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I. Introduction of Kahler geometry

A few references:
” Differential Analysis on Complex Manifolds” (Wells);
”Principles of Algebraic Geometry” (Griffiths-Harris);
"Canonical Metrics in Kdhler Geometry” (Tian).

e Smooth manifold and Riemannian structure

1. Smooth manifold: a topological space M with lo-
cal coordinate systems (i.e. R" structure, dimg M =
n) of smooth coordinate transition.

Example: S?2 = CP!, or even just S'.

2. Smooth vector bundle (over a smooth manifold
M): a smooth manifold V' with a smooth map F :
V' — M, with smoothly-varying real Euclidean struc-
ture on each fibre (i.e. pre-image of each point of
Note: Smoothly-varying means existence of local
smooth trivialization.

Typical example: tangent and cotangent bundle of
smooth manifold, TM and T*M.

Intuitively, TM is the collection of directions (of
curves) in M. Expression in local coordinates {z1, - - -

Another example: the universal bundle of CP'. (No
need to always think of matrix-valued transition func-
tions with compatibility conditions.)

Curvature form: for a smooth vector bundle with
connection V (i.e. covariant derivative, some expla-



nation here), it is V2, where the second time of V
treats the T*M part as (form) coefficient.

3. Riemannian structure (over M): a smoothly-
varying (symmetric) positive definite form over fibres

of T'M, denoted by g.
Infinitesimal length of curves in M, i.e. "speed”.

Example: Euclidean space and induced ones over
submanifolds.

Levi-Civita connection: a canonical connection
on tensor fields (coming from that on T'M),

V:I'(M, TM)—T(M,T*M @ TM) such that
Vg=0and VyZ — VY = [Y, Z] (Lie bracket) for
Y, Z € (M, TM).

Riemannian curvature (as the classic definition) is

nothing but the above curvature of tangent bundle
as a vector bundle with Levi-Civita connection.



e Complex manifold and Kahler structure
M: a smooth manifold of dimr M = 2n.

1. Complex structure: an "integrable” almost com-
plex structure”.

Almost complex structure: a ”bundle map” J : TM —
T M ”covering” Idy : M — M, i.e. mapping fibre to
the same fibre, such that J?> = —Idyy : TM — TM
with — using vector bundle structure.

Integrable: the existence of local complex coordinate
systems (i.e. C" structure) with holomorphic coor-
dinate transition.

In local holomorphic coordinates: {z1,---,z,}, 2 =

Ti+ v _1y]7
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Notations like dz:. -2 dz; and -Z are for conve-
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nience.

Holomorphic coordinate transition: consider transi-
tion matrix between ”smooth coordinates”,

{217”' 72717217"' 7Zn}

Note: meaningful special structure should survive
coordinate transition. Locally, it doesn’t mean any-
thing.

Equivalent conditions for integrability:

a) N(J)=[J,J] = J[J,| = J[,J] —[,] =0, tensorial.
b) 7 [T, T10] € THY” not tensorial, flavor of Frobe-
nius Theorem.



(TM)® = T"OM @ T M using eigen-decomposition
of J with explicit expression, and T19M = T%'M.
T'OM is isomorphic to TM as real bundles. This
only needs almost complex structure. ("Type” of
forms.)

THOM is a "holomorphic vector bundle” if J is inte-
grable. By taking J as v/ —1 for T'M to see T'M can
also be seen as a holomorphic bundle.

¢)d= 0+ 0 (for higher differential), type consider-
ation. (What is 0 and 07 The composition of d and
the projection to proper type of forms.)

2. Symplectic structure: a real closed two form w
with w™ # 0.

Fact: there is always an almost complex structure
J such that J'w = w and ¢g(Y,Z) = w(Y,JZ) is a
Riemannian structure (”compatible conditions”).

w is of type (1,1). (Why? Exercise.)

