULE(S32, V ) ;
H2 := COHOMOLOGYGROUP(CM, 2) ;
H2 ;

Full Vector space of degree 1 over GF(2)

extn1 := EXTENSION(CM, H2 ! [0]) ;
extn2 := EXTENSION(CM, H2 ! [1]) ;

Convert from GRPFP to a permutation group so that we can use ISISOMORPHIC.

perm1 := COSETIMAGE(extn1, sub<extn1|>) ;
ok := ISISOMORPHIC(perm1, AGL(3, 2)) ; ok ;

true

perm2 := COSETIMAGE(extn2, sub<extn2|>) ;
ok := ISISOMORPHIC(perm2, G) ;

true
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2. Let M be the set of elements of norm 1 in the integral octonions.

(a) Show that the elements of M satisfy the alternative laws: (xy)x = x(yx), x(xy) =
x2y, (xy)y = xy2 but M is not associative.

Solution: Recall that the ring of integral octonions is a maximal order in the
algebra A of octonions over the rationals.

X := { INCLUDE( {hπ : h in line}, 2 ) : line in fano }
where π is SYM(8) ! (1, 2) ; X ;

X join:= {{1. . 8} diff x : x in X } ;

Change the elements of X to sequences.

X := { SETSEQ(x ) : x in X } ;

Define the Moufang loop M.

M := { a∗x : x in B , a in {1,−1} } ;
M join:= {(a∗B [p[1]]+b∗B [p[2]]+c∗B [p[3]]+d∗B [p[4]])/2 :

a, b, c , d in {1,−1}, p in X } ;

Check the alternative laws:

forall{<x , y> :x , y in M | (x∗y )∗x eq x∗(y∗x ) and x∗(x∗y ) eq x 2∗y
and (x∗y )∗y eq x∗y 2 } ;

true

Check non-associativity:

exists{ <x , y , z> : x , y , z in M | (x∗y )∗z ne x∗(y∗z) } ;

true

(b) Show that every element of M has an inverse.

Solution:

conj := func< ξ | 2∗ξ[1]∗PARENT(ξ) ! 1−ξ> ;
forall{ x : x in M | x∗conj (x ) eq 1 } ;

true

(c) The reflection rα in the hyperplane orthogonal to α is

vrα = v − [[v, α]]α where [[v, α]] =
2(v, α)

(α, α)
.

In O(Q) we have (u, v) = uv + vu and so for α ∈ M we have vrα = −αvα.

norm := func< ξ | (ξ∗conj (ξ))[1] > ;
ref := func< a, v | −a∗conj (v )∗a / norm(a) > ;
refmat := func< a | MATRIXRING(BASERING(P), DIMENSION(P)) !

[ref (a, x ) : x in BASIS(P)] where P is PARENT(a) > ;

Use MAGMA to check that M is a root system. That is,

• 0 /∈ M,

• For all α ∈ M the reflection rα leaves M invariant,

• For all α, β ∈ M the Cartan coefficient [[α, β]] is an integer.

Solution:

0 notin M ,
forall{<a, b> : a, b in M | ref (a, b) in M },
{ (u∗conj (v ) + v∗conj (u))[1] : u , v in M } ;

true true {−2, −1, 0, 1, 2 }
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3. If w has order 3, the map x 7→ wxw is an automorphism of OZ. The matrix of this
automorphism is autmat (w ), where

aut := func< a, v | a 3 eq 1 select a 2∗v∗a else 0 > ;
autmat := func< a | MATRIXRING(BASERING(P), DIMENSION(P)) !

[aut (a, x ) : x in BASIS(P)] where P is PARENT(a) > ;

Let gens be the set of all automorphisms of OZ constructed from the elements of order 3
in M and let G be the group they generate.

(a) Show that the elements of gens are involutions and that G can be generated by
three of them.

Solution:

trace := func< ξ | 2∗ξ[1] > ;
M3 := [ x : x in M | trace(x ) eq −1 ] ;
reps := [ REP(Q) : Q in {{x , x −1} : x in M3}] ;
gens := [ autmat (w ) : w in reps ] ;
{ ORDER(g) : g in gens } ;

{ 3 }
G := sub<GL(8, RATIONALS()) | gens > ;
exists{ g : g in gens | G eq sub< G | gens[1], gens[2], g > } ;

true

(b) Find the orbits of G on M and their lengths.

Solution: The elements of G act on the underlying vector space of the algebra
A of rational quaternions. First check that the elements of order 3 form a single
orbit as do the elements of order 6.

V := VECTORSPACE(A) ;
#M3 ;

56

ω := REP(M3) ;
orb3 := { ω ∗ g : g in G } ;
orb6 := { −g : g in orb3 } ;
#orb3, #orb6, orb3 eq orb6 ;

56 56 false

Similarly the elements of order 4 form a single orbit.

M4 := [ x : x in M | x 2 eq −1 ] ;
i := REP(M4) ;
orb4 := { i ∗ g : g in G } ;
#orb4, SET(orb4) eq SET(M4) ;

126 true

Since G fixes 1 and −1 this accounts for all the elements of M.

(c) Show that the set M4 of elements of order 4 in M is a root system of type E7.

