
U-statistics of determinantal point processes and
Wiener chaos

Renjie Feng

Sydney Mathematical Research Institute

Oct 20th, 2024



Outline

U-statistics for i.i.d.

Determinantal point processes

Cumulants of U-statistics

Application 1: spherical ensemble and complete Wiener chaos

Application 2: infinite Ginibre ensemble and mixed χ2 and Gaussian



U-statistics for i.i.d.



Hoeffding’s form

Given i.i.d. random variables X1, · · · ,Xn, Hoeffding’s form for
U-statistics is

Uk(g) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

g(Xi1 , . . . ,Xik ),

where g is a symmetric real-valued function of k variables. WLOG,
we assume E(g(X1, ..,Xk)) = 0.



Non-degenarate case: Gaussian limit

Hoeffding (1948) proved that if Var(g(X1, ..,Xk)) <∞, then CLT
holds

n1/2Uk(g)
d−→ N(0, k2δ1).

Here, the constant δ1 is the variance

δ1 = Var(g1(X1)),

where g1 is the 1-margin function

g1(x) := E(g(x ,X2, ..,Xk)).

But what if the limit is degenerate i.e., the variance δ1 = 0?



Degenerate case: χ2-limit

If δ1 = 0, a χ2-limit theorem holds. We suppose
g1(x) = Eg(x ,X2, ..,Xk) = 0 and Eg2(X1, ..,Xk) <∞, then

nUk(g)
d−→
(
k

2

) ∞∑
i=1

λiH2(Yi ),

where H2(x) = x2 − 1 is the Hermite polynomial of degree 2; Yi

are i.i.d. normal distributions; λi are eigenvalues of the integral
operator whose kernel is the symmetric 2-margin function

g2(x , y) := Eg(x , y ,X3, ..,Xk).



Wiener chaos decompositon

In general, Uk may exhibit the convergence in distribution to the
Wiener chaos with arbitrary order. For example, take

g (x1, . . . , xk) =
k∏

i=1

g (xi )

with Eg (X1) = 0 and Eg2 (X1) = σ2 <∞, then

nk/2Uk (g)

σk
d−→ Hk(Y ),

Hk(x) is the Hermite polynomial of degree k ; Y is the normal
distribution.



Determinantal point processes



Slater determinant

In quantum mechanics, Slater determinant describes the wave
function of a multi-fermionic system.

Ψ(x1, x2, . . . , xn) =
1√
n!

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χn(x1)
χ1(x2) χ2(x2) · · · χn(x2)

...
...

. . .
...

χ1(xn) χ2(xn) · · · χn(xn).

∣∣∣∣∣∣∣∣∣
Here, χ(x) is known as the spin-orbital wave function, where x
denotes the position and spin of a single electron.



The joint density, i.e., the probability to find a particle in∏
i [xi , xi + dxi ], is

|Ψ(x1, x2, . . . , xn)|2dx1...dxn = det[K (xi , xj)]dx1...dxn,

where

K (x, y) =
n∑

i=1

χi (x)χi (y)

In general, the joint density of a determinantal point process
(DPP) is

ρk(x1, . . . , xk) = det
(
K (xi , xj)1≤i≤j≤k

)
.



• Non-intersecting simple random walks

• Roots of Gaussian random function
∑∞

i=0 aiz
i

• Gaussian Unitary ensemble (Hermitian matrices + Gaussians)

Kn(x , y) =

(
n∑

k=0

Hk(x)Hk(y)

)
e−(|x |2+|y |2)/2

• Ginibre ensemble (square matrices + Gaussians)

Kn(z ,w) =

(
n−1∑
k=0

(zw̄)k

k!

)
e−(|z|2+|w |2)/2



Linear statistics

The linear statistics is

L(f ) =
∑
i

f (xi ).

Suppose
Var(L(f ))→∞,

and
∃δ > 0, E(L(|f |)) = O(Var(L(f ))δ),

then Soshinikov’s CLT (2002) holds

L(f )− E(L(f ))√
Var(L(f ))

d−→ N(0, 1).



