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I. Introduction of Kähler geometry

A few references:
”Differential Analysis on Complex Manifolds” (Wells);
”Principles of Algebraic Geometry” (Griffiths-Harris);
”Canonical Metrics in Kähler Geometry” (Tian).

• Smooth manifold and Riemannian structure

1. Smooth manifold: a topological space M with lo-
cal coordinate systems (i.e. Rn structure, dimRM =
n) of smooth coordinate transition.

Example: S2 = CP1, or even just S1.

2. Smooth vector bundle (over a smooth manifold
M): a smooth manifold V with a smooth map F :
V →M , with smoothly-varying real Euclidean struc-
ture on each fibre (i.e. pre-image of each point of
M).

Note: Smoothly-varying means existence of local
smooth trivialization.

Typical example: tangent and cotangent bundle of
smooth manifold, TM and T ∗M .

Intuitively, TM is the collection of directions (of
curves) inM . Expression in local coordinates {x1, · · · , xn}.
Another example: the universal bundle of CP1. (No
need to always think of matrix-valued transition func-
tions with compatibility conditions.)

Curvature form: for a smooth vector bundle with
connection ∇ (i.e. covariant derivative, some expla-
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nation here), it is ∇2, where the second time of ∇
treats the T ∗M part as (form) coefficient.

3. Riemannian structure (over M): a smoothly-
varying (symmetric) positive definite form over fibres
of TM , denoted by g.

Infinitesimal length of curves in M , i.e. ”speed”.

Example: Euclidean space and induced ones over
submanifolds.

Levi-Civita connection: a canonical connection
on tensor fields (coming from that on TM),

∇ : Γ(M,TM)→ Γ(M,T ∗M ⊗ TM) such that

∇g = 0 and ∇YZ −∇ZY = [Y, Z] (Lie bracket) for
Y, Z ∈ Γ(M,TM).

Riemannian curvature (as the classic definition) is
nothing but the above curvature of tangent bundle
as a vector bundle with Levi-Civita connection.
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• Complex manifold and Kähler structure

M : a smooth manifold of dimRM = 2n.

1. Complex structure: an ”integrable” almost com-
plex structure”.

Almost complex structure: a ”bundle map” J : TM →
TM ”covering” IdM : M →M , i.e. mapping fibre to
the same fibre, such that J2 = −IdTM : TM → TM
with − using vector bundle structure.

Integrable: the existence of local complex coordinate
systems (i.e. Cn structure) with holomorphic coor-
dinate transition.

In local holomorphic coordinates: {z1, · · · , zn}, zj =
xi +

√
−1yj,

J
(

∂
∂xj

)
= ∂

∂yj
, J
(

∂
∂yj

)
= − ∂

∂xj
.

Notations like dzj,
∂
∂zj

, dz̄j and ∂
∂z̄j

are for conve-
nience.

Holomorphic coordinate transition: consider transi-
tion matrix between ”smooth coordinates”,

{z1, · · · , zn, z̄1, · · · , z̄n}.

Note: meaningful special structure should survive
coordinate transition. Locally, it doesn’t mean any-
thing.

Equivalent conditions for integrability:

a) N(J) = [J, J ]− J [J, ]− J [, J ]− [, ] = 0, tensorial.

b) ”[T 1,0, T 1,0] ∈ T 1,0”, not tensorial, flavor of Frobe-
nius Theorem.
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(TM)C = T 1,0M ⊕T 0,1M using eigen-decomposition
of J with explicit expression, and T 1,0M = T 0,1M .
T 1,0M is isomorphic to TM as real bundles. This
only needs almost complex structure. (”Type” of
forms.)

T 1,0M is a ”holomorphic vector bundle” if J is inte-
grable. By taking J as

√
−1 for TM to see TM can

also be seen as a holomorphic bundle.

c) d = ∂ + ∂̄ (for higher differential), type consider-
ation. (What is ∂ and ∂̄? The composition of d and
the projection to proper type of forms.)

2. Symplectic structure: a real closed two form ω

with ωn 6= 0.

Fact: there is always an almost complex structure
J such that J∗ω = ω and g(Y, Z) = ω(Y, JZ) is a
Riemannian structure (”compatible conditions”).

ω is of type (1, 1). (Why? Exercise.)

