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Abstract

We define a map ϕ from a given singular Artin monoid to its corresponding
group algebra and show that ϕ is faithful precisely when Birman’s conjecture – that
the desingularisation map is injective – is true. We discover combinatorial properties
of ϕ which apply to positive singular Artin monoids of any, not necessarily finite,
type and infer that ϕ is injective on pairs of words for which a common multiple
exists. Furthermore ϕ preserves the Intermediate Property, derived by Corran, in the
sense that if ϕ(τiU) = ϕ(τjV ) then mij = 2 or i = j. From this it follows that
ϕ is injective for some classes of monoids which include singular Artin monoids of
type I2(p), generalising a result of East. Finally, we invoke Paris’ discovery, that
all Artin monoids inject into their groups, as well as our combinatorial discoveries,
to deduce that all positive singular Artin monoids embed into their corresponding
singular Artin monoids, extending a result of Corran.
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1 Preliminaries
We begin with a finite indexing set I , and we let ΓM be a complete labelled graph with
n vertices in one-to-one correspondence with a finite indexing set I and with edge labels
from the set {3, 4, 5, . . . ,∞}. For i 6= j letmij denote the label of the edge between nodes
i and j, or set mij = 2 if there is no such edge. Let 〈xy〉m denote the alternating product
xyx... of length m. Put S = {σi| i ∈ I}, T = {τi| i ∈ I}, and let S−1 = {σ−1

i | i ∈ I},
the set of formal inverses of S. If X is a set then X∗ refers to the free monoid generated
by X . The Artin group of type M, denoted GM , is the group generated by S subject to the
relations

〈σiσj〉
mij = 〈σjσi〉

mij for i, j ∈ I, and mij 6= ∞

denoted R1 and called the braid relations. The positive Artin monoid of type M, G+
M ,

is the monoid generated by S subject to the braid relations R1. The Coxeter group of
type M is the group generated by S subject to the preceding relations and the relations
σ2

i = 1 for every i in I . In this way we see that Coxeter groups arise as quotient groups of
Artin groups. If the Coxeter group of type M is finite, then M is said to be of finite type.
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Except when explicitly stated, we assume througout this paper that M is of any type. The
singular Artin monoid of type M, denoted SGM , is the monoid generated by S ∪ S−1 ∪ T
and has as its defining relations R1, the free group relations σiσ

−1
i = σ−1

i σi = 1 and the
relations R2 listed below,

τiσi = σiτi for all i in I ,

τi〈σjσi〉
mij−1 =

{

〈σjσi〉mij−1τj if mij <∞ and is odd, or
〈σjσi〉mij−1τi if mij <∞ and is even,

τiτj = τjτi if mij = 2.

In arguments below we may regard a relation formally as an ordered pair of words. If
X is a set of ordered pairs of words then XΣ = {(U, V ) | (U, V ) or (V, U) ∈ X}.

The special case when I = {1, . . . , n}, mij = 3 when |i− j| = 1 and mij = 2 when
|i− j| ≥ 2 is the singular Artin monoid of type An and may be familiar to some readers
as the singular braid monoid on n + 1 strings, denoted SBn+1, which was introduced by
Baez and Birman in [2] and [4] respectively. We say M is right-angled if mij = {2,∞}
for i, j ∈ I; and M = I2(p) whenever I = {1, 2} and m12 = p for some p ≥ 3.

IfA andB are words in the above generators, we writeA ≈ B ifA can be transformed
into B by the use of the set of defining relations of SGM , and A = B if the two words
are equal letter by letter.

We define the positive singular Artin monoid, denoted by SG+
M , to be the monoid

generated by S∪T and the set R of defining relations comprised of both R1 and R2 listed
above. Where it does not cause confusion, elements of GM , G+

M , SGM and SG+
M may be

referred to by words which represent them. If A and B are words in the generators S and
T , we write A ∼ B if A can be transformed into B by the use of the set R of defining
relations. Theorems 1.1 (1) and (2) below are proved in [13] and [6] respectively:

Theorem 1.1. (1) Let A, B be words over S such that A ≈ B. Then A ∼ B.

(2) Assume M is of finite type and let A, B be words over S ∪ T such that A ≈ B.
Then A ∼ B.

