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Abstract. The Hegselmann–Krause model is a prototypical model for opinion dy-
namics. It models the stochastic time evolution of an agent’s or voter’s opinion in
response to the opinion of other like-minded agents. The Hegselmann–Krause model
only considers the opinions of voters; we extend it here by incorporating the dynamics of
political parties which influence and are influenced by the voters. We show in numerical
simulations for 1- and 2-dimensional opinion spaces that, as for the original Hegselmann–
Krause model, the modified model exhibits opinion cluster formation as well as a phase
transition from disagreement to consensus. We provide an analytical sufficient condition
for the formation of unanimous consensus in which voters and parties collapse to the
same point in opinion space in the deterministic case. Using mean-field theory, we fur-
ther derive an approximation for the critical noise strength delineating consensus from
non-consensus in the stochastically driven modified Hegselmann–Krause model. We
compare our analytical findings with simulations of the modified Hegselmann–Krause
model.
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1. Introduction

Voting and elections are an essential part of modern democracies. Typically, elections consist
of many voters and a few political parties. While the individual behaviour of voters and parties
is difficult to predict, simple behavioural rules can produce complex behaviour that resembles
known political dynamics. State-based models, such as the voter model, have long been used to
model the propagation of opinions across a population [42, 32]. In reality, voters rarely consider
the parties for which they vote to share their opinions exactly. More complex considerations are
made about which party’s view is closer to their own. In addition, political parties respond to
voters through political campaigns and by supporting or opposing policies. In this paper, we
propose an interacting particle system, which treats parties and voters as agents that evolve and
interact within an opinion space.

The collective behaviour of interacting particle systems has been extensively studied [5, 11, 7,
37, 12, 13, 20, 9]. The celebrated Hegselmann–Krause model describes the temporal evolution
of opinions of interacting agents in a continuous opinion space [31, 28]. An agent’s opinion
evolves towards the average opinion of agents with similar opinions. To account for any, possibly
irrational, individual behaviour of voters additive noise is added to the dynamics. Such dynamics
may give rise to clustering dynamics and exhibits a phase transition from disagreement to
consensus formation with decreasing noise strength. In recent years, several modifications to
the original Hegselmann–Krause model were proposed to include grouped populations, self-belief
and heterogeneity [24, 15, 27], the effect of leadership voters [46, 49, 4], inertial effects [14] and
underlying social network structure [38]. For recent reviews of opinion spreading models see
[11, 34]. These models only describe the mutual interaction of voters and neglect the dynamics
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of parties. Parties shape the opinion space of voters with a strong impact on voters’ behaviour
[6, 29, 30], and similarly voters correct and influence parties who are competing for votes [48, 1].
The competition for votes also leads to parties delineating themselves from other parties and
carving out opinion space for themselves [33, 1]. We introduce an extended noisy Hegselmann–
Krause model in which the voter dynamics are augmented by a dynamical model for parties
which takes into account these interactions. Voters and parties are represented in a d-dimensional
opinion space, representing their respective political orientations towards d separate political
issues [17, 41, 22, 3, 30]. Being able to describe complex voter and party behaviour as dynamics
in an opinion space requires the availability of information across the whole electorate, which has
been made even more effective with the advent of social media [45].

The modified Hegselmann–Krause model will be shown to exhibit known voter and party
dynamics such as party bases, swing voters and disaffected voters. Moreover, depending on the
strength of the interactions between voters and parties, we show that there exist metastable states
where voters are attracted to different parties which occupy different regions in opinion space,
before eventually unanimous consensus occurs, in which voters and parties collapse to a single
localised area in opinion space. A second scenario may occur in which parties and voters decouple
and voters collapse to a single opinion state whereas parties arrange themselves in separate areas
in opinion space. Using linear stability analysis and mean-field theory we analytically provide
sufficient conditions for consensus and find an expression for the critical noise strength above
which no consensus is possible.

The paper is organized as follows: In Section 2 we propose our new model combining consensus
dynamics of voters with party dynamics. In Section 3 we show how the inclusion of parties
recovers to known political scenarios such as party base formation, disaffected voters and swing
voters. In Section 4 we numerically explore the evolution to consensus. For the deterministic case
we provide a sufficient condition for consensus formation in Section 5. In Section 6 we provide
analytical results on a noise-induced phase transition from random voter dynamics to consensus.
We conclude in Section 7 with a discussion.

2. A modified Hegselmann–Krause model incorporating party dynamics

The original Hegselmann–Krause model is concerned with the interaction of Nv voters vi
[28, 39, 37]. Voters are represented by their position in some d-dimensional opinion space. A point
in the opinion space can be thought of as representing a set of views. For d = 2, the opinion space
is referred to as the political compass [17, 41, 22, 3] with the two coordinates of vi representing,
for example, a voter’s political leaning on the spectrum from left-wing to right-wing social views
and their economic preferences on the spectrum from libertarian to socialist. For d > 2, each
dimension might represent opinions on specific issues [43]. In the noisy Hegselmann–Krause
model, the dynamics of the voters vi(t) ∈ Rd in this opinion space is governed by the following
weakly interacting particle system

dvi =
1

Nv

Nv∑
j

ϕ(vi, vj)(vj − vi)dt+ σdW i
t .(1)

Here W i are d-dimensional independent standard Brownian motions representing uncertainty
with strength σ. The interaction kernel ϕ depends on the Euclidean distance in opinion space
between the voters and encodes how voters vj with different opinions to a voter vi can influence
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voter vi. We choose here an isotropic kernel which is compactly supported on [0, Rvv] with

ϕ(vi, vj) = ϕ

(
x =

||vi − vj ||
Rvv

)
=

{
1 x < 1

0 else
,(2)

