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The vector ( is called the highest vector of L, and the N-tuple
Au) = (Ai(u), ..., An(u)) is the highest weight of L.

In terms of the Drinfeld presentation, the conditions read

ei(u)( =0 for 1<i<N-1, and

h,-(u)( = A,(u)( for 1 <i<N.

The equivalence is clear from the formulas for e;(x) and h;(u);

tll(u) tli,l(u) tli(u)
h,‘(u) = .
ticvi(u) oo ficri1(w) tio1i(u)
til(l/t) C tii—1 (u) t,-i(u)
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Definition. Let A(u) = (A1 (u), ..., Av(u)) be an arbitrary tuple of

formal series.

The Verma module M(A(u)) is the quotient of Y(gly) by the left
ideal generated by all the coefficients of the series #;;(u) for

1 <i<j<Nandt;(u)— N\(u)for1 <i<N.

The Verma module M(A(u)) is a universal highest weight
representation of Y(gly) with the highest weight A\(x) and the
highest vector 1,,) which is the image of the element

1 € Y(gly) in the quotient.
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The PBW theorem implies that given any order on the set of

generators tj( " with 1 < i <j< Nandr > 1, the elements

A ) g m >0,

Jit Jmlm A ”) ’

with ordered products, form a basis of M(\(u)).

Proposition. Suppose that L is a highest weight representation
of Y(gly) with the highest weight A(u) = (Ai(u), ..., Av(u)).

Then each coefficient of the quantum determinant qdet 7'(«)

acts on L as multiplication by a scalar determined by

qdetT(u)|L = )\1(11) ... )\N(u — N+ 1).
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Proof. This is clear from the formula

qdetT(u) = Z@: sgnp -ty (u) .ty v —N+1). 0
PEGN

Identify the elements E;; € gl with their images tl-(jl) inY(gly)
under the embedding U(gly) — Y(gly)

and recall that

[Eij, tu(u)] = 6y tu(u) — 6y ti(u).
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In particular, we may regard M(\(u)) as a gly-module.

For any N-tuple p = (1, ..., py) of complex numbers, set
MAw))y =A{n € M(Aw)) | Ein = pin, i=1,....N}.

We call 1. a weight of M(A(u)) if M(A(u)),, # 0.

We will identify p with the element i1 + - - - + unvey € b*, with
e; = Ej; for the Cartan subalgebra h = (Ei, ..., Enn).

If o and 3 are two weights, then « precedes g if 5 — ais a

Z -linear combination of the N-tuples ¢; — ¢; with i < ;.
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The sum of all proper submodules of the Verma module

M(X(u)) is the unique maximal proper submodule of M(\(u)).

Definition. The irreducible highest weight representation
L(\(u)) of Y(gly) with the highest weight A(u) is the quotient of
the Verma module M(A(«)) by the uniqgue maximal proper

submodule.

Theorem. Every finite-dimensional irreducible representation L
of the Yangian Y(gly) is isomorphic to a unique irreducible

highest weight representation L(A(u«)).
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Proof. Introduce the following subspace of L,
L={ellyué=0, 1<i<j<N}

We show first that L is nonzero. Consider the set of weights of

L, where L is regarded as a gly-module.

This set is finite and hence contains a maximal weight x with

respect to the partial ordering.

The corresponding weight vector ¢ belongs to LY, because the
weight of #;;(u) £ is 1 + €; — €;. By the maximality of 1., we must

have 7;j(u) ¢ =0 fori < j.
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Next, the subspace L° is invariant with respect to the action of

all elements 1.7,

Moreover, the elements t,E,? withk=1,...,Nandr > 1acton

L° as pairwise commuting operators.

Hence, any simultaneous eigenvector ¢ € L° for these

operators is the highest vector.
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Evaluation modules

Given an N-tuple of complex numbers A = (Aq,..., Ay) we will
denote by L(\) the irreducible representation of the Lie algebra

gly with the highest weight .
So, L()) is generated by a nonzero vector ¢ such that

E,:,'C =0 for 1

N

i<j<N, and

E,‘l'CZ)\iC for 1 <i<N.

