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Abstract. For G a simple, simply-connected complex algebraic group and two dominant
integral weights λ, µ, we consider the dimensions of weight spaces Vλpµq of weight µ in
the irreducible, finite-dimensional highest weight λ representation. For natural numbers
N , the function N ÞÑ dimVNλpNµq is quasi-polynomial in N , the stretched Kostka quasi-
polynomial. Using methods of geometric invariant theory (GIT), we compute the degree of
this quasi-polynomial, resolving a conjecture of Gao and Gao. We also discuss periods of
this quasi-polynomial determined by the GIT approach, and give computational evidence
supporting a geometric determination of the minimal period.

1. Introduction

1.1. Stretched Kostka quasi-polynomials and their degrees. Fix a positive natural
number n and two partitions λ, µ $ n. For two such partitions, the Kostka number Kλ,µ

plays a central role in algebraic combinatorics and its interaction with representation theory.
Among its many formulations, Kλ,µ encodes the number of semistandard Young tableaux of
shape λ and content µ, the decomposition of the Schur function sλ into the monomial basis,
the decomposition of permutation modules for the symmetric group Sn into Specht modules,
and dimensions of weight spaces in irreducible representations of general linear groups, to
name a few incarnations.

While the values of Kostka numbers can vary wildly depending on the partitions λ, µ,
the nonvanishing of Kλ,µ is captured by a textbook combinatorial criterion: Kλ,µ ‰ 0 ðñ

µ Ĳ λ, where Ĳ denotes the dominance order on partitions (cf. [7, §2.2]). Among its many
features, the dominance order is preserved under scaling; that is, for any integer partitions
λ, µ and N ě 1 we have that Kλ,µ ‰ 0 ðñ KNλ,Nµ ‰ 0. A goal, then, in studying the
behavior of Kostka numbers is to understand the function Kλ,µp¨q : NÑ N given by

Kλ,µpNq :“ KNλ,Nµ;

this is a polynomial, as proven in [10], which we will refer to as the stretched Kostka polyno-
mial. Using the realization of Kλ,µpNq as the Ehrhart polynomial of certain Gelfand–Tsetlin
polytopes GTλ,µ, McAllister [16] computed the degree of Kλ,µpNq, resolving a conjecture of
King–Tollu–Toumazet [9].

Now, let G be a semisimple, simply-connected complex algebraic group, and fix a choice
of maximal torus and Borel subgroups T Ă B Ă G. Associated to this choice, we get a root
system Φ with positive roots Φ`, and integral characters (or weights) X˚pT q with dominant
integral characters (or weights) X˚pT q`. To any λ P X˚pT q`, we can associate to G the
finite-dimensional, irreducible representation Vλ with highest weight λ. For µ P X˚pT q`, we
can consider the µ weight space of Vλ, which we denote by Vλpµq. Generalizing the realization
of the Kostka numbers as dimensions of weight spaces for representations of general linear
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groups, we set

KG
λ,µ “ Kλ,µ “ dimpVλpµqq;

we abuse notation and drop the dependence on G. Like the classical Kostka numbers, there
is a straightforward criterion for when Kλ,µ ‰ 0, now given by the Bruhat–Chevalley order
on weights (also commonly referred to as the dominance order):

Kλ,µ ‰ 0 ðñ µ ď λ ðñ λ´ µ P Q` :“ Zě0pΦ`q.

This condition again is invariant under scaling, and we can consider the function Kλ,µp¨q :
NÑ N given by

Kλ,µpNq :“ KNλ,Nµ “ dimVNλpNµq.

Unlike the type A case, Kλ,µpNq is now in general only quasi-polynomial in N :

Definition 1.1. A function f : NÑ N is a quasi-polynomial if there exist a positive integer
d ě 1 and polynomials p0, p1, . . . , pd´1 such that fpNq “ pipNq for all N ” i mod d. We
call such an integer d a period of the quasi-polynomial. Note that d need not be minimal.

The degree of f is the highest degree of its constituent polynomials p0, p1, . . . , pd´1.

We call Kλ,µpNq the stretched Kostka quasi-polynomial.
Again using Ehrhart theory, now applied to Berenstein–Zelevinsky polytopes BZλ,µ, Gao

and Gao [8] extended McAllister’s work and gave a uniform formula for the degree of Kλ,µpNq
for classical types, as follows.