where Rvv is the interaction radius of voters. The interaction kernel (2) lets a voter i interact
equally with all voters that are within a radius of Rvv in opinion space. Other choices of
interaction kernels are used, for example, allowing for heterophilious dynamics [37]. Noting that
only differences in opinion enter the dynamics, we restrict the opinion space without loss of
generality to the d-dimensional unit square [0, 1]d. Note that any domain size of the opinion space
can be absorbed by scaling the interaction radius Rvv.
One of the key features of Hegselmann–Krause models is the emergence of consensus, which occurs
when voters collapse in opinion space to a single opinion cluster, the size of which depends on the
strength of the noise σ [37, 25, 44]. In particular, the system exhibits a phase transition [23, 47];
there exists a critical noise strength σc such that for σ < σc the noisy Hegselmann–Krause model
(1) asymptotically approaches consensus, whereas for σ > σc no consensus is reached and instead
voters behave as Nv independent stochastic processes [44].
The noisy Hegselmann–Krause model (1) only models the dynamics of individual voters and is not
designed to model the dynamics of a political landscape involving political parties. Therefore, it
cannot be used to serve as a model for elections. We will extend the classical Hegselmann–Krause
model to couple the preferences and dynamics in the d-dimensional opinion space of Nv individual
voters vi ∈ Rd and a finite number Np of parties pα ∈ Rd. We make the reasonable assumption
that voters will vote for political parties that share similar opinions to them and that both, voters
and parties, share the same d-dimensional opinion space [10]. We make the following assumptions
about the interactions between voters and parties: voters are effected by their interactions with
other voters and also with parties. In particular, voters attract one another according to the
right-hand side drift term of the Hegselmann–Krause model (1) which we denote as Fvv. The
effect is that voters move towards the mean of the voter opinion within a d-dimensional sphere
with radius Rvv centred on the voter. Voters are further attracted by parties which are sufficiently
close to them in opinion space [30, 1]. The associated force can be thought of as a leadership
effect and will be denoted as Fvp [33, 6]. Voters who have a similar opinion to a political party,
will shape their beliefs to conform to the leaders with whom they are similar. Conversely, parties
are affected by the voters and by other parties [48, 45]. It is reasonable to assume that political
parties aim to maximise the number of votes they receive. A natural way of achieving this is
to minimise the distance between them and their potential voters. However, parties also have
“identities” - for example, some are considered left-wing and others centrist - which means that
the voters they seek to be close to (or best represent) are within a certain distance Rvp in opinion
space. We denote the associated attracting force by Fpv. Finally, it is reasonable to assume that
political parties want to differentiate themselves from each other [21]. Why vote for one party if
there is another party that is exactly the same? Hence, we assume a repulsive interactive force
Fpp between political parties. Figure 1 is a schematic of these four interactions.

Summarizing the assumed interactions outlined above we propose the following coupled voter-party
Hegselmann–Krause model

dvi = Fvv(vi, v) dt+ Fpv(vi, p) dt+ σvdW
i
t(3)

dpα = Fvp(pα, v) dt− Fpp(pα, p) dt+ σpdW
α
t ,(4)
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Figure 1. Sketch of the different interaction forces between voters (black dots)
and parties (grey stars) in a 2-dimensional opinion space. The blue force cor-
responds to Fvv with (5); the red force corresponds to Fpv with (6); the green
force corresponds to Fvp with (7); the orange force corresponds to Fpp with (8).

with the interaction forces

Fvv(vi, v) = µvv

Nv∑
j=1

ϕ

(
||vj − vi||
Rvv

)
(vj − vi),(5)

Fpv(vi, p) = µpv

Np∑
β=1

ϕ

(
||pβ − vi||
Rpv

)
(pβ − vi),(6)

Fvp(pα, v) = µvp

Nv∑
j=1

ϕ

(
||vj − pα||

Rvp

)
(vj − pα),(7)

Fpp(pα, p) = µpp

Np∑
β=1

ϕ

(
||pβ − pα||

Rpp

)
(pβ − pα).(8)

Here W i(t) for i = 1, . . . , Nv and Wα(t) for α = 1, . . . , Np are independent standard Brownian
motion processes which represent unpredictable changes in a particular agent’s opinion with the
strength given by the diffusion coefficients σv and σp. In the following, Latin alphabet sub- and
superscripts refer to voters and Greek alphabet sub- and superscripts refer to political parties.
The forces are assumed to have compact support in a d-dimensional sphere with positive radii Rvv,
Rpv, Rvp and Rpp, respectively (cf. (2) for Rvv). It is reasonable to assume that Rvp > Rvv as
parties typically consider a much larger contingency of voters than individual voters do. Further,
we assume that Rpp is small as parties only repel each other when they become too close in



A MODIFIED HEGSELMANN–KRAUSE MODEL FOR INTERACTING VOTERS AND POLITICAL PARTIES5

opinion space to delineate themselves from each other. The strength of the respective forces is
controlled by the strength parameters µvv, µpv, µvp, µpp ≥ 0 which are assumed to be constant in
time. Note that for µvv = 1, µpv = 0 the evolution of the voters (3) reduces to the original noisy
Hegselmann–Krause model (1).

3. Political scenarios in the modified Hegselmann–Krause model

We now show that the modified Hegselmann–Krause model (3)-(4) is able to reproduce several
types of voter behaviour in a political landscape with competing parties. We restrict here to a
1-dimensional opinion space.

Let us start from a standard scenario where each party has their own loyal political base,
sometimes referred to as "core voters" [16]. This politically stable situation occurs when each
party occupies a particular region in opinion space and all parties are sufficiently far apart in
opinion space from each other with

||pα − pβ || > 2max(Rpv, Rvv)(9)

for all parties α ̸= β so that parties do not compete for voters and interactions between voters
attached to different parties is suppressed. We further require σv ≫ σp to ensure the voter
dynamics occurs much faster than the party dynamics. In such situations clusters may form
around each party. The number of voters N (c)

v attached to each cluster c depends on the initial
political opinions of the voters. We assume here that each cluster is centred around a single party
for simplicity. The size of each party base cluster δbase is determined by twice the size of the
interaction radius, 2max(Rpv, Rvv), of the cluster and the size of the voter cluster which is fully
interacting with the party and every other voter in its cluster. We find

δbase = min

2max(Rpv, Rvv), 4
σv√
2

(
N

(c)
v

Nv
µvv +

N
(c)
p

Np
µpv

)− 1
2

 ,(10)

where N (c)
p = 1 for a party base cluster centred around a single party. Equality occurs when the

interaction radii Rpv, Rvv cover the entire cluster. In this case the voter dynamics (3) reduces to
an Ornstein-Uhlenbeck process

dvi = −

(
N

(c)
v

Nv
µvv +

1

Np
µpv

)
vi + σvdW

i
t ,(11)

with asymptotic mean given by the respective party position and standard deviation

stdOU =
σv√
2

(
N

(c)
v

Nv
µvv +

N
(c)
p

Np
µpv

)− 1
2

.(12)

Voters evolving according to (11) form hence a cluster with size roughly 4stdOU, motivating the
overall party base cluster size (10).

Figure 2a shows an example for such party base formation with Nv = 1, 000 voters which
initially are distributed uniformly across [0, 1] and with 3 parties which are initially located in
opinion space at p1(0) = 0.86, p2(0) = 0.53 and p3(0) = 0.2. The strengths of the voter forces
were chosen as µvv = µpv = 1 and those of the party forces as µvp = 0.03 and µpp = 0.01.
The interaction radii are Rvv = Rpv = Rpp = 0.1 and Rvp = 0.2. The noise strengths are
σv = 0.03 and σp = 0.005, which ensures that the voter dynamics occurs much faster than the
party dynamics. Figure 3 shows the standard deviation of the voters in the party base cluster
around party p1 with p1(0) = 0.2. We show results of the numerical simulation of the modified
Hegselmann–Krause model (3)-(4) for the case in Figure 2a as well as the prediction of the cluster
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size δbase given by (10) which is dominated here by the standard deviation (12) and where we
determine N (c)

v as the number of voters which are within a distance of 0.15 away from party p1.
It is seen that the observed cluster size of the base cluster which forms around t ≈ 20 is well
described by (10).

