Presented by Assoc. Prof. Jessica Jingyi Li (University of California, Los Angeles) Part 1: PseudotimeDE: Inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data. To investigate molecular mechanisms underlying cell state changes, a crucial analysis is to identify differentially expressed (DE) genes along the pseudotime inferred from single-cell RNA-sequencing data. However, existing methods do not account for pseudotime inference uncertainty, and they have either ill-posed p-values or restrictive models. Here we propose PseudotimeDE, a DE gene identification method that adapts to various pseudotime inference methods, accounts for pseudotime inference uncertainty, and outputs well-calibrated p-values. Comprehensive simulations and real-data applications verify that PseudotimeDE outperforms existing methods in false discovery rate control and power. Part 2: scDesign2: A transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured. A pressing challenge in single-cell transcriptomics is to benchmark experimental protocols and computational methods. A solution is to use computational simulators, but existing simulators cannot simultaneously achieve three goals: preserving genes, capturing gene correlations, and generating any number of cells with varying sequencing depths. To fill this gap, we propose scDesign2, a transparent simulator that achieves all three goals and generates high-fidelity synthetic data for multiple single-cell gene expression count-based technologies. In particular, scDesign2 is advantageous in its transparent use of probabilistic models and its ability to capture gene correlations via copulas.