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We consider the problem of an ensemble Kalman filter when only partial observa-
tions are available. For small ensemble sizes this may lead to an overestimation of
the error covariances. We show that by incorporating climatic information of the
unobserved variables the variance can be controlled and superior analysis skill is
obtained. We then apply this Variance Controlling Kalman Filter to

• sparse observational networks
• balance
• model error
• controlling catastrophic filter divergence

We assume that we have access to proper (noisy) observations are available for
some variables (observables) but not for other unresolved variables, for which only
their statistical climatic behaviour such as their variance and their mean is avail-
able (pseudo-observables). Observations xobs(ti) = Hz(ti) + robs(ti) are taken at
equidistant observation times tn = n∆tobs. Here H : R

N → R
n is the observation

operator, and the the observational noise is assumed to be Gaussian with error
covariance matrix Robs. For the pseudo-observables we assume climatic knowledge
about the mean atarget and variance Atarget. We introduce the pseudo-observation
operator h : R

N → R
m and the error covariance matrix Rw associated with the

pseudo-observables. By requiring that the projected analysis error covariance as-
sumes climatology, we can determine Rw.

The algorithm for the filter is as follows:

Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z′

f (t)[Z′

f (t)]T

Step 2: Analysis step

z̄a = z̄f − Kobs(Hz̄f − xobs) − Kw(hz̄f − atarget)

Kobs = PfH
T (HPfH + Robs)

−1 , Kw = Pfh
T (hPfh + Rw)−1

R−1
w = A−1

target − (hPah
T )−1 .

To assure that Rw is positive definite, we diagonalize and project onto the over-
estimating subspace.
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Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa = [I − KobsH− Kwh] Pf =
1

k − 1
Z′

a [Z′

a]
T

using ensemble square root filters.

Step 4: Update of the forecast

Set Zb = Za to propagate the ensemble forward again with the full dynamics to
the next observation time.

We have shown in simulations of the Lorenz-96 model that using this filter better
skill in the data assimilation procedure is obtained compared to the classical ETKF
in sparse observational networks for small observation intervals ∆tons ≤ 6hrs, and
for sufficiently large observational noise. For large observational intervals the en-
semble of ETKF will have acquired climatological covariance and our constraint
is not needed.

Furthermore we have presented results on a genesis for catastrophic filter di-
vergence in the situation of sparse observations with small observational noise.
Machine-infinity blow-up of the forecast model was explained by the finite-size
sampling effect of large cross-covariances pushing the analysis off the attractor
with subsequent rapid attraction back to the attractor. The associated stiffness
causes the numerical integrator to blow-up.
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