We denote by `(A) the length of any wordA over S∪T . It is easy to see, by inspection
of the defining relations, that SG+

M is homogeneous. We define the reduction property as
in page 258 of [6]. By Lemma 15 of [6], cancellation and the reduction property hold in
SG+

M . By reduction we mean an application of the reduction property.
Let A and B be words in (S ∪ T )∗. We say A divides B or B is a multiple of A if

there exists a word X in SG+
M such that B ∼ AX in which case we write A ≺ B. We

say A right divides B, or B is a right multiple of A, if there is a word X in SG+
M such

that B ∼ XA in which case we write B � A.
Let Ω = {A1, A2, . . . , Ak} be a set of words in (S ∪ T )∗. If Ω has a common

multiple then by Corollary 13 of [6], Ω has a least common multiple (unique up to
equivalence) which we denote by lcm(A1, A2, . . . , Ak) or lcm(Ω). By homogeneity,
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lcm(Ω) when it exists has minimal length. If Ω has no common multiple then we write
lcm(A1, A2, . . . , Ak) = ∞.

Define a map ϕ from SGM to the group algebra Z[GM ] induced by

σ±1
i 7→ σ±1

i , τi 7→ σ2
i + 1 for i ∈ I .

Then ϕ is easily verified to be a monoid homomorphism.
In Section 2, the Vassiliev homomorphism η is defined, we state Birman’s conjecture

and show that η may be replaced (up to composition) with the simpler homomorphism
ϕ. Moreover, for finite type M , we show that if ϕ is injective on SG+

M then Birman’s
conjecture is true for SGM ; this is followed by some observations regarding ϕ. In Section
3, we study the relationship between divisibility in SG+

M and the support of ϕ. In partic-
ular, we deduce that if U , V ∈ SG+

M , C ∈ G+
M and ϕ(U) = ϕ(V ) then C divides U if

and only if C divides V . Furthermore, we obtain that in SG+
M , ϕ is injective on pairs of

words for which a common multiple exists. In Section 4, we prove that ϕ preserves the
Intermediate Property which holds in SG+

M ; namely, if ϕ(τiU) = ϕ(τiV ) then mij = 2
or i = j. From this it follows that ϕ is injective for some classes of monoids one of which
includes singular Artin monoids of type I2(p) generalising a result of East [7]. Finally, in
Section 5, we discover that when M is of any (not necessarily finite) type, SG+

M injects
into SGM extending Theorem 1.1(2).

2 Birman’s conjecture
The map η from SBn+1 to the group algebra Z[Bn+1] induced by

σ±1
i 7→ σ±1

i , τi 7→ σi − σ−1
i

is easily verified to be a monoid homomorphism; η is sometimes referred to as the Vas-
siliev homomorphism [15] or desingularisation map [14]. In Remark 1 of [4], Birman
conjectured that η is faithful, so that the singular braid monoid embeds into the group
algebra of the braid group. In [14], Paris proved the truth of the conjecture. In Remark 25
of [6], Corran observed that Birman’s conjecture generalises to arbitrary Artin types since
the Vassiliev homomorphism, η, from any singular Artin monoid to the group algebra
of the corresponding Artin group is well defined by the above rule. In effect, Birman’s
conjecture was shown to hold when M = I2(p) and M is right-angled in [7] and [10]
respectively. Thus we may conjecture the following:

Conjecture 1. The Vassiliev homomorphism η : SGM −→ Z[GM ] is faithful, so that the
singular Artin monoid embeds into the group algebra of the Artin group.

We write X = Y if X and Y are equal elements of Im(η) which should not cause
confusion with our use of equality for words.

For every i ∈ I let δi = σiτi, and put T ′ = {δi | i ∈ I}. In [14], Paris observed that
SGM is generated as a monoid by S ∪ S−1 ∪ T ′ and admits a monoid presentation with
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relations: R1; the free group relations; and the relations listed below, which are just R2

with τ replaced by δ:

δiσi = σiδi for all i ∈ I ,

δi〈σjσi〉
mij−1 =

{

〈σjσi〉mij−1δj if mij <∞ and is odd, or
〈σjσi〉

mij−1δi if mij <∞ and is even,

δiδj = δjδi if mij = 2.

Thus the mapping σ±1
i 7→ σ±1

i , τi 7→ δi for i ∈ I induces an isomorphism µ : SGM →
SGM , σ±1

i 7→ σ±1
i , τi 7→ δi. Furthermore, the Vassiliev homomorphism η : SGM →

Z[GM ] is determined by

η(σ±1
i ) = σ±1

i , η(δi) = σ2
i − 1 for i ∈ I.

The following Lemma 2.1 tells us that (up to composition) η may be replaced with the
simpler homomorphism ϕ. The proof of the lemma employs Lemma 1(1) of [11]; there it
is proved only for type An, but the argument is the same for any M .

Lemma 2.1. η is injective precisely when ϕ is injective, and for any elements A, B of
SGM ,

ϕ(A) = ϕ(B) if and only if η(µ(A)) = η(µ(B)).

