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Abstract. We consider the problem of sampling from an unknown distribution for
which only a sufficiently large number of training samples are available. Such set-
tings have recently drawn considerable interest in the context of generative modelling
and Bayesian inference. In this paper, we propose a generative model combining
Schrödinger bridges and Langevin dynamics. Schrödinger bridges over an appropri-
ate reversible reference process are used to approximate the conditional transition
probability from the available training samples, which is then implemented in a
discrete-time reversible Langevin sampler to generate new samples. By setting the
kernel bandwidth in the reference process to match the time step size used in the un-
adjusted Langevin algorithm, our method effectively circumvents any stability issues
typically associated with the time-stepping of stiff stochastic differential equations.
Moreover, we introduce a novel split-step scheme, ensuring that the generated sam-
ples remain within the convex hull of the training samples. Our framework can be
naturally extended to generate conditional samples and to Bayesian inference prob-
lems. We demonstrate the performance of our proposed scheme through experiments
on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale
parametrization conditional sampling problem.
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1. Introduction

Generative modeling is the process of learning a mechanism for synthesizing new samples
that resemble those of the original data-generating distribution, given only a finite set of
samples. It has seen wide adoption and enormous success across diverse application domains,
from image [5, 22] and text generation [55, 31], to drug discovery [3, 2] and anomaly detection
[10, 47], to name but a few.

In this paper, we introduce a new nonparametric approach to generative modeling that
combines ideas from Schrödinger bridges [41, 6] and reversible Langevin dynamics [40]. Suppose
that we are given M training samples x(i) ∼ π, i = 1, . . . ,M , from an unknown distribution
π on Rd. Perhaps the simplest nonparametric approach to generative modeling is to build a
kernel density estimate (KDE) and then sample from it; the KDE is essentially a mixture model
with M components. Alternatively, one could estimate the score function, s(x) ≈ ∇ log π(x),
without directly estimating π, and use this estimate as the drift term of Langevin dynamics,

(1) Ẋτ = s(Xτ ) +
√
2Ẇτ ,

where Wτ denotes standard d-dimensional Brownian motion. There is a plethora of ways of
estimating the score function [24, 51], and given an estimate for it, one needs to discretize (1),
for example using Euler–Maruyama, to obtain an implementable scheme. However, the step
size needs to be carefully chosen: a small step size leads to slow convergence, while too large
a step yields instability of the numerical scheme, especially for data that are supported on a
compact manifold, e.g.,

(2) M = {x ∈ Rd : g(x) = 0},
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for some unknown function g(x). Any estimated score function ŝM (x) will take large values for
x with ∥g(x)∥2 ≫ 0, rendering the Langevin dynamics (1) stiff. This implies that an explicit
time integration method such as Euler–Maruyama will require very small step sizes ∆τ > 0.

In this paper, we choose an alternative approach. Instead of first estimating the score
function ŝM (x) and then discretising (1) in time, we employ Schrödinger bridges [41, 6] to
directly estimate the conditional expectation value

(3) µϵ(x) := E[Xϵ|X0 = x]

from the given samples {x(i)}Mi=1 for given parameter ϵ > 0. We denote this approximation by
mϵ(x) : Rd → Rd. The second key ingredient of our method is to interpret ϵ as a step size
and to read off a Gaussian transition kernel from the Schrödinger bridge approximation in the
form of

(4) Xn+1 = mϵ(Xn) +
√
Σ(Xn)Ξn,

with appropriately defined diffusion matrix Σ : Rd → Rd×d and Ξn ∼ N(0, ϵI). Broadly,

mϵ(Xn) controls the drift, while
√

Σ(Xn)Ξn introduces noise. An obvious choice for Σ(x) is
Σ(x) = 2I, which corresponds to (1) and its Euler–Maruyama discretisation with step-size
∆τ = ϵ.

In the recursion (4), the step size ϵ is linked to the error of the Schrödinger bridges approx-
imation. Comparing to directly discretizing (1) using Euler–Maruyama with step-size ∆τ = ϵ,
we will demonstrate that the scheme (4) is stable and ergodic for all step-sizes ϵ > 0 and,
hence, ϵ can be chosen solely on accuracy considerations. Furthermore, the inclusion of the
position-dependent diffusion matrix Σ(x) makes it better suited for sampling from a manifold.

Our construction utilizes a Sinkhorn scheme [34, 54], which solves the discrete Schrödinger
bridge problem of optimally coupling the empirical measure of the training samples with itself
over an appropriate diffusion process. By solving the Schrödinger bridge problem, we construct
a transition matrix whose state space encompasses all the training points. We generalize this
approach to the continuous state space that extends beyond the current training data points.
Armed with this transition kernel, which directly leads to the desired approximation mϵ(x),
we obtain a Markov chain that samples from the underlying distribution of the training data
via (4).

From here, we introduce a novel split-step time-stepping scheme, which ensures that the
generated samples consistently lie within the convex hull of the training samples and is ergodic
[40]. In contrast, using a direct discretization of (1) with Euler–Maruyama results in generating
samples on unbounded domains.

In addition, we replace the constant diffusion matrix Σ(x) = 2I with a scaled matrix

(5) Σ(x) = 2ρ(x)I

for given bandwidth ρ(x) > 0, which requires appropriate modifications to the Schrödinger
bridges considered in [54]. As we demonstrate in our numerical experiments, the resulting
sampling scheme (4) provides a better representation of the underlying target distribution.
More precisely, we assess the quality of the generated samples using a variable bandwidth
kernel and using a fixed bandwidth kernel on synthetic data sets drawn from non-uniform
distributions supported on irregular domains and on low-dimensional manifolds. In addition,
we explore data-informed choices of Σ(x) in (4).

We then extend our method to cover Bayesian inference problems with π as prior and
to create a conditional generative model. These extensions allow us to perform Bayesian
inference in the “simulation-based” setting, i.e., without explicit evaluation of a prior density
and, in the case of conditional sampling, even without evaluations of the data likelihood. We
demonstrate the performance of our conditional generative model for a stochastic subgrid-scale
parametrization problem.