Theorem 1.2. [8, Theorem 1.2] Let G be a complex, semisimple, simply-connected algebraic
group of classical type with root system Φ, and let λ, µ P X˚pT q` be two dominant weights
such that λ ´ µ “

ř

i ciαi with each ci P Zě0, in terms of the simple roots αi of G. Also
write λ “

ř

i di$i in terms of the fundamental weights. Then the degree of Kλ,µpNq is

1

2
|Φp1q| ´ rankpΦp1qq ´

1

2
|Φp2q|,

where Φp1q and Φp2q are the root subsystems determined by

Φp1q “ spantαi|ci ‰ 0u, Φp2q “ spantαi|ci ‰ 0, di “ 0u.

They further conjectured that this degree formula holds for arbitrary semisimple G [8, Con-
jecture 1.3]. The first goal of the present work is to prove this conjecture.

As part of their proof for classical types, Gao and Gao make use the following special
subclasses of pairs of dominant integral weights pλ, µq, defined in [8, §2.1].

Definition 1.3. For any semisimple, simply-connected G, a pair of dominant integral weights
pλ, µq with λ´ µ “

ř

i ciαi is called

(1) primitive if ci ‰ 0 for all i, and
(2) simple primitive if the pair is primitive and group G is simple.

A crucial observation is that, to compute the degree of Kλ,µpNq, one can reduce to the case
when pλ, µq is simple primitive [8, Proposition 3.4, Corollary 3.5]. With this reduction, the
formula for the degree of Kλ,µpNq simplifies to the following, which confirms their conjecture
(Theorem 3.5 in the text).
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Theorem 1.4. Let G be a simple, simply-connected complex algebraic group, and pλ, µq a
primitive pair of dominant integral weights. Write λ “

ř

i di$i in the basis of fundamental
weights, with di ě 0. Then Kλ,µpNq is a quasi-polynomial of degree

1

2
|Φ| ´

1

2
|Φ1| ´ rankpΦq,

where Φ1 is the sub-root system given by spantαi|di “ 0u Ď Φ.

Corollary 1.5. Theorem 1.2 holds for all semisimple G.

1.2. Geometric Invariant Theory and quasi-polynomiality. We assemble a uniform
proof of Theorem 1.4 using techniques from geometric invariant theory (GIT). The appli-
cation of GIT methods to representation-theoretic questions is now well-established in the
literature, with particular focus on problems involving the branching of representations and
the behavior of weight multiplicities. Without any hope of being exhaustive, we highlight
[13], [1], [2], [18], and references therein for examples of these techniques and related results.

Broadly, the proof of Theorem 1.4 consists of connecting the degree of the stretched
Kostka quasi-polynomial Kλ,µpNq to the dimension of a certain GIT quotient of a partial
flag variety G{Pλ. The restriction to pairs pλ, µq which are simple primitive greatly simplifies
this dimension computation and gives a geometric interpretation to the degree formulas
conjectured in [8].

Further, the geometric perspective afforded by the GIT constructions gives rise not just
to information on the degree of Kλ,µpNq but also to its period. In particular, for simple
primitive pairs pλ, µq and the corresponding line bundle L there is some minimal integer
d ě 1 such that Lbd descends to the GIT quotient. As an easy observation during the proof
of Theorem 1.4, we can conclude the following proposition.

Proposition 1.6. Let G be a simple, simply-connected complex algebraic group, and let
pλ, µq be a primitive pair of dominant integral weights. Let d ě 1 be minimal such that Lbd
descends to the GIT quotient. Then d is a period of the stretched Kostka quasi-polynomial
Kλ,µpNq.

In Section 4, we discuss how this integer d should be determinable from the data of G,
λ, and µ, and using a result of [12] give an explicit determination of this period in the case
when µ “ 0. We also propose a variation of this result for general µ (see Question 4.3) and
give some computational support for this proposal.

1.3. Outline of the paper. In Section 2, we collect the relevant definitions and results
from GIT which will be needed for the remainder of the paper. We include some basic
exposition (with references) for the convenience of the reader, but make no effort to be
complete. In Section 3, we apply these methods to the case of flag varieties, building up the
proof of Theorem 1.4, with the key geometric ingredient being the asymptotic Riemann–
Roch theorem. Finally, in Section 4 we discuss the descent lattice for GIT quotients of flag
varieties by line bundles, its relationship to Proposition 1.6, and give some explicit examples
of the stretched Kostka quasi-polynomials for various types.