Such stable political bases break down if parties increase their interaction radius Rpv and
hence are competing with each other over voters which are affected by two or more parties, or
equivalently by parties moving towards each other in opinion space, induced by their nonzero
diffusion σp. In particular, consider two parties pα and pβ that satisfy

||pα − pβ || < max(Rpv, Rvv),(13)

and where all other parties are sufficiently far away in opinion space such that they do not interact
with any voters attracted to parties pα and pβ . In this case this will lead to the emergence of
swing voters which are confined between two parties. In elections such swing voters vote for either
of the two close parties, depending on small hard to predict preferences[16]. The state of swing
voters is illustrated in Figure 2b. Here the parameters are as for the political base scenario but
for a larger party interaction radius Rpv = 0.35. The size of swing voter clusters δswing is also
given by (10) with N (c)

p = 2 because the party above and below are both within the interaction
radius of the voter cluster. We find δswing = 0.085 which approximates well the observed cluster
size. The state of swing voters can be disturbed by the party dynamics. This is seen in Figure 2b
around t ≈ 80. The swing voter cluster between parties p1 and p3 is broken up after the middle
party p2 drifted sufficiently towards the swing voter cluster which now interacts with all three
parties, eventually leading to the formation of a party base cluster around p1. It is also possible
for party base clusters to break up and form swing voter clusters when parties move closer to
each other. An example of this is shown in Figure 2e around t ≈ 70 when the middle two parties
p1 and p2 move closer together and their party bases merge to a single swing cluster.

In the previous scenario we saw that swing voters can be persuaded to commit to a single
party and join their party base. This change was entirely determined by the party dynamics
and required two parties to sufficiently distinguish themselves from each other. Thus, when the
party dynamics is faster - or alternatively the voter dynamics is slower - we may observe more
competitive behaviour between the parties. Figure 2c shows clusters of swing voters that are
slowly entrained by one of the two parties. We further note the coexistence of party bases and
swing voter clusters, although neither is stable. Here σv = 0.01 ensures the voter behaviour is
slower than in Figure 2a. Swing voters decide to join a particular party base either by their
individual stochastic slow exploration of the opinion space or by parties moving towards them on
a faster time scale. The latter scenario may be viewed as a form of party competition to attract
more voters.

Political competition can lead to intricate complex transitions between the scenarios depicted
in Figures 2a-2c. In particular, if two parties pα and pβ satisfy max(Rpv, Rvv) < ||pα − pβ || <
2max(Rpv, Rvv), neither the criterion for the existence of party base clusters (9) nor the criterion
of the existence of swing voter clusters (13) are met and it is possible for both states to coexist
and interact. For example, Figure 2d shows a party base forming around the top party p3 while
the voters around the bottom two parties p1 and p2 alternate between party base and swing voter
behaviour. There is further competition between the top and middle parties p3 and p2 over a
swing voter cluster that dissolves around t ≈ 60.

Yet another important political scenario occurs when parties leave a region in opinion space
unoccupied and this region is larger than the interaction radius Rpv of any party. In this case
voters can occupy this region, attracted by voter-voter interactions only. In this case the voter
dynamics degenerates to the original noisy Hegselmann–Krause model (1) and a voter-only cluster
will form of size δdis ≈ 4σv/

√
2µvv provided that Rvv > δdis/2 [44]. Note that we have δdis = δbase
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for N (c)
p = 0. In this scenario voters may be viewed as disaffected voters who feel unrepresented

by political parties, and whose support the parties are not interested in earning. In trying to
attract those politically far away voters parties may risk loosing voters that are more aligned
with a parties current views. Figure 2e shows an example with disaffected voters. Here the
same parameters are used as for the political base clusters in Figure 2a but with different initial
conditions for the parties allowing for unoccupied political space. Note that the disaffected voters
do not form a localized cluster here of size δbase since Rvv is too small.

Lastly, we report on a scenario in which voters abandon their political base and aggregate to a
single cluster. This occurs when Rvv > Rpv and µvv ⪆ µpv. This scenario is akin to a political
revolution in the political landscape during which a single party is able to attract all voters.
Note that this is achieved with all parties having the same force strength µpv and without one
party having a significantly higher attraction force than the other parties. An example of such
a revolution is seen in Figure 2f where a single party base cluster forms around party p1. We
remark that if the condition for swing voters (13) is satisfied, the final state will be a swing voter
cluster.

We remark that typically the scenarios described above are transitory and the stochasticity
and/or party dynamics lead to a break up of these structures. The inclusion of heterogeneous
and possible time-varying equation parameters, in particular of the force strengths, would allow
for an even richer set of scenarios and transitions between them. In the next Section we will see
how and when our model allows for a final state of unanimous consensus, which however, unlike
the transient scenarios described above, is not a likely political scenario.

4. Consensus in the modified Hegselmann–Krause model

As we have seen in the previous Section the modified Hegselmann–Krause model (3)–(4) allows
for the formation of opinion clusters. Consensus in our model refers to all voters and parties
collapsing to a a cluster the size of which is determined by the noise strengths σv and σp. We
will see that if σv, σp are sufficiently small and µpp < µvp the system approaches consensus. The
route from a disordered state of uniformly distributed voters and parties to a state of consensus
in which voters and parties collapse to a localised region in opinion space is typically via partially
ordered states in which voters and parties form several clusters. We show in Figure 4 an example
for a d = 1-dimensional opinion space and in Figure 5 an example for a d = 2-dimensional opinion
space. The model recreates some of the core features of the classical noisy Hegselmann–Krause
model. In particular, in both cases the voters and parties form smaller clusters before eventually
reaching a consensus state. Figure 4 shows that initially uniformly distributed voters begin to
form clusters centred around parties. These clusters constitute what we encountered in Section 3
as political base of a party. The top two parties p1 and p2 develop well separated party base
clusters since the distance between them is larger than the interaction-radius Rvv, prohibiting
interactions between voters of different party bases. The bottom two parties p3 and p4 located
near 0.25 and 0.35 are closer to one another and a cluster of swing voters forms. Around t ≈ 140
all voter clusters have merged to form a single cluster with mean v = 0.5. The outer two parties
p1 and p4 slowly move into the cluster as the attraction of the voters overcomes their repulsion of
the other parties and they enter the cluster of voters.