We close this introduction by pointing to a close connection of the considered Schrödinger
bridge problems to diffusion maps [8, 7, 39] which have also been employed to approximate the
semigroup exp(ϵL), ϵ > 0, of a diffusion process with generator L and invariant distribution
π, from given samples {x(i)}Mi=1. We recall that µϵ(x) = exp(ϵL)Id(x), where Id : Rd → Rd
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denotes the identity map. However, as demonstrated in [54], the Schrödinger bridge approach
leads to a more accurate approximation mϵ(x) of the analytic µϵ(x) in terms of ϵ > 0.

1.1. Related work. Langevin dynamics (1) characterizes the motion of particles as they
experience a blend of deterministic and stochastic forces. Unlike in this paper, it is typically
assumed that the deterministic forcing term ∇ log π(x) is given. Langevin dynamics has been
used as a popular tool for sampling data from the target distribution π. One variation of this is
to introduce a symmetric preconditioning operator to the Langevin dynamics and to consider
reversible processes of the general form

(6) Ẋτ = K(Xτ )∇ log π(Xτ ) +∇ ·K(Xτ ) +
√

2K(Xτ )Ẇτ ,

where K(x) is a symmetric positive definite matrix and we rely on the Itô interpretation
of the multiplicative noise term [40]. While (6) has originally been discussed in molecular
physics [12, 11, 23], popular choices of K(x) arising from computational statistics include the
empirical covariance [13] and the Riemannian metric [14, 30], making this method converge
faster and more geometry-aware, while leaving the stationary distribution unchanged. The
scaled diffusion matrix (5) corresponds to the choice K(x) = ρ(x)I. Optimal choice of K(x)
in terms of convergence to equilibrium have recently been discussed in [29].

Our approximation of the semigroup exp(ϵL) relies on recent work on diffusion maps [34, 54],
which relies on an accelerated Sinkhorn algorithm. The Sinkhorn algorithm solves for the
Markov transition kernel associated with a discrete Schrödinger bridge problem, where the
coupling is between the empirical measure of the training samples with itself. This approach
results in a symmetric stochastic operator that, notably, approximates the semigroup exp(ϵL)
to higher accuracy in ϵ than standard diffusion map approximations [8, 7]. Separately, the idea
of using variable bandwidth kernels can be found very early in the statistics community, for
example, in the context of kernel density estimation [46, 52]. Recently, [1] replaces the original
fixed bandwidth kernel with the variable bandwidth kernel in the construction of diffusion
maps, making the approximation of the generator accurate on unbounded domains. Inspired
by this concept, we replace the fixed bandwidth kernel Σ = 2I with a variable bandwidth
kernel (5) for given ρ(x) > 0. The resulting Schrödinger bridge approximates the semigroup of
the reversible Langevin diffusion process (6) with K(x) = ρ(x)I.

In recent years, there has been a surge of research interest in the realm of generative mod-
eling. Despite the remarkable achievements of well-established neural network-based genera-
tive models, such as variational auto-encoders (VAE) [26, 44], generative adversarial networks
(GAN) [15], and diffusion models or score generative models (SGM) [21, 49], they often require
meticulous hyperparameter tuning [45, 50] and exhibit a long training time [15, 53]. Further-
more, SGMs solve both a forward and a reverse stochastic differential equation (SDE). The
forward SDE introduces noise to the sample, transforming the data into the standard normal
distribution, while the reverse SDE takes sample from the standard normal distribution back
to the original data distribution, yielding a different sample than the one initially fed into the
forward SDE. During the training process, the score function is learned, not for the target
distribution, but for the data distribution at each time. Our work, on the other hand, solves
only one (forward) SDE, and we learn the score of the target distribution only once.

Several recent studies have combined a range of score function estimation techniques with
Langevin dynamics. For example, [49] introduces a noise conditional score network to learn
the score function and then uses annealed Langevin dynamics to generate samples. [4] stud-
ies the convergence rate of a Langevin based generative model, where the score is estimated
using denoising auto-encoders. Such techniques are also studied within the Bayesian imaging
community, commonly referred to as “plug and play” [28]. These approaches use neural net-
works for the estimation of the score function, necessitating substantial fine-tuning, and their
effectiveness depends on factors such as the complexity of the approximation families and the
architectural structures of the neural networks. In addition, [28] uses an explicit projection
to ensure that samples stay on the compact manifold given by (2) which is assumed to be
explicitly known. In contrast, we do not assume any knowledge of M.
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1.2. Outline. In Section 2 we construct a Markov chain using a Schrödinger bridge approx-
imation that samples from the given discrete data distribution. In Section 3, we extend this
Markov chain to the continuous state space setting by constructing a Gaussian transition ker-
nel which extracts its conditional mean and covariance matrix from the underlying diffusion
map approximation. We introduce two discrete-time Langevin samplers; one with an arbitrary
data-unaware diffusion and one with a data-aware diffusion matrix in Section 3.1. Theoretical
properties such as stability and ergodicity are discussed in Section 3.2. We further discuss the
application of variable bandwidth kernels when constructing the Schrödinger bridge in Sec-
tion 3.3. While Section 3 focuses on finite step-size and finite sample-size implementations,
Section 4 establishes connections to the underlying semi-groups and generators in the infinite
sample-size limit. We explore the extension of our proposed scheme to a conditional sampling
setting and Bayesian inference in Section 5. We demonstrate our proposed methods in Sec-
tion 6 in a suite of examples, including a conditional sampling exercise with an application to
stochastic subgrid-scale parametrization. We conclude in Section 7 with a summary and an
outlook.

2. Discrete Schrödinger bridges

In this section, we collect some preliminary building blocks by considering the simpler task
of building a discrete Markov chain over the samples {x(i)}Mi=1, which leaves the associated
empirical probability measure

µem(dx) =
1

M

M∑
i=1

δx(i)(dx)

in Rd invariant. Here δx(dx) denotes the Dirac delta distribution centred at x. In the subse-
quent section, we will generalise the finding from this section to approximately sample from π,
allowing for the generation of new samples which are different from the given training samples.