3. Kahler structure: starting from symplectic struc-
ture, the almost complex structure J is integrable.

Equivalently, starting from a Riemannian manifold,
(M, g) has an almost complex structure J, J*g = ¢
and VJ = 0 (i.e. Levi-Civita preserving type.).

w is the Kihler form, representing a class in H(M; C)
(Dolbeault Theory) or H?(M;R) (de Rham Theory).
Kahler class is thus defined.

”"Holomorphic vector bundle”: similar definition as
”smooth vector bundle”.



Smooth hermitian metric: a smoothly-varying her-
mitian metric on fibre, h. (Only smooth! Flat oth-
erwise. Consider transition to understand.)

Holomorphic connection: the unique connection V
such that VA = 0 and V%' = 9 (well defined using
holomorphic structure).

Fact: Levi-Civita connection gives the ”holomorphic
connection” of T%°M with the hermitian metric h
induced from g, i.e. for Y, Z € T"'M c (TM)C,
h(Y,Z) = gc(Y, Z) with gc being linear complexifi-
cation of g.

Note: in order to see the relation between Rieman-
nian curvature tensor, Ricci tensor and their expres-
sions in Kahler case, one needs to use the First Bianchi
Identity a lot.

Alternative ways of understanding (or defining) Ké&hler
structure:

a) dw = 0;
b) local Eucildean expression of the metric with sec-

ond order error (very handy in computation for Kahler
Identities);

c) existence of the complex counterpart of geodesic
coordinates .



e De Rham (or Dolbeault) Hodge decomposition and
00-Lemma

M: a smooth ”closed” (compact without boundary)
manifold.

Note: de Rham and Dolbeault cohomology theory
are available for non-compact case, but one needs
elliptic theory for Hodge decomposition.

1. Hodge decomposition.

Elliptic differential operators (for forms):

Ay =dd" +d*d,

Ay = 00" + 070,

A, = 80" + 5D,

with corresponding ”inverse” (Green’s operators) Gy,

Ga, and G5 to give Hodge decomposition for any
smooth tensor field, I':

['= Proj,., (') + AG(T).

The upper * indicates the corresponding dual using
the Hermitian product integrated over the manifold.
Of course, for de Rham d operator, one can reduce
to real category and use the Riemannian product.
Hodge star operator is involved here which involves
a complex conjugation (for the Hermitian metric).
Each of d*, 0" and 0* would involve twice of Hodge
star operation. It’s more necessary to make this clear
when twisting with a general holomorphic bundle.

In Kahler case: Ay = Ay = %Ad, and so the decom-
positions are compatible to give decomposition of De
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Rham cohomology by Dolbeault cohomology. (What
are these cohomology spaces? Quotient spaces of
closed forms by exact forms, simply speaking.)

Hodge Diamond: Dolbeault cohomology and sym-

metries from Hodge star and complex conjugation.
One thing is left ...... Mirror Symmetry.

Remark: Kahler classes form an open cone in the
finitely dimension space H"'(M;C) N H*(M;R).

Note: for F' € C*(M),

AgF = giF; = (w,+/—100F). So /—190F = 0
means F' is a constant over a closed Kéhleli mani-
fold, using integration by parts for ” F'\/—100F” (or
"FAZF”) to see this.

2. 90-Lemma: for a global closed (p, q)-form « trivial
in cohomology, there is a global (p — 1, ¢ — 1)-form 7
such that oo = /—190n.

Prove by going through identities from Hodge de-
compositions and using compatibility (o« = AGAG«
and use the versions for 0 and 0 respectively).



e Curvature form of holomorphic line bundle and the
first Chern class

1. Holomorphic line bundle.
Begin with a rank 2 real vector bundle.

Rank 1 complex vector bundle, i.e. complex line bun-
dle: transition matrix preserving complex structure

over fibre, i.e. "multiplication by a complex num-
ber”.

Holomorphic line bundle: holomorphic transition func-
tion (i.e. holomorphically-varying over base mani-

fold).

