Abstract: In this talk Stephen will present some of the findings from the People of the British Isles project, which was published in Nature in March 2015 (and featured on the cover), and some more recent work following on from this study. In particular he will show that using newly developed statistical techniques one can uncover subtle genetic differences between people from different regions at a hitherto unprecedented level of detail. For example, in the UK one can separate the neighbouring counties of Devon and Cornwall, or two islands of Orkney, using only genetic information. Stephen will then show how these genetic differences reflect current historical and archaeological knowledge, as well as providing new insights into the historical make up of the British population, and the movement of people from Europe into the British Isles. This is the first detailed analysis of very fine-scale genetic differences and their origin in a population of very similar humans. The key to the findings of this study is the careful sampling strategy and an approach to statistical analysis that accounts for the correlation structure of the genome. The methods developed are readily extended to analyses in other populations.
Bio: Associate Professor Stephen Leslie is a statistician working in the field of mathematical genetics. A/Prof. Leslie did his undergraduate degree at ANU, including honours in Mathematics. He obtained his doctorate from the Department of Statistics, University of Oxford in 2008, followed by post-doctoral work at Oxford, before becoming the Head of Statistical Genetics at Murdoch Childrens Research Institute in 2012. Since 2016 Stephen has been at the University of Melbourne as Associate Professor of Statistical Genomics, in the Schools of Mathematics and Statistics, and Biosciences, and the Centre for Systems Genomics. In late 2016 he was awarded the Woodward Medal in Science and Technology, the University of Melbourne’s highest award for staff, which is given for research that has made the most significant contribution to knowledge in the five years prior to the award. A/Prof. Leslie's work covers several aspects of statistical and population genetics. His group's main focus is on methodological developments for the analysis of high throughput genetic data and the application of these methods to studies of disease and natural population variation. These methods typically combine modern computationally-intensive statistical approaches with insights from population genetics models. Specifically the group works on statistical methods for imputing immune system (and other) genes from incomplete genetic data; the application of these methods to studies of autoimmune and other diseases; methods for detecting and controlling for population stratification; and understanding the causes and consequences of genetic variation in populations.