Solution: Since M4 is a subset of M , which is a root system of type E8, in order
to check that it is a root system it is enough to show that for all a, b in M4 we have
arb ∈ M4 where rb denotes the reflection.

forall{ <a, b> : a, b in M4 | ref (a, b) in M4 } ;

true
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Find positive roots and simple roots using the code from the lecture.

z := A ! [2 i : i in [1. . 8]] ;
P := {@ v : v in M4 | INNERPRODUCT(z , v ) gt 0 @} ;
S := P diff {@ u+v : u , v in P | u+v in P @} ;
CHANGEUNIVERSE(∼S , V ) ;
C := MATRIX(INTEGERS(), #S , #S , [2∗(a, b)/(b, b) : a, b in S ]) ;
DYNKINDIAGRAM(C) ;

E7 5 - 6 - 3 - 1 - 7 - 4

|

2

(d) Let i be an element of M4 and let G0 be its stabiliser in G. Find the lengths of the
orbits of G0 on M4.

Solution: Using the element i in M4 from above:

G0 := STABILISER(G, V ! i ) ;
orbs := [] ;
while &+[INTEGERS()| #oo : oo in orbs ] lt #M4 do

j := rep{ v : v in M4 | v notin &join orbs } ;
APPEND(∼orbs, { j∗g : g in G0 }) ;

end while ;
[#oo : oo in orbs ] ;

[ 48, 12, 16, 16, 16, 16, 1, 1 ]

4. Find all semisimple root data (up to isomorphism) of type A3. (Hint: Let C be a Cartan
matrix of type A3 and consider factorisations C = AB⊤.)

Solution:

C3 := CARTANMATRIX(“A3”) ;
I3 := IDENTITYMATRIX(INTEGERS(), 3) ;
A3 := MATRIX([[1, 0, 0], [0, 1, 0], [1, 0, 2]]) ;
B3 := MATRIX([[2,−1,−1], [−1, 2, 0], [0,−1, 1]]) ;
C3 ; A3∗TRANSPOSE(B3) eq C3 ;

[ 2 -1 0]

[-1 2 -1]

[ 0 -1 2]

true

R1 := ROOTDATUM(I3, C3) ;
R2 := ROOTDATUM(C3, I3) ;
R3 := ROOTDATUM(A3, B3) ;
ISISOMORPHIC(R1, R2), ISISOMORPHIC(R2, R3), ISISOMORPHIC(R1, R3) ;

false false false

5. The MAGMA code

P<x> := POLYNOMIALRING(RATIONALS()) ;
F<τ> := NUMBERFIELD(x 2 − x −1) ;

creates the field F generated over the rationals by the element τ such that τ2 = τ + 1.
Then the code
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H<i , j , k> := QUATERNIONALGEBRA< F | −1, −1 > ;

creates the algebra of quaternions over F with basis 1, i, j, k such that

i2 = j2 = k2 = ijk = −1.

Let

π := (1/2)∗(−1 + i + j + k ) ;
σ := (1/2)∗(τ−1 +i +τ∗j ) ;
X := {H ! 1,π,σ} ;

and let I be the smallest multiplicatively closed subset of H containing X.

(a) Show that I is isomorphic to SL(2, 5).

Solution:

Π := MATRIX(F , 4, 4, [ ELTSEQ(b∗π) : b in BASIS(H) ]) ;
Σ := MATRIX(F , 4, 4, [ ELTSEQ(b∗σ) : b in BASIS(H) ]) ;
S , f := sub< GL(4, F ) | Π,Σ > ;
I := { H ! f (g)[1] : g in S } ;
X subset I and forall{ <x , y> : x , y in I | x∗y in I} ;

true

bool , _ := ISISOMORPHIC(S , SL(2, 5)) ; bool ;

true

(b) Show that I is a root system (when considered as a subset of H). What is its
Cartan type?

Solution:

S := [π, −σ] ;
APPEND(∼S , rep{ s : s in I | INNERPRODUCT(s, S [1]) eq 0 and

2∗INNERPRODUCT(s, S [2]) eq −1 }) ;
APPEND(∼S , rep{ s : s in I | INNERPRODUCT(s, S [1]) eq 0 and

INNERPRODUCT(s, S [2]) eq 0 and 2∗INNERPRODUCT(s, S [3]) eq −τ }) ;
CARTANNAME( MATRIX(F , 4, 4, [2∗INNERPRODUCT(s, t ) : s, t in S ]) ) ;

H4

6. Let p be a prime and let S be the simply connected group of Lie type A and rank 1 over
the finite field of p elements. For p = 2, 3, 5 find the dimensions of the highest weight
representations of S (as computed by MAGMA)?

Solution:

for p in [2, 3, 5] do
S := GROUPOFLIETYPE(“A1”, GF(p) : ISOGENY := “SC”) ;
[DIMENSION(CODOMAIN(HIGHESTWEIGHTREPRESENTATION(S , [n]))) : n in [1. . 2∗p+1]] ;

end for ;

[ 2, 3, 4, 5, 6 ]

[ 2, 3, 4, 5, 6, 7, 8 ]

[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]
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