The representation L()) is finite-dimensional if and only if

Ai—Aip1 €Zyforali=1,... N—1.
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The evaluation homomorphism
ev : ti(u) v 6 + Eju "
allows us to equip any L(\) with a structure of Y(gly)-module.

We will keep the same notation L(\) for this Y(gly)-module and

call it the evaluation module.

Note that L(\) is a highest weight representation of the Yangian
with the highest vector ¢, and the components of the highest

weight are given by

N(w)=14+Xu™t,  i=1,...,N.
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Consider tensor product modules of the form
LOMDY @ LA @ ... @ LAW),
where each L(\) is an evaluation module with
A =AM Ay e N,
We let ¢,, denote the highest vector of L(A™) and set
(=C0®...0G.

Proposition. The cyclic span Y(gly)( is a highest weight

representation with the highest vector ¢ and the highest weight
()\1(14), ey )\N(u)),

M) = (L4 A D (10 + AP w1 AW,
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Proof. We have

tij(l/l) (771 ®...Q 77k)

= Z tiay () M & laya, () 2 @ ... @ La,_,j(u) Mk,

Alyeeey Af—1

summed over ay, ..., a;—1 € {1,...,N}.

If i <jandforeverym=1,... kwe have n, = (,, then each
summand is zero because it contains a factor of the form

tu(u) ¢ With k < 1, which is zero.

Similarly, if i = j, then the only nonzero summand corresponds

to the case where each index a,, equals i. O
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Representations of Y(gl,)

Consider the irreducible highest weight representation L(\(u))
of Y(gl,) with an arbitrary highest weight A(ux) = (A (1), A2 (u)).

Proposition. If dim L(A(«)) < oo, then there exists a formal
series

f)y=1+fiu"' +pu?+..., [ eC,

such that f(u)\; («) and f(u) A2 (u) are polynomials in u~".
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Proof. By twisting the action of Y(gl,) on L(A(«)) by the
automorphism T'(u) — f(u) T(u) with f(u) = X\2(u)~!, we obtain
a module over Y(gl,) which is isomorphic to the irreducible

highest weight representation L(v(u«), 1) with
v(u) = Ar(u)/Aa(u).

Let ¢ denote the highest vector of L(v(u), 1). Since this
representation is finite-dimensional, there exist coefficients

¢; € C with ¢, # 0 such that

£ _chtﬂ =
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By the defining relations,
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Then we have zug 0 for all r > 1. Write
v(u) =1+0Wu 4 0@y2 4 v ecC.

By the defining relations,

min{r,i}
r r+i—a r+i—a) (a
iz)él) Au) = Z (tgz )tgl )_éz )t51 )>1/\(u)
a=1
_ V(r-H—l) 1)\(“).

Hence, for all » > 1 we have the relations

Zciu(ﬂri—]) =0
i=1
They imply that for some coefficients b; € C we have

v(u)(cy +cou+ -+ cuu" ) = by +bou+ -+ byt
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Thus, v(u) is a rational function in u~!, so that taking f(«) to be
its denominator, we find that both f(u)v(«) and f(u) 1 are

polynomials in u~!. O

By the proposition, it suffices to understand the representations
with the highest weights, whose components A («) and A, (u)

are polynomials in u~"'.

Write the decompositions

M) =04+ a1+ o),
M) = (L+Brut) o (L4 B ),

where the constants «; and j; are complex numbers.
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For any «, 8 € C consider the irreducible highest weight
representation L(«, 3) of the Lie algebra gl, and equip it with a

Y (gl,)-module structure.
Let ¢ denote the highest vector of L(«, 5). Then

Ey ¢ = ag, Exn(=p¢, E, ¢ =0.

If « — 5 € Z, then the vectors (E;;)"¢ withr=0,1,...,a -0
form a basis of L(«, ) so that dim L(a, 8) = a — 5 + 1.