2. The first Chern class.
For a complex line bundle L with any V,
YAI92] = ¢ (L) € H2(M;Z) using the sheaf exact

2
sequence

0—>Z—->A—> A" —0,

which gives the long exact sequence of sheaf coho-
mology, and the identification between de Rham and
sheaf cohomology spaces (noticing that as sheaf, closed
and exact are the same). This is only the torsion-
free component of the more topologically defined first
Chern class.

The C-valued smooth function sheaf A is a fine sheaf,
and so with vanishing sheaf cohomology spaces of
positive degrees. Hence from the long exact sequence,
H?*(M,Z) is isomorphic to H*(M, A*) where the later
one corresponds to the space of smooth complex line
bundles over M (direct from definitons).
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So the first Chern class decides the smooth structure
of the complex line bundle.

In the case of holomorphic line bundle L with the
hermitian metric h (over a complex manifold M),
we take the corresponding holomorphic connection
V and by direct computation,

V=1V = —/=10dlog(|o[2),

where o is a local holomorphic base vector field.
(Hint: compute the action of V? on o, using the
definition of holomorphic connection.)

LIV2) = ¢ (L) € HYY(M;C) N H%(M;Z) using

1
0=-7Z—-0-=0"=0

in a similar way as before. Here the curvature form
is clearly a (1, 1)-form from the formula above.

Note: in future, the universal constant 5- (or %)

would constantly be ignored with no affect. Only
the notation HYY(M, C)N H?*(M,Z) makes use of M
being closed and Kahler.

The holomorphic function sheaf is not fine. (No par-
tition of unit by holomprhic function, right?) The
first Chern class is NOT going to decide the holo-
morphic line bundle.

This provides one way to understand Calabi’s Con-
jecture.
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II. Complex Monge-Ampere equation and Ricci
flow

II-1. Complex Monge-Ampere equation

e Computation for Ricci curvature in Kahler setting.

Recall:

1) The Levi-Civita connection V for (M, g) induces
the holomorphic connection for 1M .

2) Ricci curvature is a "trace” of Riemannian curva-
ture, and so Ricci form, Ric(Y,JZ) = Ricci(Y, Z),
is the curvature form for A"T1°M with the hermi-
tian metric induced from g. (Explanation of R;; =
gkl_Rim as a “trace”: the cancelation when com-
puting curvature form of the highest degree wedge
bundle, even easier if using complex geodesic coor-
dinates).

So we have recovered the following classic computation
in Kahler geometry:

Ric = —v/—190log }3%1 ARRRNA agn
— _\/—18510gdet(9¢3)7

2
9

where g;; = gc (%, %). Hence the study of Ric
i J

(Ricci form) is reduced to analyzing the volume form.

This also reduces the order of derivative.

In cohomology, we have
[Ric] = ¢; (AT M) = ¢ (T M) =: ¢ (M),
the first Chern class of (M, J).
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Summary: given any Kahler metric w, its Ricci
form Ric(w) represents the first Chern class of (M, J)
(in the cohomology space H?*(M;Z)).

If M is closed, then the cohomology space could be
HY(M;C)n H*(M;Z).

Remark: clearly, any deformation of the (almost)
complex sturcture J will not change the class in
H?(M,Z), and so, for example, there is a well-defined
first Chern class for a symplectic manifold by con-
sidering only those compatible almost complex struc-
tures. The construction makes use of the compatible
metric coming from the symplectic form and the al-
most complex structure.
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Consider M being closed for a while.
In the other direction of Summary, we have the

following important problem and its solution.

Calabi’s Conjecture and Calabi-Yau Theorem.

1. Calabi’s Conjecture: over a closed manifold M,
in any Kahler class «, for any real closed (1, 1)-form
T representing (M), there exists a unique Kéahler
metric w with [w] = o and Ric(w) =T.

Another way to understand: suppose M is simply
connected. For the holomorphic line bundle A*T50M
being trivial smoothly implies being trivial holomor-
phically.

