Nalini Joshi's Papers
Home Page
The following were current in 2003 and have not been updated. For the latest information,
including latest preprints, please see the link to Publications above.
- K. Maruno, Y. Ohta and N. Joshi, Solitons and integrability of deformed discrete
nonlinear Schrodinger equations, Phys. Letts A (in revision).
- P. A. Clarkson, N. Joshi and M. Mazzocco, The Lax pair for the MKdV hierarchy,
(submitted).
- N. Joshi, Hunting Mathematical Butterflies, in
Dynamic Summer, Lectures of the 15th Canberra International Physics Summer School,
World Scientific, Singapore (to appear).
- N. Joshi, Tri-tronqueé Solutions of Perturbed First Painlevé Equations,
Theor. Math. Phys. (to appear).
- P. Gordoa, N. Joshi and A. Pickering,
A new technique in nonlinear singularity analysis,
Publ. RIMS (to appear).
- N. Joshi and M. Mazzocco, Existence and
uniqueness of tri-tronquée solutions of the second Painlevé
hierarchy, Nonlinearity 16 (2003) 427--439.
-
A. Hone, N. Joshi and A. Kitaev, An entire function from a nonlinear
recurrence relation, Journal of LMS 66 (2002) 377-387.
- C. Cresswell, and N. Joshi, Consistent composition of Backlund transformations produces
confined maps, Letts. Math. Phys. 60 (2002) 1-14.
- N. Joshi, Regularizing the KdV equation near a blow-up surface, Theor. Math. Phys. 127 (2001) 744-750.
-
P. Gordoa, N. Joshi and A. Pickering,
On a generalized 2+1 dispersive water wave hierarchy,
Publ. RIMS 37 (2001) 327-347.
-
N. Joshi and A. Kitaev, On Boutroux's tritronquée solutions
of the first Painlevé equation, Stud. Appl. Math. 107
(2001) 253--291.
-
P. Gordoa, N. Joshi and A. Pickering,
Mappings preserving locations of movable poles II:
the third and fifth Painlevé equations, Nonlinearity
14 (2001) 567--582.
-
P. Gordoa, N. Joshi and A. Pickering, Truncation-type methods and Backlund
transformations for ordinary differential equations: the third and fifth
Painlevé equations, Glasgow J. Math 43A (2001) 23--32.
-
F. Nijhoff, A. Hone and N. Joshi, On a Schwarzian PDE associated with the
KdV hierarchy, Phys. Letts. A 267 (2000), 147--156. 3
-
F. Nijhoff, A. Hone and N. Joshi, On the discrete and continuous Miura chain associated with the sixth Painlevé equation, Phys. Letts. A 264 (2000), 396--406.
-
N. Joshi, True Solutions Asymptotic to Formal WKB Solutions of the Second
Painlevé Equation with Large Parameter, in Toward the Exact WKB
Analysis of Differential Equations, Linear or Non-Linear,
C. Howls, T. Kawai and Y. Takei (eds), Kyoto University Press, 2000, 223--229.
-
N. Joshi, Irregular singular behaviour in the first discrete Painlevé
equation, in Symmetries and Integrability of Difference Equations III,
D. Levi and O. Ragnisco (eds), 237--243, CRM Proc. Lecture Notes, 25, Amer. Math. Soc.,
Providence, RI, 2000.
-
N. Joshi and A. Pickering, `Backlund transformations for similarity reductions of the modified Sawada-Kotera/Kaup-Kupershmidt hierarchy,' (submitted).
- N. Joshi and M. Kruskal, A natural sum of divergent asymptotic
series solutions of the first Painlevé equation. postscript(247Kb)
- N. Joshi, J. Petersen and L. Schubert, Nonexistence results for the
Korteweg-deVries and Kadomtsev-Petviashvili equations,
Stud. Appl. Math 105 (2000) 361-374.
- N. Joshi, Asymptotic studies of the Painlevé equations, in The Painlevé property, one century later, R.Conte (ed.), CRM Lecture Notes in
Mathematical Physics, Springer-Verlag, 1999, 181--227.
- N. Joshi, The second Painlevé equation in the large parameter limit
I: local asymptotic analysis, Stud Appl Math 102
(1999) 345--373.
- P. Gordoa, N. Joshi and A. Pickering, Mappings preserving
locations of movable poles: a new extension of the truncation method
to ordinary differential equations, Nonlinearity 12 (1999)
955-968.
- C. Cresswell, and N. Joshi,
The discrete first, second and thirty-fourth Painlevé hierarchies,
J. Phys. A. 32 (1999) 655--669.
- P.A. Clarkson, N. Joshi and A. Pickering,
B\"acklund transformations for the second Painlevé hierarchy:
a modified truncation approach,
Inverse Problems 15 (1999) 175--187.
- Cresswell, C. and Joshi, N., The discrete PI hierarchy, in ``Symmetries and Integrability of Difference Equations,''
P. A. Clarkson and F. Nijhoff (eds), London Mathematical
Society Lecture Note Series 255, Cambridge University
Press (Cambridge, UK, 1999) 197--205.
- N. Joshi, A. Ramani and B. Grammaticos, A bilinear approach to discrete Miura transformations,
Phys. Letts. A 249 (1998) 59-62.