If « — 8 ¢ Z, then a basis of L(«, ) is formed by the vectors

(E»1)"¢, where r runs over all nonnegative integers.
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Given the expansions

M) =0 +au™) (1 + o),
Xo(u) = (14 ") . (14 B,

renumber the coefficients, if necessary to satisfy the following

condition foreveryi=1,...,k— 1:
if the multiset
{ap_ﬁq ‘ igp,qgk}

contains nonnegative integers, then «; — f3; is minimal amongst

them.



Proposition. If the condition holds, then the representation
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Proof. Let ¢; be the highest vector of L(«;, 5;) fori=1,... k.

By the proposition above, the cyclic span Y(gl,) ¢ of the vector
(=(®...® (is a highest weight module with the highest
weight (A1 (), A2 (u)).
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Proposition. If the condition holds, then the representation
L(A1(u), \2(u)) of Y(gl,) is isomorphic to the tensor product

module

L:=L(ay, 1) ® L(ag, B2) @ ... @ L(ay, Bk)-

Proof. Let ¢; be the highest vector of L(«;, 5;) fori=1,... k.

By the proposition above, the cyclic span Y(gl,) ¢ of the vector
(=(®...®(is a highest weight module with the highest
weight (A (u), \2(u)). Therefore, the proposition will follow if we
prove that the tensor product module L is irreducible.

20
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Step 1. Show that any vector ¢ € L satisfying t1»(u)¢ = 0 is
proportional to ¢. Use induction on k and suppose that k > 2

Write

p

=D (En)Ci®&,  where & €L(o,8)®...® Lok, B)

r=0

and p < a; — [ if this difference isin Z ;..
We have

p
Z (lll (E21) ¢t @ tia(u) & + t12(u) (Ea1) 1 ® tzz(u)é’r) =0.

r=0

21
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Taking the coefficient of (E,; )¢, gives
(1+ (ay —p)u") t12(u) &, =0,

implying 712 (1), = 0. By the induction hypothesis, the vector ¢,

must be proportionalto (H ® ... ® (.
Therefore,

()& = (1+ Bou ") ... (1+ B )&,

To complete Step 1, we show that p is zero.
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Suppose that p > 1. Then taking the coefficient of (E»;)P~!¢; in

t1o(u)¢ = 0 we derive
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t1o(u)¢ = 0 we derive
(14 (a1 —p+Du Y ta(u) €y +u plag—Bi—p+1) ta(u) €, = 0.
Multiply by «* and set u = —a; + p — 1 we obtain the relation
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Suppose that p > 1. Then taking the coefficient of (E»;)P~!¢; in

t1o(u)¢ = 0 we derive

(14 (a1 —p+Du Y ta(u) €y +u plag—Bi—p+1) ta(u) €, = 0.

Multiply by «* and set u = —a; + p — 1 we obtain the relation
plar=Bi—p+1)(a1—=Br—p+1)...(cs =B —p+1)=0.

But this is impossible due to the conditions on the parameters
a; and ;. Thus, p = 0.

23
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Step 2. If M is a nonzero submodule of L, then M must contain
a nonzero vector £ such that 72(u)§ = 0.

The above argument shows that M contains the vector (. It
remains to prove that the cyclic span K = Y(gl,) ¢ coincides

with L.
Use the dual Y(gl,)-module L* which is defined by

(yw)(n) =w(s(y)n) for yeY(gh) and welL’, nelL,
for the anti-automorphism

. tU(u) — t3_,~,3_j(—u).

24



The dual module L* is isomorphic to the tensor product

L(—ﬂl, —Ozl) R...&® L(—ﬂk, —ak).
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is a nonzero submodule of L*, which does not contain the

vector (} ® ... ® (.
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The dual module L* is isomorphic to the tensor product
L(—p1,—1) ® ... ® L(—Br, —ax).
If the submodule K = Y(gl,) ¢ of L is proper, then its annihilator
AnnK ={weL" |w(n) =0 forall neK}

is a nonzero submodule of L*, which does not contain the

vector (} ® ... ® (.