We consider the Schrödinger bridge problem of coupling µem with itself along a reversible
reference process with (unnormalized) transition probabilities

(7) tij = exp

(
− 1

2ϵ
(x(i) − x(j))⊤

(
K(x(i)) +K(x(j))

)−1

(x(i) − x(j))

)
,

which we collect into a symmetric matrix Tϵ ∈ RM×M . Here ϵ > 0 is a tuneable parameter
and K(x) is a symmetric positive definite matrix for all x ∈ Rd. Popular choices include
K = I, K = ΣM , where ΣM is the empirical covariance matrix of the samples {x(i)}Mi=1, and
K = ρ(x)I, where ρ(x) > 0 is a scaling function representing variable bandwidth.

Instead of working with the empirical measure µem(dx), we introduce the probability vector
p∗ = (1/M, . . . , 1/M)⊤ ∈ RM over {x(i)}Mi=1. Then the associated Schrödinger bridge prob-
lem can be reformulated into finding the non-negative scaling vector vϵ ∈ RM such that the
symmetric matrix

(8) Pϵ = D(vϵ)TϵD(vϵ)

is a Markov chain with invariant distribution p∗, i.e.,

Pϵp
∗ = p∗.

Here D(v) ∈ RM×M denotes the diagonal matrix with diagonal entries provided by v ∈ RM .
We remark that the standard scaling used in Schrödinger bridges would lead to a bistochastic
matrix P̃ϵ, which is related to (8) by P̃ϵ =M−1Pϵ.

Given Pϵ, one can now construct a Monte Carlo scheme that samples from µem. Assume
the Markov chain is currently in state x(j), then the transition probabilities to the next state
x ∈ {x(i)}Mi=1 are given by

pj = Pϵej ∈ RM ,

where ej ∈ RM denotes the j-th unit vector in RM . Since all entries in Pϵ are bounded

from below provided all samples satisfy x(i) ∈ M, where M is a compact submanifold in Rd,
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the constructed Monte Carlo scheme possesses a unique invariant measure given by p∗ and is
geometrically ergodic. The rate of convergence can be determined by the diffusion distance

d(x(i), x(j)) = ∥pi − pj∥2.
If the diffusion distance is small, then x(i) and x(j) are well connected. Furthermore, if
d(x(i), x(j)) is small for all points, then the Markov chain will mix quickly. In particular,
larger values of ϵ will lead to faster mixing.

However, the goal is to approximately sample from the underlying distribution π and not
just the empirical distribution µem(dx). The required extension of our baseline algorithm is
discussed in the following section.

3. Approximating the conditional mean

In order to implement (4), we need to define mϵ(x) and Σ(x) for x ∈ Rd. In this section,
we discuss how one can obtain these functions from the training samples {x(i)}Mi=1 and the
Markov chain approximation (8).

We introduce the vector tϵ(x) ∈ RM with entries

(9) tϵ,i(x) = exp

(
− 1

2ϵ
(x(i) − x)⊤

(
K(x) +K(x(i))

)−1

(x(i) − x)

)
for i = 1, . . . ,M . We then define the probability vector using the Sinkhorn weights, vϵ, obtained
in (8), i.e.,

(10) pϵ(x) =
D(vϵ)tϵ(x)

v⊤ϵ tϵ(x)
∈ RM

for all x ∈ Rd. This vector gives the transition probabilities from x to {x(i)}Mi=1 and provides a
finite-dimensional approximation to the conditional probability distribution πϵ(·|x) of the true
underlying diffusion process; i.e., the semigroup exp(ϵL) with generator L corresponding to
the generalized reversible diffusion process (6). See Section 4 for more details.

Finally, using the probability vector pϵ and introducing the data matrix of samples

(11) X = (x(1), . . . , x(M)) ∈ Rd×M ,

our sample-based approximation of the conditional mean is provided by

(12) mϵ(x) := Xpϵ(x).

Remark 3.1. The construction of the conditional mean mϵ(x) is known as the barycentric
projection of the entropy-optimally coupling [48, 42]. In optimal transport, vϵ plays the role of
the optimizer of the dual problem.

3.1. Sampling algorithms. We now present our main Langevin sampling strategies based
on the previously introduced probability vector pϵ(x) in (10). Sampling schemes of the form
(4) have the same drift term mϵ(x), but differ in the way the diffusion matrix Σ(x) is defined.
We consider a data-unaware diffusion as well as a data-aware diffusion which turns out to
be advantageous in generating new samples from the data distribution π. See the numerical
experiments in Section 6.

3.1.1. Langevin sampler with data-unaware diffusion. Using mϵ(x), we propose the recursive
sampler

(13) Xn+1 = Xn +∆τ

(
mϵ(Xn)−Xn

ϵ

)
+

√
2K(Xn)Ξn

as an approximation to (6), where ∆τ is the time step and Ξn ∼ N(0,∆τI). If K = I, we
obtain the score function approximation

(14) sM (x) =
mϵ(x)− x

ϵ

in (1). Furthermore, by taking ∆τ = ϵ, we have

(15) Xn+1 = mϵ(Xn) +
√
2K(Xn)Ξn.
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Note that (15) fits into the general formulation (4) with Σ(x) = 2K(x).
Let us briefly discuss the qualitative behavior of the time-stepping method (15) as a function

of ϵ > 0. For large ϵ, the expected value mϵ(x) will become essentially independent of the
current state Xn and the diffusion process will sample from a centred Gaussian. For ϵ → 0,
on the other hand, the probability vector pϵ(x) can potentially degenerate into a vector with
a single entry approaching one with all other entries essentially becoming zero. Hence a key
algorithmic challenge is to find a good value for ϵ and a suitable K(x), which guarantee both
good mixing and accuracy, i.e., Xn ∼ π as n→ ∞.