Acknowledgements. We thank Shrawan Kumar for helpful discussions on GIT quotients
of flag varieties, and for outlining the argument of Proposition 3.1, which greatly simplified
and improved our exposition.
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2. Essentials of Geometric Invariant Theory

In this section, we collect the key features and results of geometric invariant theory (GIT)
that will be used in this paper. We do not venture to give a complete treatment of this broad
and well-established field; instead, we refer to the standard classical reference [17] or the
approachable treatment as in [4] for full details. We limit ourselves presently to the case when
X is a smooth, irreducible, complex projective variety with an action of a connected reductive
algebraic group H (to distinguish from the group G as in the introduction), although we will
later specialize to the case of a maximal torus H “ T , which is the only relevant case for us.

2.1. Stability and GIT quotients. Let X and H be as above, and let L be an ample,
H-linearized line bundle on X. Recall the following standard definitions.

Definition 2.1. A point x P X is called

(1) semistable with respect to L if there exists some n ą 0 and section σ P H0pX,LbnqH
such that σpxq ‰ 0. We denote the set of all such semistable points by XsspLq.

(2) stable with respect to L if it is semistable, the isotropy subgroup Hx is finite, and all
H-orbits in Xσ :“ ty P X : σpyq ‰ 0u are closed. We denote the set of all such stable
points by XspLq; note that naturally XspLq Ď XsspLq.

(3) unstable with respect to L if it is not semistable.

In general, taking a naive quotient of the variety X by its H-action is poorly behaved.
However, the utility of GIT is that we can get much better control on quotients by instead
considering the sets XsspLq or XspLq of semistable or stable points, respectively, for an
ample line bundle. This is made precise in the following construction and theorem regarding
the GIT quotient (cf. [4, Theorem 8.1, Proposition 8.1]).

Theorem 2.2. For X, H, and L as above, set

X{{LH :“ Proj

˜

à

ně0

H0
pX,LbnqH

¸

,

the GIT quotient of X by H. Then

(1) X{{LH is a projective variety, and the map π : XsspLq Ñ X{{LH associated to the
inclusion

à

ně0

H0
pX,LbnqH ãÑ

à

ně0

H0
pX,Lbnq

is a good categorical quotient.
(2) There is an ample line bundle M on X{{LH such that π˚pMq “ Lbm|XsspLq for some

m ě 0.
(3) There is an open subset W Ď X{{LH such that XspLq “ π´1pW q, and the restriction

π : XspLq Ñ W is a geometric quotient of XspLq by H.

By virtue of πpXspLqq being a geometric quotient and open in the GIT quotient, Theorem
2.2(3) has the following corollary, which will be of key importance for us.

Corollary 2.3. Suppose that XspLq is nonempty. Then dim pX{{LHq “ dimpXq´dimpHq.
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2.2. Hilbert–Mumford stability criterion. Let δ : C˚ Ñ H be a one-parameter sub-
group (OPS) of H. Then since X is projective, for any OPS δ and x P X the limit point

x0 :“ lim
tÑ0

δptq.x

exists in X. Via δ, the fiber Lx0 has an induced C˚-action, given by some integer r such that
δptq.z “ trz for t P C˚, z P Lx0 . Following the conventions of [17], we set

µL
px, δq :“ r,

the Mumford number for the pair px, δq. The Hilbert–Mumford criterion, given in the fol-
lowing proposition, gives a concrete numerical condition for determining the (semi)stability
of a point x P X with respect to L.

Proposition 2.4. A point x P X is semistable (respectively, stable) with respect to L if and
only if µLpx, δq ě 0 (respectively, µLpx, δq ą 0) for all non-constant OPSs δ.

We highlight a setting when there is a particularly nice realization of the Mumford number
µLpx, δq, following [14, §3]; this construction will be a crucial part of applying this machinery
to flag varieties in the later sections. Let V be a finite-dimensional H-representation and
let i : X ãÑ PpV q be an H-equivariant embedding. Set L :“ i˚pOp1qq. For an OPS δ, let
te1, . . . , enu be an eigenbasis of V , so that

δptq ¨ ej “ tδjej

for j “ 1, . . . , n. Then for x P X, we have the following proposition [17, §2.1, Proposition
2.3].

Proposition 2.5. Write ipxq “
”

řn
j“1 xjej

ı

P PpV q. Then for L “ i˚pOp1qq as above,

µL
px, δq “ max

j:xj‰0
p´δjq.