However, this contradicts the claim verified in Step 1. O

25



Theorem. The irreducible highest weight representation
L(A1(u), \2(u)) of Y(gl,) is finite-dimensional if and only if there

exists a monic polynomial P(u) in u such that

Ai(u)  Plu+ 1).

A2 (u) P(u)
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In this case P(u) is unique.
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Theorem. The irreducible highest weight representation
L(A1(u), \2(u)) of Y(gl,) is finite-dimensional if and only if there

exists a monic polynomial P(u) in u such that

Ai(u)  Plu+ 1).

A2 (u) P(u)

In this case P(u) is unique.
Notation. P(u) is called the Drinfeld polynomial.

Proof. By the propositions, if dim L(A;(u), A2(u)) < oo, then

A1 (u) _ (w+ap)...(u+ ag)
M) w+pB1) ... (u+ B’

ando; — ;€ Z foralli=1,... k.
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Then P(u) exists and given by

k

P(u) =JJu+B8)u+ B+ 1) ... (u+a; = 1).

i=1
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Then P(u) exists and given by

k

P(u) =JJu+B8)u+ B+ 1) ... (u+a; = 1).

i=1

Conversely, if the relation holds for a polynomial

P(u) = (u+'71)...(u—|—'yp),
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Then P(u) exists and given by

k
P(u) =JJu+B8)u+ B+ 1) ... (u+a; = 1).

i=1

Conversely, if the relation holds for a polynomial

Plu)=(u+m)...(u+),
then set

p(u) =1+ m+Du ') (T+ (g + D),

po(u) = (147 ") o (T4 yuh),
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Then P(u) exists and given by

k
P(u) =JJu+B8)u+ B+ 1) ... (u+a; = 1).

i=1

Conversely, if the relation holds for a polynomial

P(u) = (u+v)...(u+),
then set

() =14 (m+Du ) (L (g + D),
po(u) = (147 ") o (T4 yuh),

and consider the tensor product module

L=Lm+1L,m)&LMn+1,7%)®...0 L+ L)

27



Corollary. The isomorphism classes of finite-dimensional
irreducible representations of the Yangian Y(sl,) are

parameterized by monic polynomials in u.
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Corollary. The isomorphism classes of finite-dimensional
irreducible representations of the Yangian Y(sl,) are
parameterized by monic polynomials in u.

Every such representation is isomorphic to the restriction of a

Y (gl,)-module of the form
L(avy, B1) @ L(az, B2) @ ... @ L(cw, Br),

where each difference a; — ; is a positive integer.
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Corollary. The isomorphism classes of finite-dimensional
irreducible representations of the Yangian Y(sl,) are
parameterized by monic polynomials in u.

Every such representation is isomorphic to the restriction of a

Y (gl,)-module of the form

Loy, B1) ® L(ag, f2) ® ... @ L(cw, Br),
where each difference a; — ; is a positive integer.
Proof. Use the decomposition

Y(gly) = ZY(gh,) ® Y(sh).

28



Representations of Y(gly)
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Representations of Y(gly)

Suppose that A(u) is an N-tuple of formal series in u~!,

Au) = (A (u), ..., An(u)).
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Representations of Y(gly)

Suppose that A(u) is an N-tuple of formal series in u~!,

Au) = (A (u), ..., An(u)).

Theorem. The irreducible highest weight representation L(\(u))
of the Yangian Y(gly) is finite-dimensional if and only if

Ai(u) :P,-(u 1)
Aig1 () Pi(u)

for certain monic polynomials P;(u), ..., Py—i(u) in u.

Every tuple (Pi(u),...,Py—1(u)) arises in this way.

29



Notation. The P;(u) are called the Drinfeld polynomials.
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Notation. The P;(u) are called the Drinfeld polynomials.

Proof. Fori=1,...,N — 1 let Y; be the subalgebra of Y(gly)
generated by the coefficients of the series 7, () with

ki€ {ii+1}.
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Notation. The P;(u) are called the Drinfeld polynomials.