3.1.2. Langevin sampler with data-aware diffusion. From (10) and (11), one can also define
the scaled conditional covariance matrix,

(16) C(x) = ϵ−1(X −mϵ(x)1
⊤
M )D(pϵ(x))(X −mϵ(x)1

⊤
M )⊤ ∈ Rd×d,

which is the (scaled) covariance matrix associated with the probability vector pϵ(x). Here 1M ∈
RM denotes the M -dimensional vector of ones. Therefore, one can more directly implement a
Gaussian approximation associated with the transition probabilities pϵ(x) and introduce the
update

(17) Xn+1 = Xn +∆τ

(
mϵ(Xn)−Xn

ϵ

)
+

√
C(Xn)Ξn.

Similar to the previous case, setting ∆τ = ϵ implies

(18) Xn+1 = mϵ(Xn) +
√
C(Xn)Ξn,

which we found to work rather well in our numerical experiments since it directly captures
the uncertainty contained in the data-driven coupling Pϵ. The scheme (18) corresponds to
setting Σ(x) = C(x) in (4). Also note that the scheme (18) still depends on K(x) through the
probability vector pϵ(x).

3.2. Algorithmic properties. We briefly discuss several important properties on the stability
and the ergodicity of the proposed Langevin samplers.

The following Lemma establishes that, since each pϵ(x) is a probability vector, mϵ(x) =
Xpϵ(x) is a convex combination of the training sample {x(i)}Mi=1.

Lemma 3.1. Let us denote the convex hull generated by the data points {x(i)}Mi=1 by CM . It
holds that

(19) mϵ(x) ∈ CM
for all choices of ϵ > 0 and all x ∈ Rd.

Proof. The Lemma follows from the definition (12), which we write asmϵ(x) =
∑M

j=1 x
(j)pϵj (x),

and the fact that pϵ(x) is a probability vector with 0 ≤ pϵj (x) ≤ 1 for all ϵ > 0 and all

x ∈ Rd. □

This establishes stability of the Langevin samplers (15) and (18) for all step-sizes ϵ > 0. The
next lemma shows that the Langevin sampler (15) is geometrically ergodic.

Lemma 3.2. Let us assume that the data generating density π has compact support. Then the
time-stepping method (15) possesses a unique invariant measure and is geometrically ergodic
provided the norm of the symmetric positive matrix K(x) is bounded from above and below for
all x ∈ Rd.

Proof. Consider the Lyapunov function V (x) = 1 + ∥x∥2 and introduce the set

C = {x : ∥x∥ ≤ R}

for suitable R > 0. Since mϵ(Xn) ∈ CM and π has compact support, one can find a radius
R > 0, which is independent of the training data {x(i)}Mi=1, such that CM ⊂ C and

E[V (Xn+1)|Xn] ≤ λV (Xn)
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for all Xn /∈ C with 0 ≤ λ < 1. Furthermore, because of the additive Gaussian noise in (15),
there is a probability density function ν(x) and a constant δ > 0 such that

n(x′;mϵ(x), 2ϵK(x)) ≥ δν(x′)

for all x, x′ ∈ C. Here n(x;m,Σ) denotes the Gaussian probability density function with mean
m and covariance matrix Σ. In other words, C is a small set in the sense of [38]. Geometric
ergodicity follows from Theorem 15.0.1 in [38]. See also the self-contained presentation in
[36]. □

We note that extending Lemma 3.2 to the time-stepping scheme (18) with a data-aware diffu-
sion is non-trivial since the covariance matrix (16) may become singular.

Lemma 3.1 suggests to replace the sampling step (15) by the associated split-step scheme

Xn+1/2 = Xn +
√

2K(Xn)Ξn,(20a)

Xn+1 = Xpϵ(Xn+1/2).(20b)

This scheme now satisfies Xn ∈ CM for all n ≥ 1 and any choice of ϵ. Similarly, one can
replace (18) by the split-step scheme

Xn+1/2 = Xn +
√
C(Xn)Ξn,(21a)

Xn+1 = Xpϵ(Xn+1/2).(21b)

These split-step schemes have been used in our numerical experiments.

3.3. Variable bandwidth diffusion. It is well-known from the literature on diffusion maps
that a variable bandwidth can improve the approximation quality for fixed sample size M [1].
Here we utilize the same idea. However, we no longer insist on approximating the standard
generator with K = I, since we only wish to sample from the distribution π rapidly. Hence,
we consider reversible diffusion processes (6) with

(22) K(x) = ρ(x)I.

It is an active area of research to select a ρ that increases the spectral gap of L while not
increasing computational complexity. A larger spectral gap implies a faster convergence rate
[43], indicating that the generated samples are closer to the reference at a finite time, exhibiting
a high accuracy. We demonstrate numerically in Section 6 that ρ can indeed be used to increase
the sampling accuracy. More specifically, the bandwidth ρ(x) is chosen as

(23) ρ(x) = π(x)β ,

where β ≤ 0 is a parameter and the unknown sampling distribution π is approximated by an
inexpensive low accuracy density estimator [46, 52]. One finds that the variable bandwidth
parameter β in (23) and the scaling parameter ϵ both influence the effective step-size in the
Markov chain approximation (8) for (22). In order to disentangle the two scaling effects we
modify the construction of the entries (7) in Tϵ as follows. We first compute πi ≈ π(x(i)) over
all data points and then rescale these typically unnormalized densities:

π̃i = Z−1πi, Z :=
1

M

∑
j

πj .

The variable scaling length is then set to

ρi = π̃β
i = Z−βπβ

i

for i = 1, . . . ,M , i.e., K(x(i)) = ρiI in (7) and, more generally,

(24) K(x) = Z−βπ(x)β .

The proposed scaling implies that a constant target density π(x) leads to K(x(i)) = I in (7)
regardless of the chosen β value. See Section 6 below for our numerical findings.