2. Reduction to a complex Monge-Ampere equation.
Take a Kahler metric wy in a.

[Ric(wp)] = e1(M) = [T1], and so [Ric(wy) —T] = 0.
By 90-Lemma, we have Ric(wy) — T = +/—199F for
F € C*°(M) unique up to an addtive constant.

The desired w has to be in the form of wy++/—190u
by 90-Lemma, and we need Ric(w) = T.

Hence Ric(wy) — Ric(w) = v/—100F, which is

— /_malog‘a;—o + v/ —100log— = v/ —100F.
E

w n
Vi

So v/=19dlog: = /=100F. Although i and &
are locally defined, their quotient % is a smooth
function over M.
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So M being closed gives logi—: = F'+ C, and that is
(wo + V—=100u)" = ! Cuy.

The constant C'is clearly fixed by considering inte-
grals over M and can indeed be absorbed by a proper
choice of F'. Obviously the above computation can
be reversed.

Conclusion: the statement of Calabi’s Conjecture
is equivalent to the uniqueness and existence of so-
lution (up to additive constants) for the following
complex Monge-Ampere equation,

(wo + vV—=100u)" = e"wj
for “any” F € C*°(X)/{additive R}.

Uniqueness (easy exercise): assume two solutions
u, v, and use

0= [y(u=v) ((wo + V=190u)" — (wy + v/—190v)").

3. Calabi-Yau Theorem: existence is true.

C" estimate from Moser Iteration, Laplacian esti-
mate and higher order derivative estimates.

4. Other Kahler-Einstein equations.
Different signs: (wo + v/—100u)" = eF* 'y
Measure equation: (wy + v/—1900u)" = fwy.

Degenerate case: (w + v/ —190u)" = fQ for w > 0.
More precisely, [w] is NOT a Kéhler class.
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e Pluripotential Theory for Monge-Ampere operator
and Kolodziej’s breakthrough.

1. The other part of the story for complex Monge-
Ampere equation — low regularity category.

Problem: how to make sense of the complex Monge-
Ampere equation when y/—100u doesn’t even exist
pointwise (i.e. “measure equation” before).

Answer: in the weak sense (measure and distribu-
tion).

Positive current (Lelong).

Plurisubharmonic function (Lelong, Oka).
Monge-Ampere operator (Bedford-Taylor).

Relative capacity (Bedford-Taylor).

References: books by Lelong, Kolodziej and De-
mailly (online).

Search for existence, uniqueness and regularity of the
(weak) solution.

2. Kolodziej’s breakthrough (for wy being Kéhler).

L™ estimate from measure ” LP>” condition on the
right hand side.

Continuity.

Holder continuity:.
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II-2. Ricci flow
References: books by Chow and others.

e Set-up, uniqueness and short time existence.

898—(;) = —2Ricci (g(t)), ¢(0) = go.

“Weak parabolicity from diffeomorphism invariance”
(Hamilton): the static equation of a parabolic equa-
tion would be elliptic, and so would have a finite
number of solutions (M being closed). But this is
not true considering action by diffeomorphism.

Weakly parabolic flow in the (positive) symmetric
2-tensor space (Hamilton).
Linearization: % = v and V = Try(v), then the
evolution term is linearized to be
O(—2Ricci)
Os
where X = % — div(v). There are second order

derivative terms from VX other than the parabolic
term Ajpwv.

= Apv+ Symm(VX),

The symbol is weakly parabolic, i.e. with some eigen-
values being 0. Hamilton’s computation makes use
of the contracted Second Bianchi Identity, which has
a lot to do with the term X above.
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DeTurck’s Trick: reduce to a parabolic flow by a
family of diffeomorphisms, i.e. “fixing gauge”.
Ricci-DeTurck flow:

dg

5 = —2Ricci + Symm(VW), g(0) = go,

where the 1-form W = “T'r(V — V) with V be the
Levi-Civita connection for a fixed metric.