Similarly, in the two dimensional case depicted in Figure 5, we observe clusters of voters
forming around parties. However, due to the increased size of the opinion space, many more
voters are not part of a cluster loyal to a single party. Instead as seen at t > 120 there is a
cluster of disaffected voters in the bottom right of the opinion space which are not centered
around any party. Note that in contrast to the disaffected voters depicted in Figure 2e here Rvv

is sufficiently large to allow for a cluster of disaffected voters of size δdis. In the model, over time
these disaffected voters randomly evolve into one of the attractive areas of the parties. Parties
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(a) Party base (b) Swing voters. Here Rpv = 0.35.

(c) Political competition. Here σv = 0.01. (d) Political competition: Here Rpv = 0.23.

(e) Disaffected voters: Here p1(0) = 0.76, p2(0) =
0.53 and p3(0) = 0.4. (f) Revolution. Here Rvv = 0.3

Figure 2. Prototypical political scenarios. Unless stated otherwise, at time
t = 0, Nv = 1, 000 voters are distributed uniformly across [0, 1] and parties are
initially at p1(0) = 0.86, p2(0) = 0.53 and p3(0) = 0.2. The strengths of the
voter forces are µvv = µpv = 1. The strengths of the party forces are µvp = 0.03
and µpp = 0.01. The interaction radii are Rvv = Rpv = Rpp = 0.1 and Rvp = 0.2.
The noise strengths are σv = 0.03 and σp = 0.005.

evolve to minimise their distance from voters around and so move towards the single largest
cluster. This process of consensus formation can be slowed down by decreasing the interaction
radius Rvp. This prohibits that parties are effected by voters which are further away, requiring
slow diffusion to form consensus. Depending on the strength and interaction radii of the relative
forces, parties may be attracted to voters when µvp > µpv, whereas in the case that µpv > µvp,
voters will cluster around parties before the voter-voter interactions lead to global consensus. We
remark that in bounded opinion spaces Brownian motion is recurrent even in high dimensions,
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Figure 3. Standard deviation of the voter cluster centred around party p1
with p1(0) = 0.2 in Figure 2a. The horizontal orange predicted line denotes the
analytical approximation (10).

and hence voters which are not yet entrained by the main cluster at the final time in Figures 4
and 5, will eventually join the cluster.

Figure 4. Evolution of the modified Hegselmann–Krause model (3)–(4) in
a d = 1-dimensional opinion space for 500 voters (blue) and 4 parties (red).
Initially voters are distributed uniformly across [0, 1] and parties are initially
at p1(0) = 0.78, p2(0) = 0.6, p3(0) = 0.35 and p4(0) = 0.2. Parameters are
Rvv = 0.05, Rpv = 0.1, Rvp = 0.4, Rpp = 0.05 and µvv = 0.5, µpv = 0.8,
µvp = 0.02, µpp = 0.02. The noise strengths are σv = 0.02 and σp = 0.002.

To quantify the degree of consensus of voters in the original Hegselmann–Krause model (1)
Wang et al. [44] introduced the order parameter

Qvv =
1

N2
v

Nv∑
i=1

Nv∑
j=1

ϕ

(
||vj − vi||
Rvv

)
.(14)

This voter-centric parameter is, however, not well suited to quantify consensus in the presence of
parties. One may envisage a situation of no consensus in which voters form a tight cluster in
opinion space due to the voter-voter force proportional to µvv but the parties evolve unaffected
by the voters if their distance is larger than the respective interaction radii. This, admittedly,
nonphysical situation would be classified as consensus with Qvv = 1. A more common situation
is the ordered state when voters are strongly attracted to a party by the party-voter force with
strength µpv, forming a cluster around the party. This cluster forms even if the voter-voter force
Fvv is weak due to a small interaction radius Rvv. The smallness of the interaction radius Rvv

implies Qvv ≪ 1 misclassifying the ordered state as disordered. Depending on the parameter
space and initial conditions, it is non-trivial to determine a single order parameter that may be
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(a) t=0 (b) t=80 (c) t=120

(d) t=160 (e) t=300 (f) t=410

(g) t=450 (h) t=499

Figure 5. Evolution of the modified Hegselmann–Krause model (3)–(4) in
a d = 2-dimensional opinion space for 500 voters (blue dots) and 5 parties
(red crosses). At time t = 0 voters are distributed uniformly across [0, 1]2 and
parties are initially at p1(0) = (0.75, 0.75), p2(0) = (0.6, 0.8), p3(0) = (0.5, 0.7),
p4(0) = (0.3, 0.4), and p1(0) = (0.2, 0.2). Parameters are Rvv = 0.2, Rpv = 0.1,
Rvp = 0.5, Rpp = 0.05 and µvv = 0.5, µpv = 1.0, µvp = 0.05, µpp = 0.02. The
noise strengths are σv = 0.02 and σp = 0.002.

used to quantify the order. Indeed in the scenarios outline Section 3, Qvv can decrease in the
party base or the swing voter scenarios, compared to a uniform distribution, even though there is
clear clustering occurring.

To account for the presence of parties, we introduce an alternative consensus diagnostic which
is given by the weighted average distance between, voter-voter pairs, voter-party pairs and
party-party pairs, which measures a deviation from the disordered state in which voters and
parties are uniformly distributed over the opinion space. In particular, we define

(15) D̂ = 1− kd
3

 1

N2
v

∑
vi,vj

||vi − vj ||+
1

NvNp

∑
vi,pα

||vi − pα||+
1

N2
p

∑
pα,pβ

||pα − pβ ||

 ,
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where

kd = 2d
∫ 1/2

0

√
x21 + x22 + ...+ x2d dx(16)

is the expected distance between two random draws from a uniform distribution on the hypercube
[0, 1]d with periodic boundary conditions. The parameter D̂ is not a strict order parameter in the
sense of statistical mechanics but instead a diagnostics measuring in how far the distribution of
voters and parties differs from the maximally disordered state of uniformly distributed voters.
The proposed consensus diagnostic satisfies 0 ≤ D̂ ≤ 1 with equality given only by uniformity
and total consensus, respectively.