8 GEORG GOTTWALD, FENGYI LI, YOUSSEF MARZOUK, AND SEBASTIAN REICH

4. Connections to the generator of Langevin dynamics

In this section, we discuss the proposed methodology in the limitM → ∞ under the idealised
assumption that the target distribution π is in fact known. It is well-known that K = I implies
that the Schrödinger bridge approximates the semi-group corresponding to the generator of
standard Langevin dynamics [34, 54]. Employing a variable bandwidth (22) instead alters the
semi-group and thus the underlying generator. However, since in both cases the density π(x)
remains invariant, this is not an issue as we are only concerned with drawing samples from the
distribution and not in reproducing any dynamical features.

More precisely, using (22) in (7), we consider the associated Markov chain approximation
given by (8). We formally take the limit M → ∞ and denote the limiting operator by Pϵ [54].
One formally obtains

Pϵ = eϵL,

where L denotes the generator defined by

(25) Lf = π−1∇ · (πρ∇f) = ∇ · (ρ∇f) + ρ∇ log π · ∇f.
We note that L is self-adjoint (reversible) with respect to the π-weighted inner product. It is
more revealing to consider the dual operator

L†µ = ∇ · (µρ∇(logµ− log π))

and the associated mean-field evolution equation

Ẋτ = ρ(Xτ ) (∇(log π(Xτ )− logµ(Xτ )) , X0 ∼ µ0,

which implies the invariance of µ = π.
Please also note that the generator (25) corresponds to the diffusion process (6) withK(x) =

ρ(x)I in Itô form and to

Ẋτ = ρ(Xτ )∇ log π(Xτ ) +
√
2ρ(Xτ ) ⋄ Ẇτ

in Klimontovitch form [23]. The drift term in the Itô formulation (6) can be expressed as

(26) L Id(x) = ρ∇ log π +∇ρ
and, hence, (14) provides a finite M approximation to the score function

s(x) = L Id(x).

However, recall that the recursive Langevin sampler (15) relies on a direct time-stepping
approach to (6) for K(x) = ρ(x)I and is based on

mϵ(x) = Xpϵ(x) ≈ exp(ϵL) Id(x),
instead of an approximation of the drift term on the right hand side of (6) via (26) followed
by a Euler–Maruyama time discretization. However, both approaches are formally consistent
in the limit ϵ→ 0 as

exp(ϵL) Id(x) ≈ x+ ϵs(x).

While we have focused on the particular choice K(x) = ρ(x)I in this section for simplicity,
the discussion naturally extends to general symmetric positive definite matrices K(x).

5. Bayesian inference and conditional sampling

We note that the previously discussed sampling methods can easily be extended to reversible
diffusion processes of the form

(27) Ẋτ = −∇V (Xτ ) +∇ log π(Xτ ) +
√
2Ẇτ ,

where V (x) denotes a known potential such as the negative log-likelihood function in case of
Bayesian inference with π taking the role of the prior distribution. We obtain, for example,
the adjusted time-stepping scheme

Xn+1/2 = Xn − ϵ∇V (Xn) +
√
2Ξn,

Xn+1 = Xpϵ(Xn+1/2)
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for given samples {x(i)}Mi=1 from an unknown (prior) distribution π(x). This numerical scheme
approximately samples from the invariant distribution

π̃(x) ∝ e−V (x)π(x).

Remark 5.1. We briefly divert to optimization of a regularised minimization problem of the
form

x∗ = argmin
x

{V (x)− log π(x)}

for given potential V (x) and regulariser − log π(x). Again assuming that only samples {x(i)}Mi=1

of π are available, an algorithm for approximating x∗ can be defined as follows:

xn+1/2 = xn − ϵ∇V (xn),

xn+1 = Xpϵ(xn+1/2).

Here mϵ(x) = Xpϵ(x) approximates the optimization update associated with the regulariser
− log π(x). The iteration is stable and any limiting point x∞ is contained in the convex hull of
the data points {x(i)}Mi=1.

Alternatively, the sampling schemes (20) and (21) can also easily be extended to conditional
generative modeling. More specifically, consider a random variable in x = (y, z), which we
condition on the second component for given z = z∗. In other words, we wish to sample from
π(y|z∗) given samples x(i) = (y(i), z(i)), i = 1, . . . ,M , from the joint distribution π(x) = π(y, z).

In order to perform the required conditional sampling, we propose a method which combines
approximate Bayesian computation (ABC) with our diffusion map based sampling algorithm.
Let us assume that we can generate M samples x(i) = (y(i), z(i)), i = 1, . . . ,M , from a joint
distribution π(y, z), which we then wish to condition on a fixed z∗. As before, we construct
vectors of transition probabilities pϵ(x) ∈ RM based on the samples {x(i)}Mi=1. We assume that
the bandwidth parameter ϵ used in the diffusion map approximation is also applied in the ABC
misfit function, that is,

L(z, z∗) =
1

2ϵ
∥z − z∗∥2.

This suggests the following split-step approximation scheme. Given the last sample Xn =
(Yn, Zn), we first update the z-component using

Ẑn = Zn − ϵ∇zL(Zn, z
∗) = z∗.

In other words, we replace the current Xn by X̂n = (Yn, z
∗). Next we apply the split-step

scheme (20) to X̂n, i.e.,

Xn+1/2 = X̂n +

√
2K(X̂n)Ξn,

Xn+1 = Xpϵ(Xn+1/2),

where we have again X = (x(1), . . . , x(M)), and the definition of the probability vectors pϵ(x)
follows from (10). The split-step scheme (21) generalises along the same lines.