Proof. Fori=1,...,N — 1 let Y; be the subalgebra of Y(gly)
generated by the coefficients of the series 7, () with

ki€ {ii+1}.

The cyclic span Y; ¢ of the highest vector ¢ of L(\(u)) is a
highest weight representation of Y(gl,) with the highest weight

(Ni(u), Nig1(ue)).
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Notation. The P;(u) are called the Drinfeld polynomials.

Proof. Fori=1,...,N — 1 let Y; be the subalgebra of Y(gly)
generated by the coefficients of the series 7, () with

ki€ {ii+1}.

The cyclic span Y; ¢ of the highest vector ¢ of L(\(u)) is a
highest weight representation of Y(gl,) with the highest weight
(Ni(u), Aiyr1(u)). Apply the previous theorem for Y(gl,).

30



For the converse claim, note that if L(v(«)) and L(u(«)) are the

irreducible highest weight modules with the highest weights

v(u) = (vi(u),...,onw) and p(u) = (pi(u),. .., wv(u)),
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For the converse claim, note that if L(v(«)) and L(u(«)) are the

irreducible highest weight modules with the highest weights
v(u) = (vi(u),....on() and  pu) = (u1(u),... oy(u)),

then the cyclic span Y(gly)(¢ ® ¢’) is a highest weight module
with the highest weight (v (u) s (), . . ., vy (u) v (u)).
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For the converse claim, note that if L(v(«)) and L(u(«)) are the

irreducible highest weight modules with the highest weights

v(u) = (vi(u),...,onw) and p(u) = (pi(u),. .., wv(u)),

then the cyclic span Y(gly)(¢ ® ¢’) is a highest weight module
with the highest weight (v (u) s (), . . ., vy (u) v (u)).

The cyclic span corresponds to the set of Drinfeld polynomials
(P1(u) Q1 (u), ..., Py—1(u)On—1(u)), where the P;(u) and Q;(u)
are the Drinfeld polynomials for L(v(u)) and L((u)),

respectively.

31



Therefore, we only need to establish the sufficiency of the
conditions for the fundamental representations of Y(gly)

associated with the tuples of Drinfeld polynomials

(I...,Lbu+a,1,...,1), acC.
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conditions for the fundamental representations of Y(gly)
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Such a tuple is associated with the evaluation module L()),

where A\ = (a+1,...,a+ 1,a,...,a),

32



Therefore, we only need to establish the sufficiency of the
conditions for the fundamental representations of Y(gly)

associated with the tuples of Drinfeld polynomials
(I...,Lbu+a,1,...,1), acC.

Such a tuple is associated with the evaluation module L()),

where A\ = (a+1,...,a+ 1,a,...,a), since

1+ (@+1)u! for j=1,...,i,
Aj(u) =

l4+au! for j=i+1,...,N. 0

32



Recall the Drinfeld presentation of Y(sly): the generators are

k;, and &8 withi=1,...,N — 1 and r > 0, subject to the

i

defining relations:
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Recall the Drinfeld presentation of Y(sly): the generators are

K, and & withi=1,...,N — 1 and r > 0, subject to the
defining relations:
[K“lrv st] - 0?
[Ezr?g v] 1] ir—‘,—s’
[Ki0, &) = + (i, ) &5,
a, O
[’%ir—i—lagj:ﬂ - [ zrvfs—f—l] ( 2 J) (’ﬂv@%*‘@% K‘ir)a
oz,, a
[€,r+17§ ] [§1r7€s+1] ( J) (§ fs +£]:E€lﬂ;)7
D LG K i, 6l - 11 =0,
p€6m

with i # jand m = 1 — ¢;; in the last relation.
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Corollary. Every finite-dimensional irreducible representation of
the Yangian Y(sly) contains a unique, up to a constant factor,

vector ¢ # 0
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where each Q;(u) is a monic polynomial in u.
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Corollary. Every finite-dimensional irreducible representation of
the Yangian Y(sly) contains a unique, up to a constant factor,

vector ¢ # 0 such that
&h¢=0 forall i=1,....N—1 and r=>0.