Key feature of such W: the linearization is —X
up to lower order terms in v = %. So Ricci-DeTurck
flow is parabolic which guarantees uniqueness and
short time existence.

The dual of W, W* is a time-depending vector field,
and so solving 48 = —W* with initial data ®(0) = id
gives a one-parameter family of diffeomorphisms.

®*g solves Ricci flow with the initial gy by noticing
L..g=Symm(VW).

This gives short time existence (i.e. local existence).
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How about uniqueness?

A solution of Ricci flow ¢(t), gives a one-parameter
family of diffeomorpisms W(¢) as the solution of har-
monic map heat flow (parabolic) with ¥(0) = id.

The pullback (¥~1)*g is the solution for Ricci-Deturck
flow with initial data g(0). (unique)
By rewriting the harmonic map heat flow, one real-

izes that W is nothing but the ® above. (unique from
a solution of Ricci-Deturck flow)

So one can get back to the solution of Ricci flow and
achieve uniqueness.

Key of the argument:

from Ricci flow to Ricci-Deturck flow, the one-parameter
family of diffeomorphisms is obtained by solving har-
monic map heat flow;

from Ricci-DeTurck flow to Ricci flow, the one-parameter
family of diffeomorphisms is by integrating a time-
depending vector field.

Remark: backward uniqueness. (Brett Kotschwar)
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e Finite time singularity.

PDE point of view: blow-up of the solution (metric
coefficients) or the derivatives (covariant derivative).

Hamilton: blow-up of [Rm (g(t)) |4¢) (in sight of Shi’s
estimates).

Perelman: local noncollapsing result.

Original form, k-noncollapsed below the scale p: ¥r €
(0,p), in B(x,r), |[Rm| < r72, then Vol(B) > xr".
(Two proofs: W-functional, stronger but only for
closed manifold; reduced distance, weaker but also
for complete manifold.)

There are improved versions for local noncollapsing
results by Sesum-Tian-Wang and others. The ver-
sion by Topping which changes |Rm/| to |R| is the
best so far.

It is very useful in the study of Ricci flow.

a) uniform injectivity radius lower bound for dila-
tion sequence (and hence smooth Cheeger-Gromov-
Hamilton convergence for the dilations at finite time
in general), resulting in singularity models which can
be classified in low dimensions.

Cheeger-Gromov-Taylor: volume noncollapsed (i.e.
ratio lower bound) implies injectivity radius lower
bound.

Ezplain: enemies for injectivity radius are conju-
gate point (exp being degenerate, controlled by curva-
ture) and geodesic loop, 2 minimal geodesics. Dilaten
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to have flat space with volume of Fuclidean growth,
which is Fuclidean space, and a small loop. Contra-
diction!

b) rule out some "nice” solitons as singularity models

for the sake of arranging surgery.

Examples: (steady solitons)

i) cigar soliton ff_i‘;f; = 1‘1’:2 + 1_7;2 d? over R?, ex-
ponentially asymptotically flat but cylindrical. So
local noncollapsing result rules out the product of
cigar with R! as a singularity model.

ii) 3-D Bryant soliton (~ dr? + rg,, with |Rm| ~
O(1)), is not ruled out. It is asymptotically necklike

at infinity.

After Perelman’s:

Sesum: blow-up of |Ric (¢(t)) |4¢)- In real dimension
3, blow-up of scalar curvature. (David Glickenstein’s
result is applied. Perelman’s local non-collapsing re-
sult can be avoid.)

Wang and others: blow-up of the space-time integral
of power of curvature norm. (”Ricci lower bound
assumption”)

Enders-Miiller-Topping (and others): blow-up of scalar
curvature for Type I singularity (compact or com-
plete). (Perelman’s pseudolocality result using re-
duced distance and Naber’s result to obtain the soli-
ton as dilation limit.)