6. Numerical experiments

In this section, we illustrate our method through three numerical examples encompassing
different ranges and focal points. In the first two examples, we generate samples using synthetic
datasets with increasing dimensions. Our emphasis is on exploring the impact of different
diffusions and of employing a variable bandwidth kernel. In the third example, we showcase
the proposed conditional generative modeling in Section 5, applied to a stochastic subgrid-scale
parametrization problem.
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6.1. One-dimensional manifold. To illustrate how well the proposed methods generate sta-
tistically reliable samples we consider first the case of M samples x ∈ R2. In particular, we
consider samples with a polar representation with radius r = 1+σrξr and angle θ = π/4+σθξθ
with σr = 0.06 and σθ = 0.6 and ξr,θ ∼ N(0, 1). We used M = 2, 000 samples to learn the
transition kernel and then generated 10, 000 new samples with an initial condition from the
data-sparse tail of the distribution, chosen to be the data point corresponding to the smallest
angle.

We begin by investigating the effect of the two noise models proposed, namely a constant
diffusion as in (15) with constant bandwidth K(x) = I and the case when the diffusion repro-
duces the sample covariance C as in (18). We employ a Langevin sampler with the splitting
scheme (20) with ϵ = 0.009 and (21), respectively. Figure 1 shows that choosing the sample
covariance as the noise model is clearly advantageous. Whereas both noise models generate
samples that reproduce the angular distribution the noise model using a constant diffusion is
overdiffusive in the radial direction. In contrast the noise model using the sample covariance
nicely reproduces the radial distribution.

We now investigate the effect of a variable bandwidthK(x). We employ the noise model (21)
with the sample covariance but useK(x) to determine the diffusion map (cf. (9)). The Langevin
sampler (21) is again initialized with the coordinates of the data point corresponding to the
smallest angle in the data-sparse tail. Figure 2 (left) shows the samples projected onto the
convex hull of the data, i.e. outputs of step (21b), when a uniform bandwidth K(x) = I with
ϵ = 0.009 is employed. Although the mean behaviour is well reproduced, it is seen that the
generative model fails near the data-sparse tails for large and small angles. Here the value of ϵ
is too small to generate significant diffusion and the samples are aligned on the (linear) convex
hull of the widely separated data samples. To mitigate against this behaviour we employ a
variable bandwidth ρ(x) = πβ with β = −1/5 and a kernel density estimate π(x). Figure 2
(right) shows how the variable bandwidth kernel is able to better reproduce the sampling in the
data-sparse tail regions. Figure 3 shows the empirical histograms for the radius and the angle
variables of the noisy samples corresponding to Figure 2 (i.e. outputs of step (21a)). Whereas
both, the uniform and the variable bandwidth kernels, reproduce the radial distribution very
well, the uniform bandwidth fails to reproduce the angular distribution in the tails where the
diffusion is not sufficiently strong to let the sampler escape the convex hull of the data.

We have seen that a constant uniform bandwidth generates samples which are concentrated
in the bulk of the data and which are overly diffusive in the radial direction (cf. Figure 1
(right)). One may wonder if employing a smaller virtual time step ∆τ < ϵ in the Langevin
sampler (13) will allow a Langevin sampler with constant bandwidth to generate more faithful
samples. Figure 4 shows that choosing a smaller time step ∆τ in (17), here with ∆τ = ϵ/4
is indeed able to reproduce the radial distribution. However, if the Langevin sampler is ini-
tialised with a data point in the center of the data samples, it is not able to diffuse into the tail
of the distribution distribution, leading to an under-diffusive empirical histogram for the angles.

The numerical experiments above suggest that we employ a noise model using the sample
covariance C combined with a variable bandwidthK(x) to control eventual data sparse regions.
When employing a variable bandwidth our method contains two hyperparameters which require
tuning: the bandwidth factor ϵ and the exponent β in the arbitrary choice of the variable
bandwidth ρ(x). Their role will be explored in the following subsection.

6.2. Multi-dimensional manifolds. In this numerical example, we show our proposed method
on hyper semi-spheres of dimension d = {3, 4, 9}, using both a fixed bandwidth kernel and a

variable bandwidth kernel. Data are generated by firstly sampling z(i) = (z
(i)
1 , · · · , z(i)d ) from

a d-dimensional standard normal distribution, and then setting y(i) = (z
(i)
1 , · · · , αz(i)d ), with

α = 5 to promote non-uniformity. Finally, the samples x(i) are obtained by normalizing y(i) to
achieve the unit length, i.e., y(i)/

∥∥y(i)∥∥, and perturbing y(i)/
∥∥y(i)∥∥ in the radial direction with

U(0, 0.01) noise. An instance of the target samples of three dimensions can be seen in Figure 5.
Given a bandwidth ϵ and a bandwidth function ρ(x), we implement the proposed scheme (21).
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Figure 1. Comparison of the different noise models employed by the
generative model. We employed a constant bandwidth with ϵ = 0.009.
Left: Original (blue) and generated data using a constant covariance
(red) and the sample covariance C(x) (magenta). Middle: Empirical
histograms of the angular variable θ. Right: Empirical histograms of
the radial variable r.
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Figure 2. Effect of a variable bandwidth K(x) = ρ(x)I in data-sparse
regions. For the generative model the Langevin sampler (21) is used and
we set ϵ = 0.009. Results are shown for the output of step (21b). Left:
Original (blue) and generated data for a constant bandwidth K(x) = I
(red). Right: Original (blue) and generated data for a variable band-
width K(x) = ρ(x)I with ρ(x) = π(x)β with β = −1/5 (magenta).