3. Kähler structure: starting from symplectic struc-
ture, the almost complex structure J is integrable.

Equivalently, starting from a Riemannian manifold,
(M, g) has an almost complex structure J , J∗g = g

and ∇J = 0 (i.e. Levi-Civita preserving type.).

ω is the Kähler form, representing a class inH1,1(M ;C)
(Dolbeault Theory) or H2(M ;R) (de Rham Theory).
Kähler class is thus defined.

”Holomorphic vector bundle”: similar definition as
”smooth vector bundle”.
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Smooth hermitian metric: a smoothly-varying her-
mitian metric on fibre, h. (Only smooth! Flat oth-
erwise. Consider transition to understand.)

Holomorphic connection: the unique connection ∇
such that ∇h = 0 and ∇0,1 = ∂̄ (well defined using
holomorphic structure).

Fact: Levi-Civita connection gives the ”holomorphic
connection” of T 1,0M with the hermitian metric h
induced from g, i.e. for Y, Z ∈ T 1,0M ⊂ (TM)C,
h(Y, Z) = gC(Y, Z̄) with gC being linear complexifi-
cation of g.

Note: in order to see the relation between Rieman-
nian curvature tensor, Ricci tensor and their expres-
sions in Kähler case, one needs to use the First Bianchi
Identity a lot.

Alternative ways of understanding (or defining) Kähler
structure:

a) dω = 0;

b) local Eucildean expression of the metric with sec-
ond order error (very handy in computation for Kähler
Identities);

c) existence of the complex counterpart of geodesic
coordinates .
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• De Rham (or Dolbeault) Hodge decomposition and
∂∂̄-Lemma

M : a smooth ”closed” (compact without boundary)
manifold.

Note: de Rham and Dolbeault cohomology theory
are available for non-compact case, but one needs
elliptic theory for Hodge decomposition.

1. Hodge decomposition.

Elliptic differential operators (for forms):

∆d = dd∗ + d∗d,

∆∂ = ∂∂∗ + ∂∗∂,

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄,

with corresponding ”inverse” (Green’s operators)Gd,
G∂, and G∂̄ to give Hodge decomposition for any
smooth tensor field, Γ:

Γ = Proj
Ker(∆)

(Γ) + ∆G(Γ).

The upper ∗ indicates the corresponding dual using
the Hermitian product integrated over the manifold.
Of course, for de Rham d operator, one can reduce
to real category and use the Riemannian product.
Hodge star operator is involved here which involves
a complex conjugation (for the Hermitian metric).
Each of d∗, ∂∗ and ∂̄∗ would involve twice of Hodge
star operation. It’s more necessary to make this clear
when twisting with a general holomorphic bundle.

In Kähler case: ∆∂ = ∆∂̄ = 1
2∆d, and so the decom-

positions are compatible to give decomposition of De
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Rham cohomology by Dolbeault cohomology. (What
are these cohomology spaces? Quotient spaces of
closed forms by exact forms, simply speaking.)

Hodge Diamond: Dolbeault cohomology and sym-
metries from Hodge star and complex conjugation.
One thing is left ...... Mirror Symmetry.

Remark: Kähler classes form an open cone in the
finitely dimension space H1,1(M ;C) ∩H2(M ;R).

Note: for F ∈ C∞(M),

∆∂̄F = gij̄Fij̄ = 〈ω,
√
−1∂∂̄F 〉. So

√
−1∂∂̄F = 0

means F is a constant over a closed Kähler mani-
fold, using integration by parts for ”F

√
−1∂∂̄F” (or

”F∆∂̄F”) to see this.

2. ∂∂̄-Lemma: for a global closed (p, q)-form α trivial
in cohomology, there is a global (p− 1, q− 1)-form η

such that α =
√
−1∂∂̄η.

Prove by going through identities from Hodge de-
compositions and using compatibility (α = ∆G∆Gα
and use the versions for ∂ and ∂̄ respectively).
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• Curvature form of holomorphic line bundle and the
first Chern class

1. Holomorphic line bundle.

Begin with a rank 2 real vector bundle.

Rank 1 complex vector bundle, i.e. complex line bun-
dle: transition matrix preserving complex structure
over fibre, i.e. ”multiplication by a complex num-
ber”.