Figure 6a shows the evolution of Qvv and D̂ for the case of the 1-dimensional opinion space
depicted in Figure 4. Near consensus is achieved at t = 300 with Qvv > D̂ ≈ 0.9. The consensus
diagnostic D̂ exhibits a monotonic increase. It initially grows slowly during the observed clustering
of voters into party bases and then increases more strongly when clusters coalesce. The growth
in D̂ is fastest at t ≈ 100 when two voter clusters merge into a single cluster. By contrast, Qvv

better captures the periods of coexisting clusters which are characterized by plateaus in Qvv. The
period when there are 4 distinct party base clusters for 10 ⪅ t ⪅ 30 and the period 50 ⪅ t ⪅ 100
when there are two party base clusters and one cluster of swing clusters are well captured by
plateaus in Qvv. The existence of nonentrained voters at t = 300 implies that both D̂ and Qvv

are not equal to 1. The nonentrained voters will eventually diffuse into the main cluster.
Figure 6b shows the evolution of Qvv and D̂ corresponding to the dynamics in the 2-dimensional

opinion space shown in Figure 5. The consensus diagnostic D̂ exhibits a plateau for 120 ⪅ t ⪅ 380
corresponding the state of four weakly interacting cluster (three party base clusters and one
disaffected voter cluster). When these clusters begin to interact more strongly D̂ increases
monotonically. The order parameter Qvv captures the ordered state of four weakly interacting
clusters less clearly. However, it better captures the merger of two clusters (three parties) at
t ≈ 420 and a further merger of all party base clusters around t ≈ 450. The slow increase of D̂
for t ⪆ 450 is due to the slowed down merger of parties caused by their mutual repulsion.

Figure 6. Order parameter Qvv and consensus diagnostic D̂ corresponding to
the simulations in the 1-dimensional opinion space shown in Figure 4 (left) and
in the 2-dimensional opinion space shown in Figure 5 (right).

A remarkable feature of the Hegselmann–Krause model (1) is the existence of a phase transition:
there exists a critical noise strength σc such that for noise strength σ > σc voters are not able to
evolve towards consensus but instead diffuse as independent noisy agents [23, 25, 44, 18, 35, 26]. It
is intuitive that the modified Hegselmann–Krause model (3)-(4) exhibits a similar phase transition.
In Figure 4 we have seen an example when the system organizes in clusters before eventually
reaching consensus with Qvv > 0.95 around t ≈ 150 when the voters collapse to a single cluster.
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The remaining voters which have not yet been entrained by the cluster at t = 200 will eventually
diffuse into the consensus cluster. If we keep all parameters the same but increase the noise
strength from σv = 0.002 to σv = 0.1 final consensus cannot reached. As shown in Figure 7 the
noise term dominates over the attractive interaction forces, and the system effectively behaves
like a set of Nv independent Brownian motions. In this case voters do not form clusters and both
Qvv ≈ 2Rvv = 0.1 and D̂ ≈ 0.028 correspond to values when the voters are drawn from a uniform
distribution. We note that with periodic boundary conditions a set of Nv independent Brownian
processes are uniformly distributed.

Figure 7. Evolution of the modified Hegselmann–Krause model (3)–(4) in a
d = 1-dimensional opinion space for 500 voters and 4 parties for σv = 0.1 leading
to a stable uniform distribution of voters. The initial conditions and the erst of
the parameters is as in Figure 4. Left: Actual voter (blue dots) and party (red
crosses) dynamics. Right: Corresponding evolution of the order parameter Qvv

and the consensus diagnostic D̂.

In the following two Sections we investigate the phase transition of the modified Hegselmann–
Krause model (3)–(4). In Section 5 we consider the noiseless case and provide a sufficient condition
for the occurrence of consensus. In Section 6 we determine the conditions for the phase transition
in the noisy case, employing the mean-field limit of the model.

5. Criterion for consensus in the noiseless modified Hegselmann–Krause model

We consider here the deterministic case with σv = σp = 0. In the deterministic case unanimous
consensus is defined as the situation when all voters and all parties occupy the same position
in opinion space. For notational convenience, we introduce the state of the system at time t as
φ(t) = (v(t), p(t)) with the voter opinion profile v(t) := (v1(t), . . . , vNv

(t)) ∈ RdNv and the party
opinion profile p(t) = (p1(t), . . . , pNp(t)) ∈ RdNp . If there is no repulsive force between the parties
with µpp = 0, global unanimous consensus occurs if all interaction radii are sufficiently large to
cover the convex hull Ω(φ(0)) of the initial distribution of voters and parties. In this case all
agents, voters and parties, are mutually and attractively interacting. In the case that the smallest
support of the forces does not cover the convex hull, consensus is not guaranteed and typically
non-interacting clusters form.

If the repulsive party-party interaction force is included with µpp > 0, more complex interactions
are possible. Unanimous consensus can still occur provided the strength of the forces exerted by
voters on parties dominates over the repulsion of the party-party interaction. This is formulated
in the following Proposition which provides a sufficient condition for consensus.

Proposition 5.1. The state φ(t) approaches unanimous consensus if

µpp < µvp(17)
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and if

R > E(0),(18)

where R = min(Rvv, Rvp, Rpv, Rpp) is the smallest of all interaction radii and E(0) is the initial
value of

(19) E(t) := Ω (φ(t) ∪ {ψ(t)})

which is the convex hull covering the voters and parties with

(20) ψ(t) =
µvp⟨v(t)⟩ − µpp⟨p(t)⟩

µvp − µpp
.

Here the angular brackets denote averages over voters and parties. Additionally, for t2 > t1 ≥ 0,
we have

E(t2) ⊂ E(t1).

Proof. To see that (17) and (18) are sufficient conditions to guarantee convergence, we present an
adapted argument from [37] for the classical Hegselmann–Krause model. Note that all interaction
forces are positive, in particular µpp > 0. By construction, all attractive interactions are initially
nonzero with

ϕ

(
||vi − vj ||
Rvv

)
= ϕ

(
||vj − pα||

Rvp

)
= ϕ

(
||pα − vi||
Rpv

)
= 1

for all i, j ≤ Nv and for all α ≤ Np. Note that there is no condition on the interaction radius for
the repulsive party-party interaction kernel. Hence, at t = 0 (3) may be written as,

dvi
dt

=
µvv

Nv

∑
j

(vj − vi) +
µpv

Np

∑
β

(pβ − vi)

= µvv (⟨v⟩ − vi) + µpv (⟨p⟩ − vi⟩)

= (µvv + µpv)

(
µvv⟨v⟩+ µpv⟨p⟩
µvv + µpv

− vi

)
.(21)

Thus, vi exponentially decays to the weighted voter and party average, where the weights are
determined by the strengths of the forces acting on voters. It is clear that µvv⟨v⟩+µpv⟨p⟩

µvv+µpv
∈

Ω(φ(t)) ⊆ E(t). The evolution of the parties, (4), can be written for t = 0 as

dpα
dt

= (µvp − µpp)

(
µvp⟨v⟩ − µpp⟨p⟩
µvp − µpp

− pα

)
.(22)

Hence, if µvp > µpp, pα decays exponentially to ψ(t) =
µvp⟨v⟩−µpp⟨p⟩

µvp−µpp
∈ E(t) by construction.