For the fixed bandwidth kernel we set ρ(x) = 1. For the variable bandwidth kernel (24), we
set ρ(x) = π(x)β , with β < 0, and π(x) is approximated using a kernel density estimator. We
use M = 1, 000 training samples to learn the transition kernel and run a Langevin sampler
to generate 50, 000 samples, with the initial data point being (1, 0, · · · , 0) ∈ Rd. To obtain a
better mixing of the Langevin sampler, we take one every 20 samples of the last 20, 000 gen-
erated samples of the chain, resulting in a total of 1, 000 samples. To evaluate the quality of
the generated samples, we compute the regularized optimal transport (OT) distance between

the generated samples {x(i)gen}Mg

i=1 and the original reference samples {x(j)ref}
Mr
j=1. The regularized

OT distance with entropy penalty 1/λ is defined as

dλ(xgen, xref) = min
P

∑
i,j

PijCij −
1

λ
h(P ),
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Figure 3. Effect of a variable bandwidthK(x) = ρ(x)I on the angular
and radial distributions (left and right, respectively). Shown are the
original data (blue), generated data for a constant bandwidth K(x) = I
(red) and for a variable bandwidth K(x) = ρ(x)I with ρ(x) = π(x)β

with β = −1/5. The data were generated using a constant covariance
noise model in (21) and ϵ = 0.009.
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Figure 4. Effect of a variable time step ∆τ in the Langevin sampler
(20) with constant diffusion K = 1. Results are shown for the original
data, and for ∆τ = ϵ and ∆τ = ϵ/4. Throughout a constant bandwidth
is used. Left: Empirical histogram of the angular variable θ. Middle:
Empirical histograms of the radial variable r. Right: Original (blue)
and generated data in the (x1, x2)-plane with ∆τ = 1 (red) and with
∆τ = ϵ/4 (green).

subject to the constraint that

P1Mr =
1

Mg
(1, · · · , 1)⊤ ∈ RMg

P⊤1Mg
=

1

Mr
(1, · · · , 1)⊤ ∈ RMr ,

where

h(P ) = −
∑
i,j

Pij logPij

is the information entropy. The entries of C ∈ RMg×Mr are set to be the pairwise Euclidean dis-

tances between {x(i)gen}Mg

i=1 and {x(j)ref}
Mr
j=1, and each sample is assigned equal weight marginally.

We compute the OT distance using the Sinkhorn–Knopp algorithm [9, 27]. The number of
reference samples is chosen to beMr = 50, 000, and the entropic regularization penalty is set to
be 1/λ = 100. We consider the OT distance as a diagnostic to quantify the statistical accuracy
of the sampling scheme.
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d optimal bandwidth
3 ϵ∗ = 0.008
4 ϵ∗ = 0.010
9 ϵ∗ = 0.050

Table 1. Optimal bandwidth parameters leading to minimal OT dis-
tance for different dimensions d, obtained using grid search.

We then optimize over the parameters ϵ for a fixed λ using grid search. To be more precise,
for the Langevin sampler with a fixed bandwidth kernel, we vary ϵ, and compute the OT dis-
tance of the generated samples. The best performed ϵ is chosen to be the one that corresponds
to the smallest OT distance, and we call it ϵ∗. For the variable bandwidth kernel, we fix ϵ = ϵ∗.
In order to disentangle the effect of varying ϵ and varying β we use the normalized variable
bandwidth as described in (24). We set β = −0.01× 2n with n = {0, · · · , 8} for d = {3, 4, 9}.
The optimal bandwidth ϵ∗ is reported in Table 1 and the comparisons between the fixed band-
width kernel and the variable bandwidth kernel are presented in Figure 6. We observe that by
keeping ϵ fixed, the OT distance becomes smaller for a wide range of β.

We then examine the quality of generated samples at the optimal ϵ and β along the last
coordinate (the nonuniform direction). Similar to the previous study, we compute the one
dimensional OT distance of the marginal distribution (see Figure 6 (right)) and show the
histograms and the cumulative density function (CDF) of the samples generated using the
fixed bandwidth kernel and using the variable bandwidth kernel in Figure 7. The benefit of
using the variable bandwidth kernel becomes more prominent when focusing on the marginal
samples. In the case where we sample a 4-dimensional hyper-semisphere with non-uniformity
along the last coordinate, we see in Figure 7 that the empirical CDF of the samples generated
with the variable bandwidth kernel closely aligns with the reference (constructed using samples
from the target distribution) for the most part. In contrast, the samples generated using the
fixed variable bandwidth kernel noticeably diverge from the reference. This aligns with what
we observed in Figure 2 and Figure 3 — the data generated using the variable bandwidth
kernel better resemble the original data. In the cases where the samples are drawn from a
9-dimensional hyper-semisphere, while both methods struggle to generate samples that mirror
those from the target distribution, primarily due to the inherent limitations of kernel methods
in high-dimensional scenarios, employing a variable bandwidth kernel produces samples that
exhibit a closer resemblance to those from the target distribution.

Figure 5. Nonuniform samples x(i) on a 2-dimensional semisphere.
The non-uniformity is along the last coordinate x3.
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Figure 6. The straight dashed lines denote the OT distances of the
samples using a fixed bandwidth kernel, and the solid lines denote the
OT distances of the samples using a variable bandwidth kernel. Left:
comparison between the OT distance of samples generated using a fixed
bandwidth kernel and using a variable bandwidth kernel. Right: com-
parison between the one-dimensional marginal OT distance of samples
generated using a fixed bandwidth kernel and using a variable band-
width kernel, along the last coordinate (non-uniform direction). Here
the Langevin sampler is initialized at (1, 0, · · · , 0) for all cases.

Figure 7. Comparisons of empirical histograms (top row) and CDFs
(bottom row) of the marginal distribution of the generated samples
along the last coordinate. From left to right: the data are sampled
from a {3, 4, 9}-dimensional (hyper-)semisphere.

6.3. Stochastic subgrid-scale parametrization. The conditional sampling algorithm de-
scribed in Section 5 can be used to perform stochastic subgrid-scale parametrization, a cen-
tral problem encountered in, for example, the climate sciences. The problem of subgrid-scale
parametrization, or more generally of model closure, is the following: given a potentially stiff
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dynamical system

ż = Fz(z, y) + g(z, y; ε)(29a)

ẏ = Fy(z, y; ε),(29b)

where ε < 1 denotes the time scale separation between the slow resolved variables of interest
z ∈ Rds and the unresolved fast degrees y ∈ Rdf . Note the notational difference between
the time scale separation parameter ε and the bandwidth parameter ϵ used to define the
diffusion map. For ε≪ 1 the system is stiff and to ensure numerical stability a small time step
∆t < ε is needed. This, together with the potential high-dimensionality of the fast subspace
df ≫ ds, constitutes a computational barrier for simulating the dynamics on the slow time
scale of interest. Hence one is interested in obtaining an effective evolution equation for the
slow resolved variables z only which captures the essential effect of the unresolved variables y.
Hence, we seek to determine the effective reduced dynamics

ż = Fz(z) + ψ(z).