Holomorphic line bundle: holomorphic transition func-
tion (i.e. holomorphically-varying over base mani-
fold).

2. The first Chern class.

For a complex line bundle L with any ∇,
√
−1

2π [∇2] = c1(L) ∈ H2(M ;Z) using the sheaf exact
sequence

0→ Z→ A→ A∗ → 0,

which gives the long exact sequence of sheaf coho-
mology, and the identification between de Rham and
sheaf cohomology spaces (noticing that as sheaf, closed
and exact are the same). This is only the torsion-
free component of the more topologically defined first
Chern class.

The C-valued smooth function sheafA is a fine sheaf,
and so with vanishing sheaf cohomology spaces of
positive degrees. Hence from the long exact sequence,
H2(M,Z) is isomorphic toH1(M,A∗) where the later
one corresponds to the space of smooth complex line
bundles over M (direct from definitons).
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So the first Chern class decides the smooth structure
of the complex line bundle.

In the case of holomorphic line bundle L with the
hermitian metric h (over a complex manifold M),
we take the corresponding holomorphic connection
∇ and by direct computation,

√
−1∇2 = −

√
−1∂∂̄log(|σ|2h),

where σ is a local holomorphic base vector field.
(Hint: compute the action of ∇2 on σ, using the
definition of holomorphic connection.)
√
−1

2π [∇2] = c1(L) ∈ H1,1(M ;C) ∩H2(M ;Z) using

0→ Z→ O → O∗ → 0

in a similar way as before. Here the curvature form
is clearly a (1, 1)-form from the formula above.

Note: in future, the universal constant 1
2π (or

√
−1

2π )
would constantly be ignored with no affect. Only
the notation H1,1(M,C)∩H2(M,Z) makes use of M
being closed and Kähler.

The holomorphic function sheaf is not fine. (No par-
tition of unit by holomprhic function, right?) The
first Chern class is NOT going to decide the holo-
morphic line bundle.

This provides one way to understand Calabi’s Con-
jecture.
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II. Complex Monge-Ampère equation and Ricci
flow

II-1. Complex Monge-Ampère equation

• Computation for Ricci curvature in Kähler setting.

Recall:

1) The Levi-Civita connection ∇ for (M, g) induces
the holomorphic connection for T 1,0M .

2) Ricci curvature is a ”trace” of Riemannian curva-
ture, and so Ricci form, Ric(Y, JZ) = Ricci(Y, Z),
is the curvature form for ∧nT 1,0M with the hermi-
tian metric induced from g. (Explanation of Rij̄ =

gkl̄Rij̄kl̄ as a “trace”: the cancelation when com-
puting curvature form of the highest degree wedge
bundle, even easier if using complex geodesic coor-
dinates).

So we have recovered the following classic computation
in Kähler geometry:

Ric = −
√
−1∂∂̄log

∣∣ ∂
∂z1
∧ · · · ∧ ∂

∂zn

∣∣2
g

= −
√
−1∂∂̄logdet(gij̄),

where gij̄ = gC

(
∂
∂zi
, ∂
∂z̄j

)
. Hence the study of Ric

(Ricci form) is reduced to analyzing the volume form.
This also reduces the order of derivative.

In cohomology, we have

[Ric] = c1(∧nT 1,0M) = c1(T
1,0M) =: c1(M),

the first Chern class of (M,J).

11



Summary: given any Kähler metric ω, its Ricci
form Ric(ω) represents the first Chern class of (M,J)
(in the cohomology space H2(M ;Z)).

If M is closed, then the cohomology space could be

H1,1(M ;C) ∩H2(M ;Z).

Remark: clearly, any deformation of the (almost)
complex sturcture J will not change the class in
H2(M,Z), and so, for example, there is a well-defined
first Chern class for a symplectic manifold by con-
sidering only those compatible almost complex struc-
tures. The construction makes use of the compatible
metric coming from the symplectic form and the al-
most complex structure.
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Consider M being closed for a while.

In the other direction of Summary, we have the
following important problem and its solution.

• Calabi’s Conjecture and Calabi-Yau Theorem.

1. Calabi’s Conjecture: over a closed manifold M ,
in any Kähler class α, for any real closed (1, 1)-form
T representing c1(M), there exists a unique Kähler
metric ω with [ω] = α and Ric(ω) = T .