2.3. Descent and pushforward of line bundles to GIT quotients. As in Theorem 2.2,
let π be the quotient map XsspLq Ñ X{{LH. For F a quasi-coherent H-equivariant sheaf
over XsspLq, let πH˚ F be the invariant direct image sheaf on X{{LH, where the sections over
an open set U are the H-invariant sections in Fpπ´1pUqq. Then πH˚ is exact, and pπ˚, πH˚ q
form an adjoint pair with πH˚ ˝ π

˚ “ Id. We will be most interested in the case when F is a
line bundle.

Definition 2.6. Recall that a line bundle L1 on X descends to X{{LH if there is a line
bundle M1 on X{{LH such that

L1|XsspLq “ π˚pM1
q.

For example, in Theorem 2.2(2) there exists some m ě 0 such that Lbm descends to
X{{LH, and in some cases m ą 1 even though L was used to define the quotient. Via
Kempf’s descent lemma, one can determine when a line bundle (or more generally, a vector
bundle) descends to the GIT quotient; while we will later rely on descent conditions specific
to the flag variety which follow from Kempf’s descent lemma, we will not need the full result
here, and instead refer to [6, Theorem 2.3] for details.

By definition of the invariant direct image, if L descends to a line bundle M1 on the
GIT quotient, then πH˚ pLq “ M1. If L does not descend, then the direct image πH˚ pLq (if
nonzero) is nonetheless a rank one reflexive sheaf on the GIT quotient, and in either case,
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the following result of Teleman [20, Theorem 3.2.a and Remark 3.3(i)] allows us to compare
the cohomology of these two sheaves.

Proposition 2.7. H˚pX,LqH “ H˚pX{{LH, π
H
˚ pLqq.

3. Quotients of flag varieties by maximal torus and stretched Kostka
quasi-polynomials

We now apply the machinery developed in the previous section to the case when X “ G{P
is a flag variety and H “ T is a maximal torus; the role of this section is to assemble the
proof of Theorem 1.4. To this end, we fix a simple, simply-connected complex algebraic
group G and a pair of primitive dominant integral weights µ ď λ, where we recall that by
primitive we mean

λ´ µ “
ÿ

i

ciαi

as a sum of the simple roots of G with each ci ą 0.
Write λ “

ř

i di$i in the basis of fundamental weights, and as in Theorem 1.4 set Φ1

to be the sub-root system determined by Φ1 “ spantαi : di “ 0u Ă Φ. Associated to this
sub-root system is a standard parabolic subgroup B Ă Pλ Ă G whose Levi component has
root system Φ1. We will abuse notation and write P “ Pλ, as λ will be fixed. Then λ extends
as a character of P with trivial action on UP .

3.1. Line bundles on G{P and the dimension of a GIT quotient. We consider the
G-equivariant line bundle Lλ :“ GˆPC´λ on the flag variety G{P associated to the principal
P -bundle G Ñ G{P , where the choice of sign is for convenience. Then in particular Lλ is
an ample line bundle on G{P . Alternatively, via the embedding

iλ : G{P ãÑ PpVλq, gP ÞÑ rgvλs,

where vλ P Vλ is a nonzero highest-weight vector, we have that Lλ – i˚λOp1q. By the classical
Borel–Weil theorem, as G-representations

H0
pG{P,Lλq – V ˚λ ,

where V ˚λ is the dual representation to Vλ, and all higher cohomology vanishes.
We now modify the line bundle Lλ to better suit our purposes; this we do by a change in

its T -linearization. Specifically, set

L “ Lλ,µ :“ Lλ b Cµ,

where we again abuse notation and drop the dependence of L on λ and µ. The total space
of this line bundle is still given by GˆP C´λ, but the T -action is now given by

t.rg, zs :“ rtg, µptqzs.

Now applying the Borel–Weil theorem, as T -representations we get the identifications

H0
pG{P,Lq – Cµ b V

˚
λ – pC´µ b Vλq˚.

In particular, by considering T -invariants we have that H0pG{P,LqT ‰ 0 ðñ Vλpµq ‰ 0.
With this perspective, we can now consider the nonvanishing of weight spaces in Vλ via the
language of GIT. More to the point, we have

Proposition 3.1. Let G{P and L be as above. Then pG{P qspLq ‰ ∅.
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Proof. Fix a weight basis tviu of the representation Vλ, and the corresponding dual basis
tv˚i u. Define subsets Xi Ď G{P by

Xi :“ tgP : v˚i pgvλq ‰ 0u.