Proof : Define the homomorphism, introduced in [11], ψ : SGM → Z[GM ] by ψ(σ±1
i ) =

σ±1
i and ψ(τi) = σi + σ−1

i . Notice that for every i ∈ I ,

ϕ(σ±1
i ) = σ±1

i and ϕ(τi) = ψ(δi),

so that ϕ = ψµ. Moreover, by Lemma 1(1) of [11],

η(A) = η(B) ⇔ ψ(A) = ψ(B),

and the result now follows readily. 2

Define the homomorphism ϕ from SG+
M to Z[G+

M ] by

ϕ : σi 7→ σi, τi 7→ σ2
i + 1 i ∈ I.

Thus we may conjecture the following:

Conjecture 2. ϕ : SG+
M → Z[G+

M ] is injective.

Observation 1 below tells us that Conjecture 2 implies Conjecture 1 whenever M is
of finite type.

Let U be any word over S∪S−1∪T also regarded as an element of SGM . A summand
of ϕ(U) is any word over S ∪ S−1 obtained by replacing any given instance of τ by σ2

or 1. The support of ϕ(U) is the set of summands of ϕ(U). For example, in type A2,
ϕ(τ1σ2τ1) has summands σ2

1σ2σ
2
1 , σ2σ

2
1 , σ2

1σ2 and σ2.
The ensuing result is a consequence of Theorem 1.1(1):
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Corollary 2.2. Let U , V be words over S∪T , regarded alternatively as elements of SGM

and SG+
M , such that ϕ(U) = ϕ(V ). Then ϕ(U) = ϕ(V ).

Proof : Let F be any summand of ϕ(U). Then F is a word over S, and there exists an
element F ′ in the support of ϕ(V ) such that F ≈ F ′. Since F ′ is also over S, Theorem
1.1(1) gives F ∼ F ′. Hence, for every element F in the support of ϕ(U) there is a corre-
sponding summand F ′ of ϕ(V ) such that F ∼ F ′. By regarding U and V also as elements
of SG+

M , we infer that ϕ(U) = ϕ(V ) as required. 2

Define a map + from (S ∪ T )∗ to S∗ by + : σi 7→ σi, τi 7→ σ2
i , for every i ∈ I . Then

it is easily verified that + induces a homomorphism : SG+
M → G+

M .

Remark 1. Whenever U , V are elements of (S ∪ T )∗ with the same image under ϕ,
U+ ∼ V + as they both represent the unique monomial of maximal exponent sum of
ϕ(U) = ϕ(V ).

Let ∆ = lcm(σ1, . . . , σn). Theorem 5.6 of [5] tells us that ∆ exists precisely when M
is of finite type, whilst by Section 5 of [6] the following holds:

Theorem 2.3. Let M be of finite type. For any word W over S∪S−1∪T1, where T1 ⊆ T ,
there exists a word W over S ∪ T1 and integer p such that W ≈ ∆pW .

Observation 1. Whenever M is of finite type, Conjecture 2 implies Conjecture 1.

Proof: Suppose M is of finite type, Conjecture 2 holds and that η(U) = η(V ) for some
words U and V in (S ∪ S−1 ∪ T ′)∗, where without causing confusion, we denote the
equivalence class of a word by the word itself. By noting that µ is an isomorphism, we
deduce the existence of words U ′, V ′ such that U = µ(U ′) and V = µ(V ′); thus,

η(µ(U ′)) = η(U) = η(V ) = η(µ(V ′)),

so by Lemma 2.1, ϕ(U ′) = ϕ(V ′). By Theorem 2.3, there exist integers p and q, and
words P , Q over S ∪ T such that U ′ ≈ ∆p P and V ′ ≈ ∆q Q. Hence there exist positive
integers k1, k2 and k such that

∆kU ′ ≈ ∆k1P and ∆kV ′ ≈ ∆k2Q. (2.1)

Thus (by recalling ∆ is over S),

ϕ(∆k1 P ) = ϕ(∆k U ′) = ϕ(∆kV ′) = ϕ(∆k2 Q).

But k1, k2 are positive integers and P , Q are over S ∪T , so by Corollary 2.2, ϕ(∆k1 P ) =
ϕ(∆k2 Q), whence ∆k1P ∼ ∆k2Q (since Conjecture 2 is assumed to be true). By (2.1), it
follows that ∆kU ′ ≈ ∆kV ′. By cancellation, U ′ ≈ V ′, and hence

U = µ(U ′) ≈ µ(V ′) = V

as required. 2
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3 Common divisors and the support of ϕ
The following Lemma 3.1 tells us common “factors” of elements of SGM with the same
image under ϕ may be “cancelled out”. The proof of the lemma employs Lemmas 1(1)
and 2 of [11]; there they are proved only for type An, but the proofs proceed unmodified
for any M .

Lemma 3.1. Let C, A and B be elements of SGM such that ϕ(CA) = ϕ(CB). Then
ϕ(A) = ϕ(B).