Another way to understand: suppose M is simply
connected. For the holomorphic line bundle ∧nT 1,0M ,
being trivial smoothly implies being trivial holomor-
phically.

2. Reduction to a complex Monge-Ampère equation.

Take a Kähler metric ω0 in α.

[Ric(ω0)] = c1(M) = [T ], and so [Ric(ω0)− T ] = 0.

By ∂∂̄-Lemma, we have Ric(ω0)− T =
√
−1∂∂̄F for

F ∈ C∞(M) unique up to an addtive constant.

The desired ω has to be in the form of ω0 +
√
−1∂∂̄u

by ∂∂̄-Lemma, and we need Ric(ω) = T .

Hence Ric(ω0)− Ric(ω) =
√
−1∂∂̄F , which is

−
√
−1∂∂̄log

ωn0
VE

+
√
−1∂∂̄log

ωn

VE
=
√
−1∂∂̄F.

So
√
−1∂∂̄logω

n

ωn
0

=
√
−1∂∂̄F . Although ωn

0

VE
and ωn

VE

are locally defined, their quotient ωn

ωn
0

is a smooth
function over M .
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So M being closed gives logω
n

ωn
0

= F + C, and that is

(ω0 +
√
−1∂∂̄u)n = eF+Cωn0 .

The constant C is clearly fixed by considering inte-
grals over M and can indeed be absorbed by a proper
choice of F . Obviously the above computation can
be reversed.

Conclusion: the statement of Calabi’s Conjecture
is equivalent to the uniqueness and existence of so-
lution (up to additive constants) for the following
complex Monge-Ampère equation,

(ω0 +
√
−1∂∂̄u)n = eFωn0

for “any” F ∈ C∞(X)/{additive R}.

Uniqueness (easy exercise): assume two solutions
u, v, and use

0 =
∫
X(u−v)

(
(ω0 +

√
−1∂∂̄u)n − (ω0 +

√
−1∂∂̄v)n

)
.

3. Calabi-Yau Theorem: existence is true.

C0 estimate from Moser Iteration, Laplacian esti-
mate and higher order derivative estimates.

4. Other Kähler-Einstein equations.

Different signs: (ω0 +
√
−1∂∂̄u)n = e±u+Fωn0 .

Measure equation: (ω0 +
√
−1∂∂̄u)n = fωn0 .

Degenerate case: (ω +
√
−1∂∂̄u)n = fΩ for ω > 0.

More precisely, [ω] is NOT a Kähler class.
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• Pluripotential Theory for Monge-Ampère operator
and Kolodziej’s breakthrough.

1. The other part of the story for complex Monge-
Ampère equation −→ low regularity category.

Problem: how to make sense of the complex Monge-
Ampère equation when

√
−1∂∂̄u doesn’t even exist

pointwise (i.e. “measure equation” before).

Answer: in the weak sense (measure and distribu-
tion).

Positive current (Lelong).

Plurisubharmonic function (Lelong, Oka).

Monge-Ampère operator (Bedford-Taylor).

Relative capacity (Bedford-Taylor).

References: books by Lelong, Kolodziej and De-
mailly (online).

Search for existence, uniqueness and regularity of the
(weak) solution.

2. Kolodziej’s breakthrough (for ω0 being Kähler).

L∞ estimate from measure ”Lp>1” condition on the
right hand side.

Continuity.

Hölder continuity.
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II-2. Ricci flow

References: books by Chow and others.

• Set-up, uniqueness and short time existence.

∂g(t)

∂t
= −2Ricci (g(t)) , g(0) = g0.

“Weak parabolicity from diffeomorphism invariance”
(Hamilton): the static equation of a parabolic equa-
tion would be elliptic, and so would have a finite
number of solutions (M being closed). But this is
not true considering action by diffeomorphism.

Weakly parabolic flow in the (positive) symmetric
2-tensor space (Hamilton).

Linearization: ∂g
∂s = v and V = Trg(v), then the

evolution term is linearized to be

∂(−2Ricci)

∂s
= ∆Lv + Symm(∇X),

where X = ∇V
2 − div(v). There are second order

derivative terms from ∇X other than the parabolic
term ∆Lv.