As Vλ is irreducible, each Xi is open and nonempty. Set X̊ :“
Ş

iXi; this is also open and

nonempty, since G{P is irreducible. We claim that any g̊P P X̊ is stable with respect to L.
Indeed, by Proposition 2.5, for any non-constant OPS δ : C˚ Ñ T we have

µL
p̊gP, δq “ max

γPwtpVλq
tx´γ, 9δyu ` xµ, 9δy,

where wtpVλq is the set of weights of Vλ. Let w P W be such that 9δ` :“ ´w 9δ is dominant

(by which we mean xαi, 9δ`y ě 0 for all simple roots αi). Since wtpVλq is W -invariant, we get
that

µL
p̊gP, δq “ max

γPwtpVλq
txγ, 9δ`yu ` x´wµ, 9δ`y

“ xλ, 9δ`y ´ xwµ, 9δ`y

“ xλ´ µ, 9δ`y ` xµ´ wµ, 9δ`y

Now, since pλ, µq was assumed to be a primitive pair, necessarily xλ ´ µ, 9δ`y ą 0. And,

since µ is dominant, we have that µ ě wµ, so that xµ ´ wµ, 9δ`y ě 0. In all, this gives that
µLp̊gP, δq ą 0, so by the Hilbert–Mumford criterion of Proposition 2.4, g̊P is stable with
respect to L. �

By Corollary 2.3, we get the following immediate crucial corollary.

Corollary 3.2. For G{P and L as above,

dim ppG{P q{{LT q “ dim pG{P q ´ dim pT q “
1

2
|Φ| ´

1

2
|Φ1| ´ rankpΦq,

where as before Φ1 is the root system for the Levi component of P .

Thus, the desired degree of the quasi-polynomial Kλ,µpNq for a primitive pair pλ, µq has
a geometric realization as the dimension of an associated GIT quotient. We now make this
connection precise.

3.2. Asymptotic Riemann-Roch and the degree of Kλ,µpNq. Let X be a projective
variety and F a coherent sheaf on X. We denote the Euler-Poincaré characteristic of F by

χpFq :“
ÿ

iě0

p´1qi dim Hi
pX,Fq.

Now, consider the additional data of an ample line bundle L on X. The following propo-
sition, often called the asymptotic Riemann–Roch formula, is also a particular case of a
theorem of Snapper [11, §1 Theorem] and is closely connected with the notion of a Hilbert
polynomial for a sheaf. This result is the key connection between the degree of Kλ,µpNq and
the dimension of the GIT quotient. We give a version of the statement which is most closely
aligned to our purposes; the conditions can be somewhat relaxed.

Proposition 3.3. For X a projective variety, F a coherent sheaf on X and L an ample line
bundle on X, the function

n ÞÑ χpF b Lbnq
is a polynomial in n of degree dim SupppFq.
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We apply this to the case of X “ pG{P q{{LT . As before, set L “ Lλ b Cµ, where as
always pλ, µq is a primitive pair. As in the discussion after Definition 2.6, it need not be
the case that L descends to a line bundle on pG{P q{{LT . Nevertheless, some positive power
does descend. Fix k ě 1 such that Lbk descends to the GIT quotient (for now, any such
a choice suffices; we will return to this discussion in the next section). Denote by M the
corresponding line bundle on the GIT quotient.

Fixing 0 ď j ă k, we set Fj to be the coherent sheaf on pG{P q{{LT given by

Fj :“ πT˚ pLbjq,

where πT˚ is the invariant direct image. Recall that this is a reflexive sheaf of rank one. The
following proposition is now a direct consequence of Proposition 3.3.

Proposition 3.4. For G simple, simply-connected, pλ, µq a primitive pair, and for a choice
of k ě 1 and 0 ď j ă k as above, the function qj : NÑ N given by

qj : n ÞÑ dimVpj`knqλppj ` knqµq

is a polynomial in n of degree dimppG{P q{{LT q.

Proof. Let L “ LλbCµ as above, with k ě 1 chosen so that Lbk descends to M on pG{P q{{LT .
Then by Proposition 3.3, for the sheaf Fj and M, we have that

n ÞÑ χpFj bMbn
q

is polynomial in n of degree dim SupppFjq; since Fj is reflexive, it has full support so that
this polynomial is of degree dimppG{P q{{LT q. Now, since M “ πT˚ pLbkq we have that

Fj bMbn
“ πT˚ pLbpj`knqq.