Moreover, this vector satisfies

( +Zm,,u—’ 1)<_Q’(“(+))g for i=1,....N—1,

where each Q;(u) is a monic polynomial in u.
The tuple of polynomials (Q;(u), ..., Oy—1(u)) determines the

representation up to an isomorphism.
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Proof. We have the relations

ki(u) =1+ Z’iir T

r=0
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Proof. We have the relations

u) =1+ Zliir T

r=0

together with

S =Yg

r=0 r=0

)
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Proof. We have the relations

ri(u) =1+ Z’%’r w 'l

r=0

together with

Gw=>¢u", =) &gu!

r=0 r=0

where

ki) = hi(u— (i = 1)/2) " higr (u— (i = 1)/2)

)
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Proof. We have the relations

ri(u) =1+ Z’%’r w 'l

r=0

together with

where
ki) = hi(u— (i = 1)/2) " higr (u— (i = 1)/2)
and
) =filu—(i-1/2), & W =e(u—(i-1)/2).

35



Hence, on the highest vector ¢ of L(\(u)) we have

§ w)¢=0
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Hence, on the highest vector ¢ of L(\(u)) we have

& w)¢=0
and
. )\,’ 1(14) Pl'(l/l)
milut (1= 1)/2) ¢ = 05 C= 5o €
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Hence, on the highest vector ¢ of L(\(u)) we have

& (u)¢=0
and
. - )\,’ 1(14) o Pl'(l/l)
milut (1= 1)/2) ¢ = 05 C= 5o €

fori=1,...,N—1.

Now use the automorphism of Y(sly) defined by

& () = & (—u), & () = &7 (—u), ki) = Ki(—u).
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Representations of Y(a)
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Representations of Y(a)

Recall that the Yangian Y(a) is generated by elements ;. and

§?§ withi=1,...,nand r > 0, subject to the relations:
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Representations of Y(a)

Recall that the Yangian Y(a) is generated by elements ;. and

§i withi=1,...,nand r > 0, subject to the relations:
[’{ir’ K’js] =0,
[ ;75_5] 51] ﬁlr+s?

+ +
[Ki0, &) = + (cis ) &5,
4 + ' 4 ot
[’{ir—i-l’éjs] — [K’ira js+l] =4 > (Ii s T js zr)

6t letgt, ) =+ Q0 et L et

ir+1° irSjs+1
+ + + +

Z [ irP(l)7[ irp(2)7“'[ if,,(m)’ js]]] :0)

PEGH

with i # jand m = 1 — ¢;; in the last relation.
37



Note that the subalgebra of Y(a) generated by the elements
K, and & with a fixed i € {1,...,n} and r > 0,

is isomorphic to the Yangian Y(sl,).
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Note that the subalgebra of Y(a) generated by the elements
K, and & with a fixed i € {1,...,n} and r > 0,

is isomorphic to the Yangian Y(sl,).
Namely, the coefficients of the series
wi(diu), & (diw)  and  d7'¢ (diu)

with d; = (o, ;) /2 satisfy the Y(sl,) defining relations.

38



Theorem. Every finite-dimensional irreducible representation of
the Yangian Y(a) contains a unique, up to a constant factor,

vector ¢ # 0
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Theorem. Every finite-dimensional irreducible representation of
the Yangian Y(a) contains a unique, up to a constant factor,

vector ¢ # 0 such that
&h¢=0 forall i=1,...,n and r>0.

Moreover, this vector satisfies

> 1 :Qi(u+di) f 1
(l—l-rz:;/ilru )C 7@(”) ¢ for i RN

where each Q;(u) is a monic polynomial in u.

The tuple of polynomials (Q(u), ..., Q,(u)) determines the

representation up to an isomorphism. Ol

39



Yangian characters
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Yangian characters

Denote by Py the abelian group whose elements are the tuples
Au) = (Ai(u), ..., Anv(u)) where each X;(u) is a formal series in
u~! with constant term 1 with respect to the component-wise

multiplication.
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Yangian characters

Denote by Py the abelian group whose elements are the tuples
Au) = (Ai(u), ..., Anv(u)) where each X;(u) is a formal series in
u~! with constant term 1 with respect to the component-wise

multiplication.