The symbol is weakly parabolic, i.e. with some eigen-
values being 0. Hamilton’s computation makes use
of the contracted Second Bianchi Identity, which has
a lot to do with the term X above.
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DeTurck’s Trick: reduce to a parabolic flow by a
family of diffeomorphisms, i.e. “fixing gauge”.

Ricci-DeTurck flow:

∂g

∂t
= −2Ricci+ Symm(∇W ), g(0) = g0,

where the 1-form W = “Tr(∇− ∇̄)” with ∇̄ be the
Levi-Civita connection for a fixed metric.

Key feature of such W : the linearization is −X
up to lower order terms in v = ∂g

∂s . So Ricci-DeTurck
flow is parabolic which guarantees uniqueness and
short time existence.

The dual of W , W ∗ is a time-depending vector field,
and so solving ∂Φ

∂t = −W ∗ with initial data Φ(0) = id
gives a one-parameter family of diffeomorphisms.

Φ∗g solves Ricci flow with the initial g0 by noticing
L

W∗g = Symm(∇W ).

This gives short time existence (i.e. local existence).
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How about uniqueness?

A solution of Ricci flow g(t), gives a one-parameter
family of diffeomorpisms Ψ(t) as the solution of har-
monic map heat flow (parabolic) with Ψ(0) = id.

The pullback (Ψ−1)∗g is the solution for Ricci-Deturck
flow with initial data g(0). (unique)

By rewriting the harmonic map heat flow, one real-
izes that Ψ is nothing but the Φ above. (unique from
a solution of Ricci-Deturck flow)

So one can get back to the solution of Ricci flow and
achieve uniqueness.

Key of the argument:

from Ricci flow to Ricci-Deturck flow, the one-parameter
family of diffeomorphisms is obtained by solving har-
monic map heat flow;

from Ricci-DeTurck flow to Ricci flow, the one-parameter
family of diffeomorphisms is by integrating a time-
depending vector field.

Remark: backward uniqueness. (Brett Kotschwar)
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• Finite time singularity.

PDE point of view: blow-up of the solution (metric
coefficients) or the derivatives (covariant derivative).

Hamilton: blow-up of |Rm (g(t)) |g(t) (in sight of Shi’s
estimates).

Perelman: local noncollapsing result.

Original form, κ-noncollapsed below the scale ρ: ∀r ∈
(0, ρ), in B(x, r), |Rm| 6 r−2, then Vol(B) > κrn.

(Two proofs: W -functional, stronger but only for
closed manifold; reduced distance, weaker but also
for complete manifold.)

There are improved versions for local noncollapsing
results by Sesum-Tian-Wang and others. The ver-
sion by Topping which changes |Rm| to |R| is the
best so far.

It is very useful in the study of Ricci flow.

a) uniform injectivity radius lower bound for dila-
tion sequence (and hence smooth Cheeger-Gromov-
Hamilton convergence for the dilations at finite time
in general), resulting in singularity models which can
be classified in low dimensions.

Cheeger-Gromov-Taylor: volume noncollapsed (i.e.
ratio lower bound) implies injectivity radius lower
bound.

Explain: enemies for injectivity radius are conju-
gate point (exp being degenerate, controlled by curva-
ture) and geodesic loop, 2 minimal geodesics. Dilaten
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to have flat space with volume of Euclidean growth,
which is Euclidean space, and a small loop. Contra-
diction!

b) rule out some ”nice” solitons as singularity models
for the sake of arranging surgery.

Examples: (steady solitons)

i) cigar soliton dx2+dy2

1+x2+y2 = dr2

1+r2 + r2

1+r2dθ
2 over R2, ex-

ponentially asymptotically flat but cylindrical. So
local noncollapsing result rules out the product of
cigar with R1 as a singularity model.

ii) 3-D Bryant soliton (∼ dr2 + rg
S2 with |Rm| ∼

O(1
r)), is not ruled out. It is asymptotically necklike

at infinity.

After Perelman’s:

Sesum: blow-up of |Ric (g(t)) |g(t). In real dimension
3, blow-up of scalar curvature. (David Glickenstein’s
result is applied. Perelman’s local non-collapsing re-
sult can be avoid.)