By Proposition 2.7, we get that

H˚ppG{P q{{LT,Fj bMbn
q – H˚pG{P,Lbpj`knqqT .

By the higher cohomology vanishing of the Borel–Weil theorem, the only nontrivial terms
are the global sections, and so

dim H0
ppG{P q{{LT,Fj bMbn

q “ dim H0
pG{P,Lbpj`knqqT “ dimVpj`knqλppj ` knqµq

is a polynomial in n, as desired. �

Finally, we can collect these polynomials and arrange them into a quasi-polynomial, com-
pleting the proof of Theorem 1.4.

Theorem 3.5. For G simple, simply-connected and pλ, µq a primitive pair, the function
Kλ,µpNq is quasi-polynomial of degree dimppG{P q{{LT q.

Proof. As in Proposition 3.4, set qjpnq “ dimVpj`knqλppj ` knqµq, a polynomial in n, for

0 ď j ă k. Set pjpNq :“ qjp
N´j
k
q, which is a polynomial in N of the same degree. Then if

N ” j mod k, writing N “ j ` nk we get that

Kλ,µpNq “ dimVNλpNµq “ dimVpj`nkqλppj ` nkqµq “ qjpnq “ qj

ˆ

N ´ j

k

˙

“ pjpNq,

so that p0pNq, p1pNq, . . . , pk´1pNq defines a quasi-polynomial for Kλ,µpNq of period k and
degree dimppG{P q{{LT q, as each individual pipNq has this degree. �
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We end this section with a few remarks. As previously discussed, Theorem 3.5 with the
restriction to primitive pairs pλ, µq was proven by Gao and Gao [8] in classical types using
the combinatorics of Berenstein–Zelevinsky polytopes and Ehrhart theory. However, using
similar combinatorics along with polytopes coming from the path model, Dehy [3] also derives
the quasi-polynomality of the dimensions of weight spaces VNλpNµq in N ; this is done even
more generally in the setting of Demazure modules for symmetrizable Kac–Moody algebras.
Applying the results of [3] to the present case, for any pλ, µq not necessarily primitive, one
can conclude that Kλ,µpNq is quasi-polynomial of degree bounded by that in Theorem 3.5.
This is also briefly explained therein in more geometric language (attributed to M. Brion),
although with fewer details.

The key advantage to primitive pλ, µq is that they realize the maximum possible degree
among the stretched Kostka quasi-polynomials. Along with Proposition 3.1 which proved
this fact, we mention that an alternative view of this result is that the primitive condition on
pλ, µq ensures that the line bundle L is in the relative interior of the T -ample cone CT pG{Pλq
(c.f. [5]).

4. Descent of line bundles on flag varieties and periods of stretched
Kostka quasi-polynomials

The proof of Theorem 3.5 establishes the quasi-polynomality of Kλ,µpNq, with period k, for
any choice of k ě 1 such that Lbk descended to the GIT quotient. Often, when considering
a quasi-polynomial fpNq, one would like to know the minimal such period. In the case of
Kostka quasi-polynomials, a natural candidate for this would be the minimal power of L
which descends to the GIT quotient.

By way of motivation, in [12] Kumar determines precisely for which dominant weights
λ the line bundle Lλ descends to the GIT quotient pG{Pλq{{LλT . These correspond to a
certain lattice Γ depending on G, which we refer to as the descent lattice. This was later
used in by Kumar–Prasad [14] to study the quasi-polynomality of zero weight spaces as the
highest weight λ varies in the root lattice. We recall the classification of these lattices Γ in
the following proposition.

Proposition 4.1. Let λ P X˚pT q` be a dominant integral weight. Then the line bundle Lλ
descends to the GIT quotient pG{Pλq{{LλT if and only if λ P Γ, where Γ is the lattice

(a) Q, if G is of type A` (` ě 1).
(b) 2Q, if G is of type B` (` ě 3).
(c) Z2α1 ` ¨ ¨ ¨ ` Z2αn´1 ` Zαn, if G is of type C` (` ě 2).

(d1) tn1α1 ` 2n2α2 ` n3α3 ` n4α4 : ni P Z and n1 ` n3 ` n4 P 2Zu, if G is of type D4.
(d2) t2n1α1 ` 2n2α2 ` ¨ ¨ ¨ ` 2n`´2 ` n`´1α`´1 ` n`α` : ni P Z and n`´1 ` n` P 2Zu, if G is

of type D` (` ě 5).
(e) Z6α1 ` Z2α2, if G is of type G2.
(f) Z6α1 ` Z6α2 ` Z12α3 ` Z12α4, if G is of type F4.
(g) 6X˚pT q, if G is of type E6.
(h) 12X˚pT q, if G is of type E7.
(i) 60Q, if G is of type E8.