Proof : By Lemma 2.1,

η (µ(C)µ(A)) = η (µ(CA)) = η (µ(CB)) = η (µ(C)µ(B)) ,

whence η(µ(A)) = η(µ(B)) by Lemmas 1(1) and 2 of [11]. This implies that ϕ(A) =
ϕ(B), again by Lemma 2.1, as required. 2

Let U be any word over S ∪T , also regarded as an element of SG+
M . We call U prime

if there exists an s ∈ I such that σs 6≺ U . Let MU denote the summands of ϕ(U) that are
prime. For example, in type A2, ϕ(τ1σ2τ1) has summands σ2

1σ2σ
2
1 , σ2

1σ2, σ2σ
2
1 , σ2 and a

routine calculation shows

Mτ1σ2τ1 =
{

σ2
1σ2, σ2σ

2
1 , σ2

}

.

Lemma 3.2. Let U , V be words in (S ∪ T )∗, also regarded as elements of SG+
M , such

that ϕ(U) = ϕ(V ). For every summand F of ϕ(U) there is a corresponding summand G
of ϕ(V ) such that F ∼ G, and F ∈ MU if and only if G ∈ MV .

Proof : Let F be any element in the support of ϕ(U). Then there exists an element G in
the support of ϕ(V ) such that F ∼ G. Furthermore, if F ∈ MU , σi 6≺ F ∼ G for some
i ∈ I; this implies that G is prime and so must be an element of MV . 2

Lemma 3.3 below is a preliminary result to Proposition 3.4.

Lemma 3.3. Let W be a word over S∪T , a ∈ I , and suppose σa 6≺ W . Then there exists
a word Z ∈ MW that is not divisible by σa.

Proof: We prove the result by induction on `(W ) which holds trivially if W is the empty
word. So assume W 6= 1, and as an inductive hypothesis, that the result holds for words
of length < `(W ). Then W = αrW1 for some word W1, r ∈ I and α = σ or τ .

Suppose first that r = a. Then σa 6≺ W = αaW1 gives α = τ , and since σa and
τa commute, σa 6≺ W1. By the inductive hypothesis, we infer the existence of a word
Y ∈ MW1

such that σa 6≺ Y . Notice that since W = τaW1, Y is also an element of MW .
Putting Z = Y thus gives the desired result.

Assume then that mra ≥ 2. There exists a word W2 and a largest integer q such that

W = αrW1 ∼ αr〈σaσr〉
qW2 and σc 6≺ W2, (3.1)
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where c = a if q is even and c = r if q is odd. By the inductive hypothesis, we deduce
the existence of a word Y in MW2

such that σc 6≺ Y . Observe that σa ≺ αr〈σaσr〉mra−1

whenever mra < ∞ and that σa 6≺ αrW1 = W ; this tells us that 0 ≤ q ≤ mra − 2. Put
Y ′ = λr〈σaσr〉qY where λr = σ2

r if α = τ and λr = σr if α = σ. Then Y ′ is clearly
a summand of ϕ (αr〈σaσr〉qW2). Furthermore, if σa were to divide Y ′, reduction would
show that σc divides Y which would contradict that σc 6≺ Y . This implies σa 6≺ Y ′,
so Y ′ ∈ Mαr〈σaσr〉qW2

. Certainly ϕ(W ) = ϕ(αr〈σaσr〉qW2), where by (3.1), W and
αr〈σaσr〉qW2 are regarded as (the same) elements of SG+

M . By Lemma 3.2, we deduce
that σa 6≺ Y ′ ∼ Z for some word Z ∈ MW as required, and the result follows by
induction. 2

Proposition 3.4. Let U , V be words in (S∪T )∗, also regarded as elements of SGM , such
that ϕ(U) = ϕ(V ), and let C be any word over S. Then C divides U if and only if C
divides V .

Proof : We first prove the “only if ” part of the result. By Corollary 2.2, ϕ(U) = ϕ(V ).
Let s ∈ I and suppose that σs ≺ U yet σs 6≺ V . Then U ∼ σsU1 for some word U1, and
by Lemma 3.3, there exists a word X ∈ MV such that σs 6≺ X . By Lemma 3.2, we infer
the existence of a word Y ∈ MσsU1

such that X ∼ Y . But Y is a summand of ϕ(σsU1),
whence Y = σsY

′ for some word Y ′ in the support of ϕ(U1). Thus σs 6≺ X ∼ Y = σsY
′,

a contradiction; so σs ≺ U only if σs ≺ V . This proves the result for `(C) = 1, and
by noting that it holds trivially for `(C) = 0, starts an induction. So assume that C di-
vides U and `(C) ≥ 2. Then there exists a letter a in S and non-empty word C1 over
S such that C = C1a and U ∼ C1aU1 for some word U1 over S ∪ T . By the inductive
hypothesis, we derive the existence of a word V1 over S ∪ T , such that V ∼ C1V1. Thus,
ϕ(C1aU1) = ϕ(U) = ϕ(V ) = ϕ(C1V1), whence ϕ(aU1) = ϕ(V1) by Lemma 3.1, so that
a divides V1. Hence C = C1a also divides V ∼ C1V1 as required, and the result for any
`(C) follows by induction. Swapping the roles of U and V in the preceding argument
gives the “if” part of the claim. 2