Consider the group ring Z[Py] of the abelian group Py whose
elements are finite linear combinations of the form

>omy[A(u)], where my ) € Z.

40



Definition. Suppose that V is a finite-dimensional

representation of the Yangian Y(gly).
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Definition. Suppose that V is a finite-dimensional

representation of the Yangian Y(gly).

For any A(u) € Py, the corresponding Gelfand—Tsetlin
subspace V), consists of the vectors v € V with the property
thatforeachi=1,...,N and each r > 1 there exists p > 1 such

that (b — A")v = 0.

]
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Definition. Suppose that V is a finite-dimensional

representation of the Yangian Y(gly).

For any A(u) € Py, the corresponding Gelfand—Tsetlin
subspace V), consists of the vectors v € V with the property
thatforeachi=1,...,N and each r > 1 there exists p > 1 such

that (b — A")v = 0.

]

Then the Gelfand—Tsetlin character of V is the element of

Z|Py| defined by

chv= )" (dimVyy)[Aw).

A(u)EPy

41



Multiplicativity property:
ch(VoW)=chV-chW

for finite-dimensional representations vV .and W of Y(gly).
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Multiplicativity property:
ch(VoW)=chV-chW
for finite-dimensional representations vV .and W of Y(gly).

In particular, the character of the tensor product of evaluation
modules

LODY o LAY @ ... .o L(\®)
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Multiplicativity property:
ch(VoW)=chV-chW
for finite-dimensional representations vV .and W of Y(gly).

In particular, the character of the tensor product of evaluation
modules
LODY o LAY @ ... .o L(\®)

equals
chLOAW) - chL(A®) ... ch L(AW).

42



Characters of evaluation modules
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Characters of evaluation modules

Consider the evaluation module L(\) over Y(gly), where

A= (Ar,...,\y) is a partition.
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A= (Ar,...,\y) is a partition.

Identify A\ with its Young diagram; for A = (5,4,4,2) we have
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Characters of evaluation modules

Consider the evaluation module L(\) over Y(gly), where

A= (Ar,...,\y) is a partition.
Identify A\ with its Young diagram; for A = (5,4,4,2) we have

The content of the box o = (i,)) is c(a) =j — i.

43



A semistandard A-tableau 7T is obtained by writing the numbers
1,...,N into the boxes of the diagram X in such a way that the
elements in each row weakly increase while the elements in

each column strictly increase.

a4



A semistandard A-tableau 7T is obtained by writing the numbers
1,...,N into the boxes of the diagram X in such a way that the
elements in each row weakly increase while the elements in

each column strictly increase.

A semistandard tableau of shape \ = (5,4,4,2):

1]2]2]

(98]

BN =
DN B[N —
(9,

(9,
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A semistandard A-tableau 7T is obtained by writing the numbers
1,...,N into the boxes of the diagram X in such a way that the
elements in each row weakly increase while the elements in

each column strictly increase.

A semistandard tableau of shape \ = (5,4,4,2):

1]2]2]

(98]

BN =
DN B[N —
(9,

(9,

By 7 () we denote the entry of 7 in the box o € .

a4



Theorem. The Gelfand—Tsetlin character of the Y (gl )-module
L(X) is given by
chL(A Z H XT(a), c(a)?
T «a€eX

summed over all semistandard \-tableaux 7, where
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Theorem. The Gelfand—Tsetlin character of the Y (gl )-module
L(X) is given by
chL Z H XT(a), c(a)?
T a€X
summed over all semistandard A-tableaux 7, where

u+a+i
o= (Lo, =2 )], 1<i<N, aeC.
e = | uta+i—1 ) ’ ¢
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Theorem. The Gelfand—Tsetlin character of the Y (gl )-module
L(X) is given by
ch2(N) =3 [T *%r,e@;
T aeX
summed over all semistandard \-tableaux 7, where
u+a-+i
ia=1(1,...,————— ... 1), 1<i<N, .