Note that for G simple, the pair pλ, 0q is always primitive for any dominant integral weight
λ. Applying this result, we have the following corollary concerning periods of stretched
Kostka quasi-polynomials Kλ,0pNq.



10 MARC BESSON, SAM JERALDS, AND JOSHUA KIERS

Corollary 4.2. Let λ be a dominant integral weight with λ ě 0. Let d ě 1 be the minimal
integer such that dλ P Γ. Then the stretched Kostka quasi-polynomial Kλ,0pNq has period d.

In particular, if G “ SLnpCq, then this recovers the µ “ 0 case of the polynomality of
stretched Kostka numbers due to Kirillov–Reshetikhin [10], and if G is of classical type, then
Kλ,0pNq is quasi-polynomial of period at most 2.

Following Corollary 4.2, we can ask two natural questions: first, is the period d produced
above always the minimal period for the quasi-polynomial Kλ,0pNq, and second, is there
a similar easy determination of a period for general pairs pλ, µq? To answer the second
question, one would like to first have a handle on (at least sufficient) conditions for the line
bundle L :“ LλbCµ to descend to the GIT quotient, in terms of λ and µ. This seems more
subtle than the µ “ 0 case, and remains an open question of interest. For the first question
(even in the case of general pairs), while the minimal integer d such that the line bundle Lbd
descends to the GIT quotient is a natural candidate of minimal period, we do not know how
to explicitly rule out a smaller divisor of d being a period of Kλ,µpNq.

Nevertheless, as in [8, Proposition 3.4, Corollary 3.5], we can always reduce these questions
to the case of primitive pairs by taking appropriate projections onto the weight lattices of
certain Levi subgroups. For general pλ, µq, a period for Kλ,µpNq would then be given by the
least common multiple of the periods of each of its primitive factors. Using this reduction,
we offer the following question, which is based in part on a hopeful analogy with Corollary
4.2, as a candidate for a period of Kλ,µpNq which generalizes the µ “ 0 case. We include
in the subsequent subsections some computational examples as support of an affirmative
answer to this question.

Question 4.3. Let G be a simple, simply-connected complex algebraic group and pλ, µq a
primitive pair of dominant integral weights. Let d ě 1 be the minimal integer such that
dpλ´µq P Γ. Then does the stretched Kostka quasi-polynomial Kλ,µpNq have d as a (minimal)
period?

4.1. Examples and computational method. We conclude with some explicit instructive
examples, which were computed via Sage [19]. All results are simply informed guesses at
the quasi-polynomial Kλ,µpNq. From basic linear algebra, we know that any n points can
be interpolated by a degree n ´ 1 polynomial. It is relatively much “harder” (measure 0
probability) for those n points to be interpolated by a degree n´ 2 polynomial.

Now supposing we have an integer sequence paNq which is known to be the outputs of a
polynomial function fpNq “ aN , with degpfq unknown. If the first n points of the sequence
are interpolated by a degree n ´ 2 polynomial, it is suggestive that the same polynomial
predicts all terms of the sequence. This is, of course, not a guarantee, but still compelling
evidence.

In the calculations reported below, a sample of k points of the sequence KNλ,Nµ was
collected using LiE [15]. From there, for each possible choice of positive integer d such that
k{d ě 2, we split the terms of the sequence up into d groups of at least n “ tk{du terms
each according to residue class of the index modulo d. If each group of n terms defines a
polynomial of degree at most n ´ 2, we decide there is compelling evidence that a quasi-
polynomial of period d and degree n defines the sequence which we have sampled. If no such
quasi-polynomial could be found, we increase k and try again. We emphasize that, in the
computation of these examples, we do not give as input the degree of the quasi-polynomial
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Kλ,µpNq as determined by Theorem 1.4. That the computational methods produce quasi-
polynomials of the correct degree and proposed period (and not smaller) is further support
for Question 4.3.

4.1.1. An example from type G2. Let G be of type G2, λ “ $1 ` 3$2, and µ “ $2. Then
λ´ µ “ 8α1 ` 5α2, and the smallest multiple of λ´ µ that lands in Γ is 6pλ´ µq.