The proof of the following result proceeds identically to that of Proposition 2.1 of [1]:

Lemma 3.5. Let j ∈ I and W any word in (S ∪ T )∗ such that lcm(τj,W ) exists. Then
σj divides W+ precisely when either σj or τj divides W .

Lemma 3.6. Let U , V be words in (S ∪ T )∗ also regarded as elements of SG+
M such that

ϕ(U) = ϕ(V ). Suppose τj divides U and lcm(τj, V ) exists. Then either σj or τj is a
common divisor of U and V .

Proof : We have σj ≺ U+ ∼ V +, so by Lemma 3.5, we infer that V ∼ αjV
′ for some

word V ′ over S ∪ T , α = σ or τ . If α = τ , it is evident that τj is a common divisor of U
and V ; whilst if α = σ then by Proposition 3.4 we see that σj also divides U and hence is
a common divisor of U and V . 2
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Define monoid homomorphisms ε and N from SGM to (Z, +) by

ε : σi
±1 7→ ±1, τi 7→ 0, N : σ±1

i 7→ 0, τi 7→ 1 for i ∈ I.

So ε(A) is the exponent sum of sigmas and N (A) counts the number of singularities (taus)
of any word A in SGM .

Lemma 3.7. Let U and V be words over S∪T regarded as elements of SGM , and suppose
ϕ(U) = ϕ(V ). Then `(U) = `(V ) and N (U) = N (V ).

Proof : By Corollary 2.2, ϕ(U) = ϕ(V ), whence U+ ∼ V +. Thus

ε(U) + 2N (U) = `(U+) = `(V +) = ε(V ) + 2N (V ). (3.2)

Notice that for every word A over S ∪ T there is a unique monomial, represented by A−,
obtained by replacing each τi by 1, in the support of ϕ(A) with minimal exponent sum
ε(A). Then since ϕ(U) = ϕ(V ), it follows that U− ∼ V − which gives

ε(U) = `(U−) = `(V −) = ε(V ). (3.3)

By (3.2) and (3.3), we infer that N (U) = N (V ), whence

`(U) = ε(U) + N (U) = ε(V ) + N (V ) = `(V )

as required. 2

Theorem 3.8. Over S ∪ T , ϕ is injective on pairs of words for which a common multiple
exists.

Proof : Let U , V be words in (S ∪ T )∗ such that ϕ(U) = ϕ(V ) and lcm(U, V ) exists.
We show U ∼ V by induction on `(U). By Corollary 2.2, ϕ(U) = ϕ(V ). If U is the
empty word, there is nothing to show, so suppose `(U) ≥ 1. If τj ≺ U then either σj

or τj is a common divisor of U and V by Lemma 3.6; whilst if σj ≺ U then σj also
divides V by Proposition 3.4. In either case we see that U ∼ αjU

′ and V ∼ αjV
′ for

some words U ′, V ′ and α = σ or τ . By Lemma 3.1, this implies that ϕ(U ′) = ϕ(V ′),
and since lcm(αjU

′, αjV
′) ∼ lcm(U, V ) 6= ∞, we obtain that lcm(U ′, V ′) also exists. By

the inductive hypothesis, we deduce that U ′ ∼ V ′, whence U ∼ αjU
′ ∼ αjV

′ ∼ V as
required, and the result now follows by induction. 2

4 The Intermediate Lemma
In this section we prove that the Intermediate Property – discovered in Intermediate
Lemma of [6] and expressed in Lemma 4.1 below – is preserved under ϕ. As a corol-
lary we deduce that ϕ is injective for a class of monoids which include singular Artin
monoids of type I2(p).



9

Lemma 4.1. Let U , V be words in (S∪T )∗ such that τiU ∼ τjV . Then i = j or mij = 2.

The ensuing Lemma 4.2 is a preliminary result to Theorem 4.3 below.

Lemma 4.2. Let F , G ∈ (S ∪ T )∗, i, j ∈ I , and suppose σj 6≺ σ2
i F ∼ G. Then either

σi 6≺ σ2
jG or mij = 2.