Wang and others: blow-up of the space-time integral
of power of curvature norm. (”Ricci lower bound
assumption”)

Enders-Müller-Topping (and others): blow-up of scalar
curvature for Type I singularity (compact or com-
plete). (Perelman’s pseudolocality result using re-
duced distance and Naber’s result to obtain the soli-
ton as dilation limit.)

Kähler-Ricci flow over closed manifold (Z.): scalar
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curvature blows up. (Argument of very different
flavour.)

[Blow-up of scalar curvature is conjectured for finite
time singularity of Ricci flow in general.]
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• Geometric implications.

This is by no means a complete list.

[Uhlenbeck’s trick: time-depending frame for a neat
expression on Riemannian curvature evolution.]

Hamilton: dimRM = 3 and Ric (g0) > 0 =⇒ M is a
quotient of S3.

Notion: invariant set for Ricci flow curvature ODE.

Chow and Hamilton: flows over closed Riemann sur-
faces (equivalent to Kähler-Ricci flow over closed M
with dimCM = 1) being completely settled.

Metric evolves in a fixed conformal class and scalar
curvature is “everything”.

Tools: Harnack and entropy are introduced by Hamil-
ton, assuming R > 0 in the sphere case, when bound-
ing R (from above). This additional assumption is
removed by Chow using R + C. The adjustment of
Harnack part is quite direct. The entropy part re-
quires different consideration.

Perelman followed by several groups of people: Poincaré
Conjecture and Geometrization Program.

Böhm and Wilking: Rm (g0) > 0 =⇒ M is quotient
of Sn.

Notion: curvature pinching set for Ricci flow cur-
vature ODE. [pinching family as the general setting
of algebra structure and generalized pinching set for
application to flow.]
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Schoen-Brendle: curvature (strictly and pointwise)
1
4-pinch indicates smooth geometry of space form.

Main difficulty:

Nonnegative isotopic curvature: weak but preserved
by Ricci flow (dimR = 4 is done by Hamilton). Mean-
while, it can not prevent premature finite time singu-
larities and so one needs to do surgeries (Chen-Zhu
for 4-fold).
1
4-pinch curvature: strong but not preserved by Ricci
flow.

Somewhere in between lies the proper curvature con-
dition preserved by Ricci flow and pinching to con-
stant curvature.
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III. Set-up of Kähler-Ricci flow

• Set-up, cohomology information and scalar potential
flow.

This is the special case of Kähler class being fixed.

1. Some history: Huaidong Cao and others.

– Alternative proof of Yau’s Theorem (not just “Ricci-
flat case”):
∂ω̃t

∂t = −Ric (ω̃t) + T, ω̃0 = ω0

for a Kähler metric ω0 and T representing c1(X).

Convergence.

– c1(X) < 0 case:
∂ω̃t

∂t = −Ric (ω̃t)− ω̃t, ω̃0 = ω0

with [ω0] = −c1(X).

Convergence.

– Fano (or c1(X) > 0) case:
∂ω̃t

∂t = −Ric (ω̃t) + ω̃t, ω̃0 = ω0

with [ω0] = c1(X).

Stability and convergence.

2. Special features of Kähler-Ricci flow.

– Equivalence of metric (form) flow and scalar (met-
ric potential) flow (as explained in detail in Chau’s
work).

Scalar flow (discussed in detail later) to metric
flow: take

√
−1∂∂̄.

Metric flow to scalar flow: time ODE for each
space point and uniqueness.

24



– Kähler-Ricci flow is Ricci flow with initial
metric being Kähler: uniqueness of Ricci flow
and existence of Kähler-Ricci flow. (This settles
the logic.)

– Easier uniqueness and short time existence for
Kähler-Ricci flow (in the space of Kähler met-
rics).

It is a parabolic flow! Ways to see this:

(a) Scalar (metric potential) flow: linearized to
have the leading term being Laplacian.

(b) Metric form flow: in the space of real, smooth,
closed (1, 1)-forms, the leading term is Laplacian
(in sight of (φij̄)k = (φkj̄)i).
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• Flow with evolving class and more general setting.

1. ∂ω̃t

∂t = −Ric (ω̃t) − ω̃t, ω̃0 = ω0 with ω0 being
ANY Kähler metric.

Cohomology.

Scalar flow.