For the first k “ 36 data points, we found that Kλ,µpNq agrees with the quasipolynomial
defined by

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1` 3N ` 205
36
N2 ` 160

27
N3 ` 61

27
N4, N ” 0 mod 6

17
108
` 53

27
N ` 205

36
N2 ` 160

27
N3 ` 61

27
N4, N ” 1 mod 6

19
27
` 67

27
N ` 205

36
N2 ` 160

27
N3 ` 61

27
N4, N ” 2 mod 6

3
4
` 3N ` 205

36
N2 ` 160

27
N3 ` 61

27
N4, N ” 3 mod 6

11
27
` 53

27
N ` 205

36
N2 ` 160

27
N3 ` 61

27
N4, N ” 4 mod 6

49
108
` 67

27
N ` 205

36
N2 ` 160

27
N3 ` 61

27
N4, N ” 5 mod 6

This quasipolynomial has degree 4, as it must given that Φ1 “ H and

1

2
|Φ| ´ rankpΦq “

1

2
p12q ´ 2 “ 4.

4.1.2. An example from type B3. Let G “ Spinp7q, λ “ $1 `$2 `$3, and µ “ $3. Then
λ ´ µ “ 2α1 ` 3α2 ` 3α3. While λ ´ µ R Γ, 2pλ ´ µq P Γ, so we anticipate a period of 2 to
the quasipolynomial.

For the first k “ 16 data points, the sequence Kλ,µpNq agrees with the function

$

’

’

&

’

’

%

1` 113
40
N ` 2057

480
N2 ` 63

16
N3 ` 859

384
N4 ` 457

640
N5 ` 91

960
N6, N ” 0 mod 2

85
128
` 1553

640
N ` 961

240
N2 ` 247

64
N3 ` 859

384
N4 ` 457

640
N5 ` 91

960
N6, N ” 1 mod 2

The degree of this quasipolynomial is 6, and given that Φ1 “ H, this is the correct degree,
for

1

2
|Φ| ´ rankpΦq “

1

2
p18q ´ 3 “ 6.

4.1.3. An example from type D4. Let G “ Spinp8q, λ “ $2, and µ “ 0. We have λ ´ µ “
α1 ` 2α2 ` α3 ` α4. Note that 2pλ ´ µq P Γ, and d “ 2 yields the smallest multiple to get
into the descent lattice.

For the first k “ 14 data points, we have agreement of Kλ,µpNq with the quasipolynomial

$

&

%

1` 101
60
N ` 25

24
N2 ` 5

16
N3 ` 5

96
N4 ` 1

240
N5, N ” 0 mod 2

29
32
` 101

60
N ` 25

24
N2 ` 5

16
N3 ` 5

96
N4 ` 1

240
N5, N ” 1 mod 2
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The degree is 5, which is correct given that Φ1 is of type Aˆ31 and hence

1

2
|Φ| ´

1

2
|Φ1| ´ rankpΦq “

1

2
p24q ´

1

2
p6q ´ 4 “ 5.

4.1.4. An example from type F4. Let G be of type F4, λ “ 2$1, and µ “ 0. We have
λ´ µ “ 4α1 ` 6α2 ` 8α3 ` 4α4. Note that 3pλ´ µq P Γ, and d “ 3 is the smallest multiple
to achieve this.

The quasipolynomial Kλ,µpNq agrees with the functions
ř

ciN
i defined by the table below,

depending on the remainder of N modulo 3, to the first k “ 39 data points.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

N ” 0 mod 3 1 4111
1386

87911
18900

555223
113400

18533
4860

4397
1944

6184
6075

4828
14175

232
2835

68
5103

8
6075

4
66825

N ” 1 mod 3 697
729

4111
1386

87911
18900

555223
113400

18533
4860

4397
1944

6184
6075

4828
14175

232
2835

68
5103

8
6075

4
66825

N ” 2 mod 3 665
729

4111
1386

87911
18900

555223
113400

18533
4860

4397
1944

6184
6075

4828
14175

232
2835

68
5103

8
6075

4
66825

The degree of the quasi-polynomial is 11, as it must be. Note that Φ1 is the Levi root
system on nodes 2, 3, and 4, hence of type C3 with |Φ1| “ 18. The degree is therefore

1

2
|Φ| ´

1

2
|Φ1| ´ rankpΦq “

1

2
p48q ´

1

2
p18q ´ 4 “ 11.
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