Hence, E(t) is a boundary on the party dynamics, as well as the voter dynamics for all t > 0.
Next, observe that ⟨v(t)⟩, ⟨p(t)⟩ ∈ E(t). The evolution of the mean positions of the voters and
parties are given by

d⟨v⟩
dt

= µpv (⟨p⟩ − ⟨v⟩) ,

d⟨p⟩
dt

= µvp (⟨v⟩ − ⟨p⟩) ,

implying

d (⟨v⟩ − ⟨p⟩)
dt

= −(µpv + µvp) (⟨v⟩ − ⟨p⟩) ,
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which is readily solved to yield

⟨p(t)⟩ = ⟨v(t)⟩+ e−(µpv+µvp)tA,

where A = ⟨v(0)⟩ − ⟨p(0)⟩ is constant. This implies that ⟨p(t)⟩ → ⟨v(t)⟩ for t → ∞ with
exponential rate of convergence µpv + µvp. As ⟨p(t)⟩ → ⟨v(t)⟩ this implies

µvp⟨v(t)⟩ − µpp⟨p(t)⟩
µvp − µpp

→ ⟨v(t)⟩ and
µvv⟨v(t)⟩+ µpv⟨p(t)⟩

µvv + µpv
→ ⟨v(t)⟩,

which implies according to (21) and (22) that the system approaches consensus, as desired.
Additionally, (21) and (22) imply that Ω(φ(t2)) ⊂ E(t1) for some t2 > t1 ≥ 0. We may write

v(t) explicitly as
v(t) = ⟨v(t)⟩ − µpp

µvp − µpp
e−(µpv+µvp)tA,

which implies that v(t) monotonically converges to ⟨v(t)⟩ and hence we have,

E(t2) ⊂ E(t1).

□

The result of Proposition 5.1 may be interpreted in an intuitive way. For a given set of initial
conditions with parameters that lead to consensus, increasing the repulsive force strength µpp

or decreasing the interaction force strength µpv will lead to a lack of consensus. We illustrate
the result in Figure 8 where we show how the two conditions (17) and (18) affect the formation
of unanimous consensus. The top subfigure shows 100 voters uniformly distributed across [0, 1]
with 4 parties placed at p1(0) = 0.1, p2(0) = 0.3, p3(0) = 0.5 and p4(0) = 0.7. The parameters
are chosen such that they conform with both conditions of the Proposition. We observe that
voters and parties reach unanimous consensus, with the parties converging at a slower rate due to
their repulsive forces µpp = 0.4 being smaller than the attractive party-voter force with µvp = 0.5.
In the middle subfigure of Figure 8 we show the effect of breaking condition (17) in preventing
convergence to unanimous consensus. The initial conditions and all parameters are kept the
same as above except now µpp = µvp = 0.5, violating condition (17). Here voters still converge
to a single cluster under their attractive forces since the interaction radii cover all the voters
initially, i.e. condition (18) is satisfied. However, the parties do not converge but instead form
two well-separated stationary clusters. Note that here two parties merge despite the repulsive
party-party force. This is possible because the interaction radius encompasses the whole opinion
space and hence a single party feels the effect of all parties. This can cause a party to be repelled
by two other parties towards a fourth party. This is seen in the middle subfigure at times t ≈ 12
and at t ≈ 25. Furthermore, because of the heterophilic nature of the interaction, the force Fvp on
party p4 due to the voter cluster at v = 0.5 is larger than the force on party p3 despite being closer
to the voter cluster in opinion space. This further contributes to the merger of parties p3 and p4.
This result may be seen as an extension of the result in [37] which showed that heterophilious
interactions drive consensus in the classical Hegselmann–Krause model without parties. Finally,
unanimous consensus can also be prohibited by reducing the interaction radii, i.e. violating the
second condition (18). This is shown in the bottom subfigure of Figure 8. Here condition (17)
is satisfied, however, the interaction radii are all 0.1 violating condition (18). This leads to the
formation of distinct non-interacting clusters and a lack of unanimous consensus.

Note that the result of Proposition 5.1 is independent of the dimension d. Also note that in
[37] it is shown that the classical Hegselmann–Krause model (1) satisfies Ω(t2) ⊂ Ω(t1). This
is not the case in our model because it is possible for parties near the boundary of the convex
hull to be repelled beyond the boundary before being attracted back to consensus. E(t) can be
thought of as the area containing the convex hull with a buffer region by which the voters and
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parties are bounded. Indeed, (19) is in practice a weak condition for the emergence of consensus,
and consensus can occur with smaller interaction radii R so long as the support of the strongest
force covers a sufficiently large portion of the initial distribution. In an aside, we note that
in the middle subfigure of Figure 8, Qvv = 1 throughout the whole time period which is not
representative of the behaviour of the system. Alternatively, D̂ increases from 0 to 0.45 before
stabilising and remaining there - which correctly detects that the parties have not converged to
uniform consensus (not shown).

Figure 8. Evolution of the noise-less modified Hegselmann–Krause model (3)–
(4) in a d = 1-dimensional opinion space with σv = σp = 0 for 100 voters
(blue) and 4 parties (red). Initially voters are distributed uniformly across
[0, 1] and parties are initially at p1(0) = 0.1, p2(0) = 0.3, p3(0) = 0.5 and
p4(0) = 0.7. Parameters are µvv = µpv = 0.3 and µvp = 0.5. Top: unanimous
consensus when both conditions (17) and (18) are satisfied with µpp = 0.4
and Rvv = Rpv = Rvp = Rpp = 0.6. Middle: no unanimous consensus when
condition (17) is not satisfied with µpp = 0.5 and condition (18) is satisfied
with Rvv = Rpv = Rvp = Rpp = 0.6. Bottom: no unanimous consensus when
condition (18) is not satisfied with Rvv = Rpv = Rvp = Rpp = 0.1, and condition
(18) is satisfied with µpp = 0.4.

6. The mean field limit and phase transitions

To study the stability of the consensus state when noise is added and to study the phase
transition discussed in Section!4, we consider the mean-field limit Nv → ∞ and derive an equation
for the voter density ρ(v, t). For convenience we consider periodic boundary conditions with
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vi = mod(vi, 1). The classical Hegselmann–Krause model (1), which does not contain interactions
with political parties, allows for a straight forward derivation of the evolution equation for the
voter density ρ(v, t). The voter density is the limit for Nv → ∞ of the empirical measure

ρ(Nv)(t, dv) =
1

Nv

Nv∑
j=1

δvj(t)(dv).

The derivation of the corresponding equation for the evolution of the limiting density ρ(v, t) is
achieved by the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, and hinges on the
exchangeability of voters. For the modified Hegselmann–Krause model (3)-(4), which includes
party dynamics, the thermodynamic limit Nv → ∞ can still be taken, however, one typically
only has a small number of political parties and hence the thermodynamic limit Np → ∞ is not
physical.