Kaéhler-Ricci flow over closed manifold (Z.): scalar

20



curvature blows up. (Argument of very different
flavour.)

[Blow-up of scalar curvature is conjectured for finite
time singularity of Ricci flow in general.]
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e Geometric implications.
This is by no means a complete list.

[Uhlenbeck’s trick: time-depending frame for a neat
expression on Riemannian curvature evolution.]

Hamilton: dimg M = 3 and Ric(gy) > 0= M is a
quotient of S3.

Notion: invariant set for Ricci flow curvature ODE.

Chow and Hamilton: flows over closed Riemann sur-
faces (equivalent to Kéahler-Ricci flow over closed M
with dimcM = 1) being completely settled.

Metric evolves in a fixed conformal class and scalar
curvature is “everything”.

Tools: Harnack and entropy are introduced by Hamil-
ton, assuming R > 0 in the sphere case, when bound-
ing R (from above). This additional assumption is
removed by Chow using R + C. The adjustment of
Harnack part is quite direct. The entropy part re-
quires different consideration.

Perelman followed by several groups of people: Poincaré
Conjecture and Geometrization Program.

Bohm and Wilking: Rm (gg) > 0 = M is quotient
of ™.

Notion: curvature pinching set for Ricci flow cur-
vature ODE. [pinching family as the general setting
of algebra structure and generalized pinching set for
application to flow.]
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Schoen-Brendle: curvature (strictly and pointwise)
;ll—pinch indicates smooth geometry of space form.

Main difficulty:

Nonnegative isotopic curvature: weak but preserved
by Ricci flow (dimg = 4 is done by Hamilton). Mean-
while, it can not prevent premature finite time singu-
larities and so one needs to do surgeries (Chen-Zhu

for 4-fold).

le—pinch curvature: strong but not preserved by Ricci
flow.

Somewhere in between lies the proper curvature con-
dition preserved by Ricci flow and pinching to con-
stant curvature.
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II1. Set-up of Kahler-Ricci flow

e Set-up, cohomology information and scalar potential
flow.

This is the special case of Kahler class being fixed.

1. Some history: Huaidong Cao and others.

— Alternative proof of Yau’s Theorem (not just “Ricci-

flat case”):
% = —Ric (@t) + T, &30 = Wy
for a Kéhler metric wy and 7" representing c¢;(X).

Convergence.

— ¢1(X) <0 case:
% = —Ric (@) — Ty, @y = wo
with [wy] = —c1(X).

Convergence.

— Fano (or ¢1(X) > 0) case:
% = _Ric (@) + @, @o = wo
with [wg] = ¢1(X).

Stability and convergence.
2. Special features of Kahler-Ricci flow.

— Equivalence of metric (form) flow and scalar (met-
ric potential) flow (as explained in detail in Chau’s
work).

Scalar flow (discussed in detail later) to metric
flow: take v/—190.

Metric flow to scalar flow: time ODE for each
space point and uniqueness.
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— Kahler-Ricci flow is Ricci flow with initial
metric being Kahler: uniqueness of Ricci flow
and existence of Kéhler-Ricci flow. (This settles
the logic.)

— Easier uniqueness and short time existence for
Kahler-Ricci flow (in the space of Kahler met-
rics).

It is a parabolic flow! Ways to see this:

(a) Scalar (metric potential) flow: linearized to
have the leading term being Laplacian.

(b) Metric form flow: in the space of real, smooth,
closed (1, 1)-forms, the leading term is Laplacian

(in sight of (¢;;)r = (dx7)i)-
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e Flow with evolving class and more general setting.
1. % = —Ric (W) — Wy, Wy = wp with wy being

ANY Kahler metric.

Cohomology.

Scalar flow.

2. % = —Ric(w) — @ + Rie(Q) — L, @ = wy

with wp, 2 and L being any Kahler metric, a smooth

volume form and a real smooth closed (1, 1)-form.

Cohomology.