i, [( u+a+i—1 )} SN, acC

Remark. The specialization x; , — x; yields

the Schur polynomial to recover the Weyl character formula.
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Theorem. The Gelfand—Tsetlin character of the Y (gl )-module

L(X) is given by

chL(N) =D [T 7). c(ar:

T aeX

summed over all semistandard \-tableaux 7, where

u+a-+i
= 171} 1<i<N, aeC.
Yia [(’ u+a-+i—1 ) ! a

Remark. The specialization x; , — x; yields

the Schur polynomial to recover the Weyl character formula.

Another specialization x; , — x; — b1, produces

the factorial Schur polynomial associated with the sequence b;.

45



Proof. The coefficients of the quantum determinant act on L(\)

as scalar operators found from

qdet T(u)| ) = (T+Xu™) oo (T+ (@ =N+1)7").
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Proof. The coefficients of the quantum determinant act on L(\)

as scalar operators found from
qdet T(u)| ) = (T+Xu™) oo (T+ (@ =N+1)7").
Since

qdet T(u) = hy(u) hpy(u — 1) ... hy(u — N + 1),
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Proof. The coefficients of the quantum determinant act on L(\)

as scalar operators found from
qdet T(u)| ) = (T+Xu™) oo (T+ (@ =N+1)7").
Since

qdet T(u) = hy(u) hpy(u — 1) ... hy(u — N + 1),

we can write

u+c(a)+1

hy(u)ho(u—1)...hy(u— N + 1)’L(/\) = H u+ cla)

aEA

46



Use the Gelfand—Tsetlin basis of L(\) parameterized by the
semistandard \-tableaux.

Such a tableau 7 can be viewed as the sequence of diagrams
A] CAQC"'CAN:A,

where A is the diagram which consists of the boxes occupied

by elements < k.
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Use the Gelfand—Tsetlin basis of L(\) parameterized by the
semistandard \-tableaux.

Such a tableau 7 can be viewed as the sequence of diagrams
A] CAQC"'CAN:A,

where A is the diagram which consists of the boxes occupied

by elements < k.

The semistandard \-tableau 7 is obtained by placing the entry
k into each box of Ay/Ax—;.

47



Example. For A = (5,4, 4,2) and the tableau

1[1]1]2]2]
202[3]3
3[4]5]5
415
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Example. For A = (5,4, 4,2) and the tableau

we have the sequence

1[1]1]2]2]
202[3]3
3[4]5]5
415

Al = (3)7 A2 = (572)7 A3 = (5747 1)7

Ay = (5,4,2,1),

As = .

48



The diagrams A; represent the rows of the corresponding

Gelfand—Tsetlin pattern:
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The diagrams A; represent the rows of the corresponding

Gelfand—Tsetlin pattern:
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The diagrams A; represent the rows of the corresponding

Gelfand—Tsetlin pattern:

5 4 4 2 0
5 4 2 1
5 4 1
5 2
3

associated with the chain of subalgebras

gl Cgl,b Cgly Cgly Cgls.
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For any basis vector (- € L(A) and any 1 < k < N we have

hi () ha(u— 1) (e —k+ 1) 6 = [ mg.

aen, + c(«)
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For any basis vector (- € L(A) and any 1 < k < N we have

u+c(a)+1

hi(u)holu —1) ... hp(u —k+ 1) = al;[\k u+cla) T
This implies
hi(u —k+1)¢r = H u:j-(?()cj)_lgT'

a€Ag/Ar—y
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For any basis vector (- € L(A) and any 1 < k < N we have

hi () ha(u— 1) (e —k+ 1) 6 = [ mg.

ey u+cla)
This implies
u+cla)+1
hi(u —k+1)Cr = H u—i—(c()a)CT'

a€Ag/Ar—y

The element of Z[Py] corresponding to the action of 7 (u) is

H Y, ()

a€M /A1

which yields the character formula.
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