Proof: Cleary mij ≥ 2 since σj 6≺ σ2
i F . So suppose mij ≥ 3 yet σ2

jG ∼ σiH for some
word H . By reduction, σi ≺ σjG, which gives by another reduction, G ∼ 〈σiσj〉mij−1G′

for some word G′. Thus,

σ2
i F ∼ G ∼ 〈σiσj〉

mij−1G′ = σi〈σjσi〉
mij−2G′.

By noting that mij ≥ 3, cancellation applied to the preceding equivalence shows that
σj ≺ σiF , so by reduction,

F ∼ 〈σjσi〉
mij−1F1 (4.1)

for some word F1. Put c = j if mij is odd and c = i if mij is even. Then

σj ≺ 〈σjσi〉
mij−1σ2

cF1 ∼ σ2
i 〈σjσi〉

mij−1F1 ∼ σ2
i F

by (4.1), and this contradicts the hypothesis. 2

Theorem 4.3. Let U = τiU1, V = τjV1 be words in (S ∪ T )∗, also regarded as elements
of SGM , such that ϕ(U) = ϕ(V ). Then i = j or mij = 2.

Proof : Suppose U = τiU1 and V = τjV1 provide a counterexample. That is, ϕ(τiU1) =
ϕ(τjV1) but mij ≥ 3. Suppose further that this counterexample is minimal with respect
to `(U) which by Lemma 3.7 is equal to `(V ). Then `(U) ≥ 2, since `(U) = `(V ) = 1
gives σ2

i + 1 = ϕ(U) = ϕ(V ) = σ2
j + 1 and shows i = j. We first prove that V = τjV1 is

not divisible by σj . Suppose, by way of contradiction, that it is. Reduction yields a word
P such that V1 ∼ σjP , and by recalling that ϕ(U) = ϕ(V ), Proposition 3.4 implies that
σj also divides U = τiU1, so by reduction again, U1 ∼ 〈σjσi〉mij−1Q for some word Q.
Put C = 〈σjσi〉mij−1. Then

U = τiU1 ∼ τiCQ ∼ CτdQ (4.2)

where d = j if mij is odd and d = i if mij is even. Since C is over S, Proposition 3.4
may be applied and this shows that

C = σj〈σiσj〉
mij−2 ≺ V ∼ τjσjP ∼ σjτjP.

By recalling that mij ≥ 3, we deduce (after cancelling) that σi ≺ τjP , so by reduction,
P ∼ 〈σiσj〉mij−1P ′ for some word P ′ over S ∪ T . Thus,

V ∼ σjτjP ∼ σjτj〈σiσj〉
mij−1P ′ ∼ σj〈σiσj〉

mij−1τcP
′

∼ 〈σjσi〉
mij−1σdτcP

′

= CσdτcP
′,
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where mcd ≥ 3 (since {c, d} = {i, j}). When combined with (4.2), this implies

ϕ(CσdτcP
′) = ϕ(V ) = ϕ(U) = ϕ(CτdQ),

so by Lemma 3.1, ϕ(σdτcP
′) = ϕ(τdQ). By invoking Proposition 3.4 again, we infer that

σd divides τdQ, and by reduction, this yields a word Q′ such that Q ∼ σdQ
′. Hence

ϕ(σdτcP
′) = ϕ(τdQ) = ϕ(τdσdQ

′) = ϕ(σdτdQ
′)

so by Lemma 3.1 again, ϕ(τcP
′) = ϕ(τdQ

′), and mcd ≥ 3. Since `(V ) > `(τcP
′), this

contradicts the minimality of `(U) = `(V ). Thus σj 6≺ V , and so by a final application
of Proposition 3.4, we deduce that σj 6≺ U . Observe that ϕ(U) = ϕ(V ) by Corollary 2.2.
Now let F be an element of MU such that σj 6≺ F , the existence of which is assured by
Lemma 3.3. Assume further that `(F ) is maximal; that is,

if σj 6≺ F ′ and F ′ ∈ MU then `(F ′) ≤ `(F ). (4.3)

By noting that U = τiU1, we infer the existence of a summand F1 of ϕ(U1) such that
either F = σ2

i F1 or F = F1. Suppose that F = F1, and put F ′ = σ2
i F1. Then F ′ is

clearly an element in the support of ϕ(U) and `(F ′) > `(F ). By (4.3), we deduce that
σj ≺ σ2

i F1. Since mij ≥ 3, the reduction property implies that σj divides F1 = F , which
contradicts that σj 6≺ F . This shows that F = σ2

i F1. By Lemma 3.2, there exists a word
G ∈ MV such that F ∼ G. By recalling V = τjV1, we deduce that either G = σ2

jG1 or
G = G1, for some wordG1 in the support of ϕ(V1). The first possibility must be excluded
since σj 6≺ F ∼ G, so G = G1. Thus,