U-statistics of DPPs

We consider the U-statistics of DPPs:

Uk(g) =
∑

Xi1
6=···6=Xik

f (Xi1 , . . . ,Xik ),

where f is a symmetric real-valued function of k variables.

Q: Do we have Wiener chaos decomposition for U-statistics of
DPPs?

A: Yes! But more complicated.



Cumulants of U-statistics



Cumulant-moment relations

Given a random variable X , its m-th cumulant Qm(X ) is defined to
be the coefficients in the formal expansion,

logE exp(itX ) =
∞∑

m=1

Qm(X )

m!
(it)m.

Let Π(m) be the set of all partitions of {1, . . . ,m}, then

E(Xm) =
∑

R={R1,...,R`}∈Π(m)

Q|R1| . . .Q|R`|,

Qm(X ) =
∑

R={R1,...,R`}∈Π(m)

(−1)`−1(`− 1)!Π`
i=1EX |Ri |.



Method of cumulants

• First 4 terms:

Q0(X ) = 0,Q1(X ) = E(X ),Q2(X ) = Var(X ),

Q3(X ) = EX 3 − 3EXEX 2 + 2(EX )3.

• If X ∼ N(µ, σ2), then Qm(X ) = 0 for all m ≥ 3.

• Method of cumulants:

Qm(Xn)→ Qm(X ), ∀m ≥ 1 ⇒ Xn → X in distribution

provided that X is uniquely determined by its cumulants.



The joint cumulant Qk(X1, . . . ,Xk) is the coefficients of ikt1 · · · tk
in the expansion of

logE exp(
k∑

j=1

itjXj).

The joint cumulants of Hermite polynomials of central Gaussian
random variables have a nice graphical representation:

Qk(Hn1(X1), . . . ,Hnk (Xk))

=
∑

connected pair partitions

ΠXi∼Xj
E(XiXj).



Left: E(X1X4)E(X2X3)E(X3X4) in Q4(X1,X2,H2(X3),H2(X4))
Middle: the term (E(X1X2))3 in Q2(H3(X1),H3(X2))
Right: no pair partition (9 points in total, impossible to pair),
Q3(H3(X1),H3(X2),H3(X3)) = 0.



Cumulants for linear statistics

In [3], Soshnikov derived:

Qm

(∑
f (x)

)

=
m∑
`=1

∑
⋃`

i=1 Vi=[m],Vi
⋂

Vj=∅,ni=|Vi |

∫
f (x1)n1 · · · f (x`)

n`

(−1)`−1
∑

cyclic permutations σ∈S`

K (x1, xσ(1))K (x2, xσ(2)) · · ·K (x`, xσ(`))dx.

Q: Any formula for cumulants of U-statistics?

A: Yes! By graphs, which was first derived in [1] in 2022.



Reinterpretation

Soshnikov’s formula can be reinterpreted in terms of diagram in 2
steps. For example, there are 3 terms in Q3,

Q3 =

∫
X 3

f (x)3K (x , x)dx−3

∫
X 2

f (x)2f (y)K (x , y)K (y , x)dxdy

+2

∫
X 3

f (x)f (y)f (z)K (x , y)K (y , z)K (z , x)dxdydz .

We first draw T-graph: if two variables are the same we connect
them by a blue edge. There are 5 T-graphs in total.
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Given σ ∈ Sym ({T}), we can further draw an induced
(T, σ)-graph: we draw a red line between x and y if σ(x) = y .
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The coefficients +1, -3 and +2 appear because one has to choose
all σ ∈ Sym ({T}) such that (T, σ)-graph is a connected graph.



The above 2 steps work for U-statistics. For example,

U3(f ) =
∑

x1 6=x2 6=x3

f (x1, x2, x3).

To compute the 3rd cumulant Q3(U3(f )), for example
T = {T1 = (x1, x2, x3),T2 = (x1, x2, x4),T3 = (x5, x6, x7)} where
|T| = 7, we draw black lines between distinct points in the same
layer, and blue lines if two points in different layers are identical.
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Figure: A T-graph



Given σ ∈ Sym ({T}) = S7, we can further construct a
(T, σ)-graph by drawing red line between x and y if σ(x) = y .
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Figure: Left: the connected (T, (467))-graph has contribution to the
cumulant Q3(U3(f )). Right: the disconnected (T, (234))-graph does not
contribute to cumulant.