To derive an equation for the voter density associated with our modified Hegselmann–Krause
model we make the following assumption about the dynamics of the political parties pα. It is
reasonable to assume that voters are much more willing to change their opinion on certain issues
than parties. Political parties have a higher inertia than voters and therefore change in opinion
space more slowly than individual voters. Indeed, [8] showed that as of the 2022 Australian
Federal election only 37% of voters have supported the same party at every election, which
suggests that individual voters are quite willing to change their opinions. Whereas political
parties attempt to reinforce the issues they are traditionally seen as strong in, as well as engage in
ideological politics [2]. Hence we assume that the party dynamics is slow compared to the voter
dynamics and we assume µvp, µpp ≪ µvv, µpv and σp ≪ σv. This allows us to treat for some time
0 ≤ t < T the parties as constant parameters in the voter dynamics (3) leading to an evolution
equation for voters with frozen parties with

dvi = µvv

∑
j

ϕ

(
||vj − vi||
Rvv

)
(vj − vi) dt+ µpvFpv(vi; p) dt+ σvdW

i(t),(23)

where Fpv(vi; p) =
∑

β ϕ
(

||pβ−vi||
Rpv

)
(pβ − vi) is the effect of the parties on the voter, and p =(

p1 . . . pNp

)
∈ RdNp is frozen. The voter dynamics (23) allows for an application of the

BBKKY hierarchy to derive the following equation for the one-voter density ρ(v, t; p), conditioned
on the party parameters p,

∂tρ(v, t; p) = −∇ · [ρ(v, t; p) (µvvK ⋆ ρ+ µpvFpv(v; p))] +
σ2
v

2
∆ρ(v, t; p)(24)

with initial data

ρ(v, 0; p) = ρ0(v; p)

and interaction kernel

K ⋆ ρ =

∫
ϕ

(
||w − v||
Rvv

)
(w − v)ρ(w)dw.

To study the phase transition from global consensus to a near-uniform distribution of voters upon
increasing the noise strength σv we follow the pipeline used by Garnier et al. [25] and Wang et al.
[44] for the classical Hegselmann–Krause model (1).

Equation (24) for the stationary-party Hegselmann–Krause model allows for the stationary
uniform voter distribution ρ0(v; p) = 1 for v ∈ [0, 1]d provided that the parties have a mean
zero with

∑
β pβ = 0. For non-zero mean party configurations ρ0 still may serve as a good

approximation for sufficiently small values of µpv.
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To identify the critical noise strength σc below which consensus occurs, we perform a linear
stability analysis around the stationary uniform state. We consider an expansion in small µpv

ρ(v, t) = 1 + µpvρ1(v, t) +O(µ2
pv).(25)

Substituting into (24) yields

∂ρ1
∂t

= −∇ · [(µvvK ⋆ ρ1 + ρ1(v, t)µpvFpv(v; p))] +
σ2
v

2
∆ρ1(v, t),(26)

where we used K ⋆ ρ0 = 0. We solve this linear equation for ρ1 by a Fourier ansatz ρ1(v, t) =
T (t)e2πik·v for k ∈ Zd with k := ||k||2 ̸= 0 to ensure that ρ is a probability density. The
convolution term can be simplified using

−∇ · (K ⋆ e2πik·v) = −∇ ·
∫
||z||≤Rvv

ze2πik·(z+v)dz

= sRvve
2πik·v

∫
||z||≤1

z (sin(sz)− i cos(sz)) dz,(27)

where we introduced the scalar z = k·z
k and the scaled wave number modulus s = s(k) = 2πRvvk.

The linearized equation (26) can then be written as

T ′(t) = A(k)T (t),(28)

where

A(k) = −µpv [∇ · Fpv(v; p) + 2πik · Fpv(v; p)]−
s2

2R2
vv

σ2
v

+ sRvv

∫
||z||≤1

z (sin(sz)− i cos(sz)) dz.(29)

Note that since A(k) depends on v the differential equation for T has non-constant coefficients.
However, we can define the largest possible growth rate as γ(k) := maxv ReA(v), and utilize that
||−∇·Fpv(v; p)|| ≤ d with equality when voters are effected by all Np parties at all times. We now
set out to determine γ(k), which will allows us to determine the critical noise strength σc as the
critical noise strength for which γ(k) = 0 for all k. For convenience we will estimate the growth
rate in the rescaled variable s and compute γ(s). We first present results for a 1-dimensional
opinion space and then for higher-dimensional opinion spaces.

6.1. One-dimensional case d = 1. For d = 1 we have that z = z and the real-part of the
convolution term can be explicitly calculated as

sRvv

∫ 1

−1

z sin(sz)dz = 2Rvv

(
sin(s)

s
− cos(s)

)
.(30)

This yields for the maximal growth rate

(31) γ(s) = µpv −
s2

2R2
vv

σ2
v + 2µvvRvv

(
sin(s)

s
− cos(s)

)
.

Figure 9 shows the growth rate γ(s) for various values of the noise strength σv. It is seen that for
small values of σv the growth rate γ(s) is positive for a range of values of s. For larger values of
s, the growth rate can again increase obtaining positive values (not shown).

Since the smallest wave number is k = 1, we have s ≥ 2πRvv. Hence the uniform state is
linearly unstable if for any s ≥ 2πRvv the growth rate is positive. To determine the critical σc for
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Figure 9. Growth rate γ(s) for different values of the noise strength σv. The
vertical black line denotes the smallest occurring wave number smin = 2πRvv for
k = 1. The requirement for linear stability is that γ(s) < 0 for all s ≥min.Rvv =
0.3, µvv = 1, µpv = 0.1 which corresponds to σc = 0.2.

which the uniform state becomes unstable we assume that Rvv ≪ 1. A Taylor expansion of the
growth rate yields

γ(s) = µpv + s2
(
2

3
µvvRvv −

σ2
v

2R2
vv

)
.

Noticing s ≥ 2πRvv, finally leads to

σ2
c =

µpv

2π2
+ µvv

4

3
R3

vv.(32)

Note that for the standard noisy Hegselmann–Krause model (1) with µpv = 0 and µvv = 1, we
recover the known critical noise strength σ2

c = 4
3R

3
vv [44, 25]. When µpv > 0, the inclusion of

party dynamics shifts the phase transition to higher values of the noise strength. This can be
understood heuristically as parties provide additional stability to a large group of like-minded
voters. We remark that the stationary party model (23) is unable to recover unanimous consensus.
However, there is a clear phase transition, as we will see below, from an ordered state of party
base clusters or revolution clusters to a disordered state of uniformly distributed voters.