Scalar flow.
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e Optimal existence result and cases of singularities.
1. Tian-Z. (a weaker version by Cascini-La Nave):

Kahler-Ricci flow exists as long as the class remains
to be Kéhler (from formal consideration).

Idea of proof: choice of background form, estimates
and equivalent metric flow.

2. Cases from picture in Kahler cone: infinite and
finite time.

e Convergence in non-degenerate case.

Generalization of H. D. Cao’s result in ¢;(X) < 0
case by removing the cohomology restriction on the
initial class.
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e Relation with other versions of Kahler-Ricci flow.

1. Classic Ricci flow (”Ricci-flat”):

o,
ot
Rescaling of time and metric: the same infinite and

finite time.

= —Ric (@t) , @0 = wy-

Evolution of class.

2. "Fano”:
0w N o~ ~
S = —Ric (W) + @, @y = wo.

Rescaling of time and metric: infinite time becomes
finite time.

Evolution of class.

3. The implication of Sesum-Tian’s result (following
Perelman’s idea): the recent work by Song on finite
time extinction of classic Kahler-Ricci flow.
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IV. Some recent topics on Kahler-Ricci flow

Focus on the flow % = —Ric (W) — @y, Wy = wy.

e Minimal manifold of general type.

The canonical class Kx = —c;(X) is nef. and big.

Translation for differential geometer: there exists
P: X — X C CP" with dimcX = dimcX and
P*(H) = mKx for a positive integer m.

Semi-ample: quite essentially involved in the argu-
ment up to this point.

Theorem (Tian-Z.):
1) Smooth local convergence (of w;).
2) Weak global convergence.

3) Uniqueness of the limit (singular Kéhler-Einstein
metric).

4) Continuity of the limiting potential.

5) Uniform control of scalar curvature.

Idea of proof:

1) and 2): Tsuji’s trick, Kx — eE > 0.

3): an observation.

4): pluripotential theory.

5): Schwarz Lemma computation, gradient and Lapla-

clan estimates.

e Minimal manifold of lower Kodaira dimension.
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Song-Tian: the limit should be collapsed to the base
manifold with the fibration structure coming in as
Weil-Peterson metric (moduli information).

More recently, Fong-Z.: metric collapsing for regular
fibration. [One could probably work out a degener-
ate version for general fibration by combining with
the argument in Song-Tian.]

Tosatti and others: using elliptic setting for Calabi-
Yau case.

Generalization of Kolodziej’s results.

Under assumption similar to minimal manifold of
general type,

L>-estimate:
Eyssidieux-Guedj-Zeriahi
Demailly-Pali

A

Continuity:
Z. by applying Fornaess-Narasimhan’s extension re-

sult for weak PSH function and Kolodziej’s original
argument.

Collapsing case:

Eyssidieux-Guedj-Zeriahi and Demailly-Pali can still
be applied to achieve L*°-estimate.

Manifold of general type.

Finite time volume non-collapsing case: similar con-
vergence.
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[L>®-estimate from simple flow argument for finite
time singularity case, requiring only semi-ample lim-
iting class.]

e What to expect for finite time singularities?

Tian’s Program.

Recent justification for examples about the pictures
of contraction by Song-Weinkove and flip by Song-
Yuan.

In order to get a canonical limit, we need to continue
it to the time infinity. That leads us to next topic.

e Weak flow.

Chen-Tian-Z.: for singular initial metric with bounded
potential, one can define a (unique) weak flow which
becomes smooth instantly.

Application in general type surface case.

Song-Tian and Z.: more general pictures.
e Further singularity analysis.

Z.. scalar curvature behavior.

Song-Tian: partial metric information from Schwarz
Lemma.

Z.: Ricci lower bound. [related to the examples by
Knopf and Maximo on the sign of Ricci tensor along
Ricci flow]

e Flows in complete non-compact setting.

Shi; Chau, Tam; Chen-Zhu; Lott-Z.; Rochon-Z.
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