Here Fz(z) denotes a deterministic drift which we assume to be known a priori, possibly
based on physical reasoning. The term ψ(z) denotes the unknown closure term to be learned
which may be deterministic or stochastic, and which parametrizes the unknown unresolved
fast processes. Deterministic machine learning methods have previously been used to learn
ψ(z) as the average effect of the unresolved variables, i.e. the average of g(z, y; ε) over the
(conditional) invariant measure of the fast process [19, 20]. Deterministic maps, however, are
not able to capture the resolved dynamics with sufficient statistical accuracy, and it is by now
well established that the effective equation is often of a stochastic nature [37, 18, 25, 17]. In
the case of infinite time scale separation there are explicit expressions for the effective drift
and diffusion term of the effective slow dynamics. However, these terms include integrals over
auto-correlation functions and are notoriously hard to estimate. Instead we propose to learn
the closure term ψ(z) and generate realisations ψ(z) on the fly employing the conditional
sampling algorithm described in Section 5. We consider the situation in which scientists have
a good understanding of the resolved dynamics and know the slow vector field Fz(z). Given
data of the resolved variables {zn}Nn=1 sampled at equidistant times ∆t, the closure term ψ(z)
capturing the effect of the unresolved dynamics (29b) can then be estimated as

ψ(zn) = zn+1 − zn − Fz(zn)∆t,

for n = 1, · · · ,M − 1. Note that the closure term ψ(z) typically includes effective diffusion as
well as a correction to the drift term Fz(z) [16]. The effective dynamics is then provided by
the discrete stochastic surrogate model

zn+1 = zn + Fz(zn)∆t+ ψn,(30)

where the subgrid-scale terms ψn = ψ(zn) are generated as follows: Given a kernel ti(x) with
x = (z, ψ(z))T and a vϵ obtained by the Sinkhorn algorithm as described in Section 3, and the
2ds ×M data matrix X consisting of samples {x(j)}Mj=1, we perform for j = 1, · · · , ns with
ns = 100 a discrete Langevin sampler for x

z∗ = zn(31a)

x1,j = z∗(31b)

xj+1/2 = xj +
√
2ϵΞj(31c)

xj+1 = Zpϵ(xj+1/2),(31d)

with Ξn ∼ N(0, I). The first assignment x1,n = z∗ = zn ensures the conditioning of ψ(zn) on
z∗ = zn, and ns = 100 ensures that the generated samples ψ(zn) are close to independent. We
choose a fixed bandwidth with ϵ = 0.001.

We consider here the particular example with ds = 1 and df = 3 given by

ż = z(1− z2) +
4

90ε
h(z) y2,(32)
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where the fast dynamics is given by the Lorenz-63 system [32]

ε2ẏ1 = 10(y2 − y1)(33a)

ε2ẏ2 = 28y1 − y2 − y1y3(33b)

ε2ẏ3 = −8

3
y3 + y1y2.(33c)

We look at the case of effective additive noise with h(z) = 1 which does not require conditioning
on the slow variable z, as well as at the case of multiplicative noise with h(z) = z. We used
MATLAB’s built-in ode45 routine [35] to generate the time series with a time-scale separation
parameter of ε = 0.01. The time series is subsequently sub-sampled with ∆t = 0.1. Figure 8
shows a comparison between the full multi-scale system (32) - (33) with additive noise h(z) = 1
and the stochastic surrogate model (30). The slow z-dynamics exhibits stochastic bimodal
dynamics. Figure 9 shows a comparison for the multiplicative case h(z) = z which yields
unimodal slow dynamics. It is clearly seen that the surrogate model (30) obtained by the
generative conditional sampler generates statistically reliable dynamics.
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Figure 8. Results for the stochastic subgrid-scale parametrization for
the multi-scale system (32) - (33) with ε = 0.01 and with additive
noise h(z) = 1. Shown are results obtained by integrating the full
multi-scale system and by the stochastic subgrid-scale parametrization
scheme using our generative sampler (31) trained with M = 120, 000.
Left: Empirical histograms of the closure term ψ = ψ(z). Middle: Time
series of the slow variable z(t). Right: Empirical histograms of the slow
variable z.
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Figure 9. Results for the stochastic subgrid-scale parametrization for
the multi-scale system (32) - (33) with ε = 0.01 and with multiplicative
noise h(z) = z. Shown are results obtained by integrating the full
multi-scale system and by the stochastic subgrid-scale parametrization
scheme using our generative sampler (31), trained with M = 20, 000.
Left: Empirical histograms of the closure term ψ = ψ(z). Middle: Time
series of the slow variable z(t). Right: Empirical histograms of the slow
variable z.
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7. Summary and outlook

We introduced a Schrödinger bridge based Langevin scheme for generative modeling. Our
method combines sample-based Markov chain approximations with discrete-time Langevin-
type sampling, yielding a nonparametric generative model that is unconditionally stable and
geometrically ergodic. We showed numerically that employing a variable bandwidth kernel,
in contrast to a fixed bandwidth kernel, results in generated samples with enhanced accuracy.
The performance of the conditional generative model was showcased through its application
to a stochastic subgrid-scale parametrization problem.

We considered here a uniform measure on the samples. If there is a change of measure due
to, for example, observed data with a given likelihood, then the measure and the couplings can
be appropriately modified to take into account the non-uniform measure.

Future research will delve into the theoretical foundations of the proposed scheme, including
its convergence rate and scalability. Finally, the proposed methodology can be extended to
score generative modeling by replacing all required score functions by Schrödinger bridge-based
approximations and to interacting particle approximations of the Fokker–Planck equation,
where the score function represents now diffusion [33].
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