Figure 10 shows a phase diagram obtained from a long simulation of the stationary-party
model (23) in (σv, Rvv)-space. We consider 2, 000 initially uniformly on [0, 1] distributed voters
and stationary parties, p1 = 0.86, p2 = 0.53 and p3 = 0.2. We simulated until time t = 500
with ∆t = 0.1. We tested for statistical equilibrium of the voter dynamics using an Augmented
Dickey-Fuller (ADF) test, testing for stationarity over the last 20% of the simulation. A phase
transition is clearly seen, quantified by the consensus diagnostic D̂. To best visualize the phase
transition and the departure from uniformity, which for 2, 000 voters uniformly sampled across
[0, 1] yields D̂ = 0.037, we employ a colour map with the colour transition occurring at 0.039. The
phase transition is well approximated by our approximation (32) for small values of Rvv ⪅ 0.15,
consistent with the approximation of Rvv ≪ 1 we made to derive (32). The orange region of high
level consensus in the phase diagram Figure 10 occurring for Rvv > 0.12 and σ > 0.03 is reached
via a transition from a state of three party base clusters to a single swing voter cluster of smaller
size akin to the revolution scenario discussed in Section 3 (not shown).

Figure 11 shows the corresponding phase diagram in (µpv, σv)-space. The critical noise strength
σc exhibits a √

µpv dependency, consistent with our approximation (32), illustrating the effect of
the parties on the phase transition.
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Figure 10. Phase diagram for the stationary-party-model (23) for 2000 voters
randomly distributed across [0, 1] and with three parties, p1 = 0.86, p2 = 0.53
and p3 = 0.2. Parameters are µpv = 0.1, µvv = 1 and Rpv = 0.5 with Rvv varying
from 0 to 0.2. Colours show the value of the consensus diagnostic D̂, averaged
from t = 400 to t = 500. The black line shows the analytical critical curve (32).
Eleven out of 2091 simulations did not pass the ADF.

6.2. Higher dimensional cases. For d ≥ 2, the maximal growth rate can be found from (29) as

γ(s) = dµpv + sRvv

∫
||z||≤1

z sin(sz)dz− s2

2R2
vv

σ2
v ,(33)

where we assumed again that Rpv > 1/2. Recall z = k̂ · z with unit vector k̂ = k/k. For s≪ 1 we
Taylor expand the integral term to obtain

sRvv

∫
||z′||≤1

z′′ sin(sz′′)dz′ ≈ Rvv

d
s2
∫
||z′||≤1

||z′||2dz′

=
Rvv

d
s2

1

d+ 2
Sd−1,(34)

where Sd−1 = 2πd/2

Γ(d/2) is the surface area of the d-dimensional unit sphere with Γ(t) =
∫∞
0
xt−1e−xdx.

Hence, for d ≥ 2, we obtain

γ(s) = dµpv +
2πd/2

d(d+ 2)Γ(d/2)
µvvRvvs

2 − σ2
v

2R2
vv

s2.(35)

Applying a further approximation for Rvv ≪ 1, we obtain the critical noise strength

σ2
c = d

µpv

2π2
+

4πd/2

d(d+ 2)Γ(d/2)
µvvR

3
vv.(36)



20 PATRICK CAHILL AND GEORG A. GOTTWALD

Figure 11. Phase diagram for the stationary-party-model (23) for 2000 voters
randomly distributed across [0, 1] and with three parties, p1 = 0.86, p2 = 0.53
and p3 = 0.2. Parameters are Rvv = 0.1, µvv = 1 and Rpv = 0.5 with µpv varying
from 0 to 1. Colours show the value of the consensus diagnostic D̂, averaged
from t = 400 to t = 500. The black line shows the analytical critical curve (32).
One out of 937 simulations did not pass the ADF.

For the classical noisy Hegselmann–Krause model (1) with µvv = 1 and µpv = 0, (36) reduces to
the approximation obtained by Wang et al. [44]. Note that in the classical noisy Hegselmann–
Krause model (1) the critical noise strength σc decreases as the dimension decreases. The inclusion
of political parties, reflected in the linear contribution dµpv, will be dominant for sufficiently large
dimension d, consistent with our premise that parties have a stabilizing effect on the opinion
dynamics of voters.

7. Discussion

We introduced and analyzed a modified Hegselmann–Krause model which describes the
interactions of voters and parties in a d-dimensional opinion space. The model exhibits cluster
formation and a phase transition from unstructured dynamics to unanimous consensus when
all voters and parties collapse into the same region in opinion space. The model exhibits rich
dynamical behaviour depending on the interaction radii of the voters and parties and the strength
of the mutual interactions.

We established a sufficient condition for consensus in the deterministic version which states that
consensus is guaranteed if the interaction radii are sufficiently large allowing for the interaction
of all voters and parties and if the attractive forces dominate over the repulsive forces exerted
by parties to delineate themselves from each other. We further employed mean-field theory to
find the critical noise strength below which consensus occurs. Our analytical formula reflects a
stabilizing effect of parties on consensus formation.
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The proposed model recreates important and complex political dynamics such as party base
clusters, swing voters, disaffected voters, revolutionary collapse and transitions between those
states.

The model typically exhibits clusters of voters around individual parties. These clusters form
what is known as the political base of a party. The political base represents an important feature
of politics as it is a core group of voters who consistently support a specific political party [36].
The model further demonstrates the emergence of swing voters as a cluster of voters situated in
opinion space between two parties. The parties then compete for the preference of the voters
mediated by the repulsive force between them. The distances in opinion space between a voter
from the swing cluster and each of the two parties is similar, so small changes in relative party
positions can change which party is closest to a particular voter, and hence determines what party
they would vote for. The model further supports clusters of disaffected voters that are not aligned
with any political party. Such clusters of disaffected voters are generated when political parties
evolve into regions in opinion space with large voter mass potentially leaving behind disaffected
voters which do not experience any attracting force to the party if their distance is sufficiently
large. This latter phenomenon is of increasing importance in modern political science [19]. More
extreme political scenarios such as a sudden collapse of voters to a single party can be found in
the modified Hegselmann–Krause model.

While the model assumes that the evolution of voter opinion is due to the relative positions in
opinion space, the reality is far more complex. Media consumption and lack of information play
an important role in contributing to voters’ decisions [40], which is not covered by the model.
Another limitation of the model is the assumption that all parties and all voters have the same
interaction radii Rpp and Rvv, respectively, and exert the same force on the other agents. Political
parties are clearly not all equal - it is conceivable that some parties exert stronger attractive forces
on voters for example due to political charisma or effective advertising campaigns. Similarly,
some voters may be more open to the thoughts and opinions of others so their interaction radii
might be larger than those of other voters.

Data availability statement

All code and data used to produce the figures are available from the GitHub repository:
https://github.com/PatrickhCahill/ModifiedHegselmannKrauseModel.
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