A graphical representation formula

Define the set

Gm = {(T, σ) : (T, σ)-graph is connected.}.

Lemma 1 (F. -Yao [1], 2022)

Qm (Uk(f )) =
∑

(T,σ)∈Gm

∫
f (T1) · · · f (Tm)sgn(σ)Πq

i=1K (xi , xσ(i))dx.

x1, . . . , xq are all distinct elements in T.

Remark: The graph representation extends to α-DPP and Pfaffian
point processes immediately.



Application 1: spherical ensemble and complete
Wiener chaos



Spherical harmonics

The Laplace operator with respect to the round metric on Sd has
discrete spectrum{

λn = −n(n + d − 1), n = 0, 1, 2, ....
}
,

the eigenspace

Hn(Sd) := SpanR{φ : −∆φ = λnφ}

and denote dn = dimHn(Sd). Let Kn be the spectral projection

Kn : L2(Sd)→ Hn(Sd).

We consider the DPPs on Sd associated with kernel Kn.



Case 1: Gaussian limit

Define 1-margin function

f1(x) =

∫
(Sd )k−1

f (x , x2, . . . , xk)dV (x2) · · · dV (xk).

Let f be a bounded and symmetric function of k variables on Sd .
Assume that f1 is not constant, then in [2], we have

lim
n→∞

1

d2k−1
n

Var(Uk(f )) = C

∫
Sd

∫
Sd

(f1(x)− f1(y))2

sind−1(arccos(x · y))
dV (x)dV (y).

In addition,
Uk(f )− E(Uk(f ))

(Var(Uk(f )))
1
2

d−→ N(0, 1).



Graph and Gaussian correspondence

To prove CLT for the non-degenerate case, we need to show
Qn(Lnf ) = o(Q2(Ln)m/2), m ≥ 3.

• The leading term of Q2 is given by the connected
(T, σ)-graphs that only have exactly one red or blue edge.

• The vanishing of the higher cumulants estimates can be
derived easily.



Case 2: 2nd Wiener chaos

When the condition f1(x) 6= constant fails, Uk(f ) can have a
different limit. Define the 2-margin

f2(x , y) =

∫
(Sd )k−2

f (x , y , x3 . . . , xk)dV (x3)..dV (xk).

If we further assume f2(x1, x2) depends on dist(x1, x2), then in [2]:

Uk(f )− E(Uk(f ))

C ′dk−1
n

d−→
∞∑
i=1

ziH2(Yi ),

where Yi are i.i.d. standard Gaussian random variables, and zi ’s
are the eigenvalues of a Hilbert-Schmidt integral operator

h(x , y) :=

∫
Sd

(f2(x , y)− f2(x , z)) sin−(d−1)(arccos(z · y))dV (z).



An important class of test functions

There is an important class of test functions that satisfy these two
assumptions.

•
f (x1, x2) = 1[d(x1, x2) < δ]

U2(f ) counts the number of pair of particles with δ distance.

•

f (x1, x2, x3) = 1[d(x1, x2) < δ, d(x1, x3) < δ, d(x2, x3) < δ]

U3(f ) counts the number of triangles where three particles are
within δ distance.

Our main result implies that both counting numbers will tend to
2nd Wiener chaos instead of Gaussian.



Higher order Wiener chaos

For example, take f = f (x1, x2) and consider Q3(U2(f )). We can
show that the leading order term of Q3(U2(f )) is given by the
connected complete paring graphs, i.e., (T, σ)-graph is connected
and any point has exactly one point at other layers connecting it,
for example,

Reminiscent of the pairing scheme when computing
cumulants of Hermite polynomials of Gaussians!