σj 6≺ σ2
i F1 = F ∼ G = G1 and G1 ∈ MV1

. (4.4)

Put G′ = σ2
jG1, and note that it is a summand of ϕ(V ) = ϕ(τjV1). By Lemma 4.2,

σi 6≺ G′, so G′ is an element of MV . By Lemma 3.2, G′ ∼ F ′ for some word F ′ ∈ MU ,
and by (4.4), `(G′) = 2 + `(G1) = 2 + `(F ). Hence

σi 6≺ σ2
jG1 = G′ ∼ F ′, F ′ ∈ MU and `(F ′) = 2 + `(F ). (4.5)

Since F ′ is a summand of ϕ(U) = ϕ(τiU1), we infer the existence of a word F2 in the
support of U1 such that either F ′ = σ2

i F2 or F ′ = F2. As the first possibility evidently
contradicts (4.5), we deduce that F ′ = F2. Put F ′′ = σ2

i F2, and note that it is a summand
of ϕ(τiU1) = ϕ(U). By Lemma 4.2 and (4.5), σj 6≺ σ2

i F
′ = F ′′, whence the latter word is

an element of MU . When combined with (4.3), this implies that `(F ′′) ≤ `(F ). However,
F ′′ = σ2

i F2 = σ2
i F

′, so by (4.5),

`(F ′′) = 2 + `(F ′) = 4 + `(F ),

a contradiction. 2

Fix i, j ∈ I such that mij ≥ 3. Let Tij and T+
ij denote the sets of equivalence classes

of words in (S ∪ S−1 ∪ {τi, τj})
∗ and (S ∪ {τi, τj})

∗ under ≈ and ∼ respectively. Then
Tij and T+

ij are both submonoids of SGM and SG+
M respectively.
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Corollary 4.4. The restriction of ϕ from T+
ij to the group algebra Z[G+

M ] is injective. In
particular, the desingularisation map η : SGI2(p) → Z[GI2(p)] is injective.

Proof: Suppose thatU , V in (S∪{τi, τj})
∗ provide a counterexample. That is, assume that

U 6∼ V yet ϕ(U) = ϕ(V ). Note that trivially ϕ(U) = ϕ(V ) where U , V are also regarded
as elements of SGM . Suppose further that this counterexample is minimal with respect
to `(U) which, by Lemma 3.7, is the same as `(V ). Certainly `(U) ≥ 2. If U ∼ CU ′,
V ∼ CV ′ for some non-empty word C then ϕ(U ′) = ϕ(V ′) by Lemma 3.1 and Corollary
2.2, U ′ 6∼ V ′, `(U ′) < `(U), and hence the minimality of `(U) is contradicted. Thus U ,
V have no common divisor from which we infer, by Proposition 3.4, that U and V are not
divisible by any generator from S. This tells us that U = τrU1 and V = τsV1 for some
words U1, V1 in T+

ij and generators τr, τs ∈ {τi, τj}. Since mij ≥ 3, we deduce from
Theorem 4.3 that r = s, so τr is a common divisor of U and V . This is a contradiction
since U and V have no non-trivial common divisor. By noting I2(p) is of finite type, the
last statement of the result follows by Observation 1, since T +

1 2 = SG+
I2(p). 2

5 Embedding SG+
M into SGM

Recall that in [13], Paris discovered that all positive monoids inject into their groups
(Theorem 1.1(1)), whilst in [6], Corran showed that SG+

M embeds into SGM whenever
M is of finite type (Theorem 1.1(2)). It would thus seem natural to ask whether the latter
result can be extended to all singular Artin monoids, which is what we derive in this
section (Theorem 5.3).

Let U , V be words over S ∪ S−1 ∪ T . We say U and V differ by an elementary
transformation if there are words X and Y and a relation (ρ1, ρ2) ∈ RΣ such that V =
Xρ1Y and U = Xρ2Y . We say that a word V is obtained from U by a trivial insertion if
there are words X , Y and a letter a ∈ S ∪ S−1 such that U = XY and V = Xaa−1Y . In
this case we also say that U is obtained from V by a trivial deletion.

The reader is reminded of the monoid homomorphsimN from SGM to (Z,+) defined
by σ±1

i 7→ 0, τi 7→ 1. Thus N counts the number of taus in any given word. Now let W
be a word over S ∪S−1 ∪T , and suppose N (W ) = k ≥ 1. Then there are words Wi over
S ∪ S−1 and generators τai

∈ T such that

W = W0τa1
W1τa2

W2 . . .Wk−1τak
Wk.

For r = 1, . . . , k, let

θr(W ) = W0τa1
W1 . . .Wr−2τar−1

Wr−1σar
Wrτar+1

Wr+1 . . .Wk−1τak
Wk;

hence θr reduces the number of taus of W by 1.