2. ∂ω̃t

∂t = −Ric (ω̃t) − ω̃t + Ric(Ω) − L, ω̃0 = ω0

with ω0, Ω and L being any Kähler metric, a smooth
volume form and a real smooth closed (1, 1)-form.

Cohomology.

Scalar flow.
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• Optimal existence result and cases of singularities.

1. Tian-Z. (a weaker version by Cascini-La Nave):

Kähler-Ricci flow exists as long as the class remains
to be Kähler (from formal consideration).

Idea of proof: choice of background form, estimates
and equivalent metric flow.

2. Cases from picture in Kähler cone: infinite and
finite time.

• Convergence in non-degenerate case.

Generalization of H. D. Cao’s result in c1(X) < 0
case by removing the cohomology restriction on the
initial class.
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• Relation with other versions of Kähler-Ricci flow.

1. Classic Ricci flow (”Ricci-flat”):
∂ω̃t

∂t = −Ric (ω̃t) , ω̃0 = ω0.

Rescaling of time and metric: the same infinite and
finite time.

Evolution of class.

2. ”Fano”:
∂ω̃t

∂t = −Ric (ω̃t) + ω̃t, ω̃0 = ω0.

Rescaling of time and metric: infinite time becomes
finite time.

Evolution of class.

3. The implication of Sesum-Tian’s result (following
Perelman’s idea): the recent work by Song on finite
time extinction of classic Kähler-Ricci flow.
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IV. Some recent topics on Kähler-Ricci flow

Focus on the flow ∂ω̃t

∂t = −Ric (ω̃t)− ω̃t, ω̃0 = ω0.

• Minimal manifold of general type.

The canonical class KX = −c1(X) is nef. and big.

Translation for differential geometer: there exists
P : X → X ⊂ CPN with dimCX = dimCX and
P ∗(H) = mKX for a positive integer m.

Semi-ample: quite essentially involved in the argu-
ment up to this point.

Theorem (Tian-Z.):

1) Smooth local convergence (of ω̃t).

2) Weak global convergence.

3) Uniqueness of the limit (singular Kähler-Einstein
metric).

4) Continuity of the limiting potential.

5) Uniform control of scalar curvature.

Idea of proof:

1) and 2): Tsuji’s trick, KX − εE > 0.

3): an observation.

4): pluripotential theory.

5): Schwarz Lemma computation, gradient and Lapla-
cian estimates.

• Minimal manifold of lower Kodaira dimension.
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Song-Tian: the limit should be collapsed to the base
manifold with the fibration structure coming in as
Weil-Peterson metric (moduli information).

More recently, Fong-Z.: metric collapsing for regular
fibration. [One could probably work out a degener-
ate version for general fibration by combining with
the argument in Song-Tian.]

Tosatti and others: using elliptic setting for Calabi-
Yau case.

• Generalization of Kolodziej’s results.

Under assumption similar to minimal manifold of
general type,

L∞-estimate:

Eyssidieux-Guedj-Zeriahi

Demailly-Pali

Z.

Continuity:

Z. by applying Fornaess-Narasimhan’s extension re-
sult for weak PSH function and Kolodziej’s original
argument.

Collapsing case:

Eyssidieux-Guedj-Zeriahi and Demailly-Pali can still
be applied to achieve L∞-estimate.

• Manifold of general type.

Finite time volume non-collapsing case: similar con-
vergence.
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[L∞-estimate from simple flow argument for finite
time singularity case, requiring only semi-ample lim-
iting class.]

• What to expect for finite time singularities?

Tian’s Program.

Recent justification for examples about the pictures
of contraction by Song-Weinkove and flip by Song-
Yuan.

In order to get a canonical limit, we need to continue
it to the time infinity. That leads us to next topic.

• Weak flow.

Chen-Tian-Z.: for singular initial metric with bounded
potential, one can define a (unique) weak flow which
becomes smooth instantly.

Application in general type surface case.

Song-Tian and Z.: more general pictures.

• Further singularity analysis.

Z.: scalar curvature behavior.

Song-Tian: partial metric information from Schwarz
Lemma.

Z.: Ricci lower bound. [related to the examples by
Knopf and Maximo on the sign of Ricci tensor along
Ricci flow]

• Flows in complete non-compact setting.

Shi; Chau, Tam; Chen-Zhu; Lott-Z.; Rochon-Z.
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