In fact, when considering the higher order degeneration of the
U-statistics, the leading order terms of cumulants of the spherical
case are given by the complete paring graphs in exactly the same
manner as the leading order of i.i.d. case (although no blue edge
exists for i.i.d. case), which are the same graphs for cumulants of
Hermite polynomials of Gaussians. Therefore, the complete Wiener
chaos exist for the spherical case, albeit some different/difference
operators involved in the expressions.

The similarity between the i.i.d. case and the spherical case lies on
the kernel properties which imply that both variances tend to
infinity. Actually this seems a general principal for other DPPs.

However, this is not the situation for the infinite Ginibre ensemble,
e.g., the variance of the linear statistics is of constant.



Complete Wiener chaos

Suppose the integral operator has spectral decomposition,

H(x , y) =
sin−(d−1)(arccos(x · y))∫

Sd sin−(d−1)(arccos(O · z))dV (z)
=
∞∑
i=1

λiui (x)ui (y).

Note that the denominator is a constant independent of O. Then
∀ f smooth, we have the decomposition

f (x1, · · · , xk) =
∑
i1,...,ik

ai1,...,ikui1(x1) · · · uik (xk).

We define a transform

Op(f ) =
∑
i1,...,ik

√
(1− λi1) · · · (1− λik )ai1,...,ikui1(x1) · · · uik (xk)



Theorem 2 (F.-Götze-Yao [2], 2023)

Let Y1, . . . ,Ydn be i.i.d. Unif(Sd). Then as n→∞, the Wiener
chaos expansion of Uk(f ) is the same as

Ũk (Op(f )) :=
∑

Yi1
,...,Yik

Op(f )(Yi1 , . . . ,Yik ),

i.e., the U-statistics of the spherical DPPs for the test function f is
the same as the U-statistics of i.i.d. uniform measure on sphere for
the test function Op(f ) in the limit.



Application 2: infinite Ginibre ensemble and
mixed χ2 and Gaussian



Infinite Ginibre ensemble

The infinite Ginibre ensemble is a determinantal point process on
C associated with the kernel,

Kn(z ,w) =
n

π
enzw̄e−n|z|

2/2e−n|w |
2/2

with respect to the Lebesgue measure d`.

Let f ∈ H1 ∩ L1. Then CLT holds for the linear statistics∑
z∈Z

f (z)− n

π

∫
C
fd`

d−→ N(0,
1

4π
‖f ‖2

H1(`)).

where

‖f ‖2
H1 =

∫
C
|∇f |2 d`, ‖f ‖L1 =

∫
C
|f |d`.



For the Ginibre case, the U-statistics are more complicated (mainly
because it’s a slow variance case). In [2], we proved

Theorem 3 (F.-Yao [1], 2022)

Let f (x , y) be a symmetric smooth function on C2, and assume
the 1-margin function

f1(x) =

∫
f (x , y)d`(y) ≡ 0.

Then one has the limit∑
i 6=j

f (Xi ,Xj)
d−→ mixture of centered χ2 + correlated N(0, 1).



For example, to derive the variance, the two subfigures on the top
provide the leading order term (and thus χ2 limit) for the spherical
case and i.i.d. case. In contrast, the infinite Ginibre ensemble
requires two additional subfigures at the bottom.



Other examples of mixed distributions

• Subgraph count on Erdös-Rényi graph, only normal limit.
But if one consider some centered U-statistics based on
counting graph of k disconnected subgraphs, the limit has
Wiener chaos order k . Many works around 90’s.

• For subgraph count under general Graphons, the counting
statistics may be a mixture of Gaussian and Chi-squared.
Coefficient depending on eigenvalues of graphon integral
operator. Hladký Pelekis and Šileikis (2021); Bhattacharya,
Chatterjee and Janson (2023).



A remark on Pfaffian point processes

• Our graph representation holds for Pfaffian point processes
similarly, where K is a self-dual quaternion kernel, e.g.,
circular orthogonal ensemble (COE) and circular symplectic
ensemble (CSE).

• One needs to take the real part of the product of kernels by
Dyson’s definition of quaternion determinant.

• The problems related to the analytic aspects of Pfaffian point
processes are quite open, e.g., studying U-statistics of Pfaffian
point processes directly by quaternion kernels.
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Thank you for your attention!
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