Lemma 5.1. Let W , V be equivalent words over S∪S−1∪T , and suppose N (W ) = k ≥
1. Then for every r ∈ {1, . . . , k} there exists s ∈ {1, . . . k} such that θr(W ) ≈ θs(V ).
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Proof : Let r be any integer such that 1 ≤ r ≤ k. Since W ≈ V there is a sequence
Z1, . . . Zt of words over S ∪ S−1 ∪ T such that W = Z1 ≈ Z2 ≈ . . . ≈ Zt = V and Zi+1

is obtained from Zi by an elementary transformation or by a trivial insertion or deletion.
If t = 1, the result is trivial and hence starts an induction. So suppose t is at least 2. If Z1

and Z2 differ by an elementary transformation, inspection of R gives θr(Z1) ≈ θr(Z2)
if the relation involves any σ and either θr(Z1) ≈ θr+1(Z2), θr(Z2) or θr−1(Z2) if the
relation involves commuting τ ’s; whilst if Z2 is obtained from Z1 by a trivial insertion or
deletion, it is evident that θr(Z1) ≈ θr(Z2). By the inductive hypothesis, we deduce that
θr(Z2) ≈ θs(Zt) for some s ∈ {1, . . . , k}, whence

θr(W ) = θr(Z1) ≈ θr(Z2) ≈ θs(Zt) = θs(V )

as required. The result now follows by induction. 2

In [8], it was shown that the singular braid monoid on n+1 strings (that is, the singular
Artin monoid of type An) can be embedded in a group. The group constructed by the
authors relies heavily on the geometry of singular braids in space; more specifically, it has
a geometric interpretation as singular braids with two types of (cancelling) singularities.
By employing purely algebraic methods, Paris [14] gave another proof of the fact that
singular braid monoids inject into groups. In effect, all singular Artin monoids embed into
groups. This was shown (chronologically and with completely different proofs) in [3],
[12] and [10]. An evident corollory of the fact that SGM injects into a group is that left
and right cancellation hold in SGM ; namely,

Proposition 5.2. Let C, W , V be words over S ∪ S−1 ∪ T such that either CW ≈ CV

or WC ≈ V C. Then W ≈ V . 1

Theorem 5.3. Let W , V be words over S ∪ T such that W ≈ V . Then W ∼ V .

Proof : Put k = N (W ). If k = 0, the result follows by Theorem 1.1(1) and starts an
induction. So assume k ≥ 1. Certainly ϕ(W ) = ϕ(V ). Suppose lcm(W,V ) = ∞. But
W ∼ CW ′, V ∼ CV ′ for some words C, W ′ and V ′ over S ∪ T , such that W ′, V ′ have
no (non-trivial) common divisor. Thus lcm(W ′, V ′) = ∞ and

CW ′ ∼ W ≈ V ∼ CV ′,

so by Proposition 5.2, W ′ ≈ V ′; this implies ϕ(W ′) = ϕ(V ′), and by Corollary 2.2,
ϕ(W ′) = ϕ(V ′). Since W ′ and V ′ have no common divisor, Proposition 3.4 yields

W ′ = τiW
′′, V ′ = τjV

′′

for some distinct i, j ∈ I and words W ′′, V ′′ over S∪T . By Theorem 4.3, mij = 2 (since
i 6= j), whilst Lemma 3.6 gives

lcm(τj,W
′) = ∞. (5.1)

1The reader is referred to Proposition 5.1 of [9] for a (geometric) demonstration of this result, when
M = An, without invoking the embedding of (SBn+1 =) SGAn

into a group.
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But τiW ′′ = W ′ ≈ V ′ = τjV
′′, so by Lemma 5.1,

σiW
′′ = θ1(τiW

′′) ≈ θr(τjV
′′) for some r ∈ {1, . . . , k}.

The inductive hypothesis now tells us that σiW
′′ ∼ θr(τjV

′′), whence

σiW
′′ ∼

{

σjV
′′ if r = 1,

τj θr−1(V
′′) if 2 ≤ r ≤ k.

If σiW
′′ ∼ σjV

′′, reduction implies that σj ≺ W ′′, so by noting that mij = 2, τi
and σj commute, whence σj ≺ τiW

′′ = W ′; Proposition 3.4 can now be invoked
to deduce that W ′ and V ′ have a non-trivial common divisor, a contradiction. Hence
σiW

′′ ∼ τjθr−1(V
′′). By recalling that mij = 2, another application of reduction gives

τj ≺ W ′′, so that τj ≺ τiW
′′ = W ′; this clearly contradicts (5.1). Thus lcm(W,V ) exists,

so W ∼ V by Theorem 3.8, and the result follows by induction. 2
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