- Doran-Wu, P. and Joshi, N., Direct asymptotic analysis of the second
Painlevé equation: three limits, J.Phys. A, 30 (1997)
4701-4708.
- M. Kruskal, N. Joshi and R. Halburd, Analytic and Asymptotic Methods
for Nonlinear Singularity Analysis: a Review and Extensions
of Tests for the Painlevé Property,
in Integrability of Nonlinear Systems
, eds) Y. Kosmann-Schwarzbach, B. Grammaticos,
K.M. Tamizhmani, Lecture Notes in Physics vol. 495, Springer-Verlag,
Heidelberg, 1997, 171-205.
- Joshi, N., A local asymptotic analysis of the first discrete Painlevé
equation as the discrete independent variable approaches infinity,
Methods and Appns of Analysis , 4 (1997) 124-133
.
- Joshi, N., and Vassiliou, P.J., Lie symmetries and linearizations for discr
ete dynamical systems, CRM Proceedings and Lecture Notes, 9 (1996
), 163-171.
- Joshi, N., and Petersen, J.A., Complex blow-up in Burgers'
equation: an iterative approach, Bull. Austral. Math. Soc. 54 (1996) 353-36
2.
- Halburd, R.G., and Joshi, N., The coalescence limit of the second Painlevé equation, Stud. Appl. Math., 97 (1996), 1-15.
- Joshi, N., and Vassiliou, P.J., The existence of Lie symmetries for first-o
rder analytic discrete dynamical systems, J. Math. Analysis and Appl., 195 (1995), 872-887.
- Joshi, N., and Srinivasan, G.K., The Radius of Convergence and the well-pos
edness of the Painlevé Expansions of the Kortweg-de-Vries Equation, Nonl
inearity 10 (1997), 71-79.
- Grimshaw, R.H.J., and Joshi, N., Weakly nonlocal solitary waves in a singul
arly perturbed Korteweg-de-Vries equation, SIAM J. Appl. Math., 55 (1995), 124-135.
- Joshi, N., and Petersen, J.A., A method of proving the convergence of the P
ainlevé expansions of partial differential equations, Nonlinearity,
7 (1994), 595-602.
- Joshi, N., and Kruskal, M.D., A direct proof that the six Painlevé equ
ations have no movable singularities except poles, Stud. Appl. Math.,
93 (1994), 187-207.
- Joshi, N., Singularity analysis and integrability for discrete dynamical sy
stems, J. Math. Analysis and Appl., 184 (1994), 573-584.
- Joshi, N., and Kruskal, M.D., A local asymptotic method of seeing the natur
al barrier of the Chazy equation, in Applications of Analytic and Geometric M
ethods for Nonlinear Differential Equations, (ed) P. Clarkson, Kluwer, New Y
ork, (1993), 331-340.
- Joshi, N., and Kruskal, M.D., Connection results for the first Painlevé
; equation, in Painlevé Transcendents, Their Asymptotics, and Physical
Applications, P. Winternitz and D. Levi (eds.), Pergamon
Press, New York ,
(1992), 61-79.
- Joshi, N., and Kruskal, M.D., The Painlevé connection problem: an asy
mptotic approach I, Stud. Appl. Math., 86 (1992), 315-376.
- Joshi, N., and Kruskal, M.D., A direct proof that solutions of the first Pa
inlevé equation have no movable singularities except poles, Nonlinear
evolution equations and dynamical systems (eds) Marco Boiti, Luigi Martini,
and Flora Pempinelli, World Scientific, Singapore, (1992), 310-317.
- Joshi, N., Burtonclay, D., and Halburd, R.G., Nonlinear nonautonomous discr
ete dynamical systems from a general discrete isomonodromy problem, Lett. Ma
th. Phys., 26 (1992), 123-131.
- Kruskal, M.D., and Joshi, N., Soliton theory, Painlevé property, and i
ntegrability, in Chaos and Order, Miniconference, Proc. of the Centre f
or Mathematical Analysis, ANU, Canberra, Australia, 1-3 February 1990, N. Joshi
and R.L. Dewar (eds.), World Scientific, Singapore, (1991), 82-96.
- Joshi, N., and Dewar, R.L., Chaos and Order, Miniconference, Proc. of th
e Centre for Mathematical Analysis, Australian National University, Canberra, A
ustralia, 1-3 February 1990, World Scientific, Singapore, 1991.
- Joshi, N., An explicit one-soliton solution of the (2+1)-dimensional genera
lized Sine-Gordon equations, Lett. Math. Physics, 20 (1990), 261-
270.
- Joshi, N., and Kruskal, M.D., An asymptotic approach to the connection prob
lem for the first and the second Painlevé equations, Phys. Lett. A,
130 (3) (1988), 129-137.
- Joshi, N., Painlevé property of general variable-coefficient versions
of the Korteweg-De Vries and non-linear Schrödinger equations, Phys. Le
tt. A, 125(9) (1987), 456-460.
- Joshi, N., and Kruskal, M.D., The connection problem for Painlevé transcendents, Physica, 18D (1986), 215-216.
Nalini Joshi
1 September 2004