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Abstract.
We generalize the symmetric fourth q-Painlevé equation (q-PIV) to the noncommutative setting.
Considering the symmetric q-PIV to be matrix valued, well-defined multicomponent systems are
obtained. The ultradiscrete limit of these systems yields coupled multicomponent ultradiscrete
systems that generalize ultradiscrete PIV. The dynamics, and specifically the integrability, of the
newly introduced multicomponent ultradiscrete systems is studied.
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1. Introduction

Cellular automata are discrete dynamical systems that are capable of exhibiting a vast array of

behavior, even when the rules defining their evolution are very simple. They have been studied for

their own sake, for modelling physical phenomena (such as hydrodynamics), and even speculated

by luminaries such as R. P. Feynman [4], J. A. Wheeler [23] and G. ‘t Hooft [8] to underlie

fundamental physical processes.

A recent development in this field is the study of ultradiscrete equations, which may be

considered as extended cellular automata in that they may exhibit an infinite number of states

(they may also be considered as piecewise linear systems). From its inception, the process of

ultradiscretization facilitated the derivation of integrable cellular automata (and piecewise linear

systems) from discrete integrable systems [22]. This led to many more examples of integrable

cellular automata and gave considerable impetus to further investigation of the integrable

behavior of such systems.

All of the preceding examples arising from ultradiscretization are one-component systems.

Motivated by the need for such systems to model fundamental physical phenomena, the present

work gives the first example of a multicomponent system. The system derived here is a

multicomponent generalization of ultradiscrete PIV, an equation that was derived in [11] by

applying the ultradiscretization procedure to q-PIV,

f0(qt) = a0a1f1(t)
1+a2f2(t)+a2a0f2(t)f0(t)
1+a0f0(t)+a0a1f0(t)f1(t)

f1(qt) = a1a2f2(t)
1+a0f0(t)+a0a1f0(t)f1(t)
1+a1f1(t)+a1a2f1(t)f2(t)

f2(qt) = a1a2f0(t)
1+a1f1(t)+a1a2f1(t)f2(t)
1+a2f2(t)+a0a2f0(t)f2(t)

,

(1.1)
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a q-difference analogue of the fourth equation in the Painlevé classification of nonlinear ODEs

[17].

The reason for choosing q-PIV is that it has already been thoroughly and expertly

investigated in the one-component case [11].

By way of background it should be stated that discrete Painlevé equations are discrete

dynamical systems that are related to the original equations of Painlevé [17] through some

limiting process [20]. One way in which these systems are considered integrable is that they

possess Lax pairs [18] (which have also been given recently for ultradiscrete Painlevé equations,

[9], [10]). The notion of a Lax pair allows the notion of integrability to be extended to ODEs

and PDEs over an associative algebra, and, hence, to classes of multicomponent systems.

Before turning to the derivation of multicomponent q-PIV, ultradiscretization should be

introduced in more detail, so that the reason for certain constraints given later will be clear.

Ultradiscretization is a limiting process that was first used to draw a connection between

integrable cellular automata and integrable difference equations [22]. The process is a way of

bringing a rational expression, f , in variables (or parameters) a1, . . . , an to a new expression, F ,

in new ultradiscrete variables A1, . . . , An, that are related to the old variables via the relation

ai = eAi/ε and limiting process

F (A1, . . . , An) = lim
ε→0

ε log f(a1, . . . , an). (1.2)

In general it is sufficient to make the following correspondences between binary operations

a + b → max(A,B)

ab → A + B

a/b → A−B.

(1.3)

This process is a way in which we may take an integrable mapping over the positive real

numbers R+ to an integrable mapping over the max-plus semiring [7]. The requirement that

the pre-ultradiscrete equations are subtraction free expressions of a definite sign is a more

stringent restraint in the multicomponent setting than the one-component setting, and it is

this requirement which motivates the particular form of the multicomponent system.

Recently the idea of a Lax formalism has been extended to the realm of semirings, in which

the Lax pairs are elements of a semialgebra [10]. This Lax formalism allows us to extend the

notion of integrability to systems defined over an associative semialgebra.

The outline of this paper is as follows. In section 2, q-PIV is derived in the noncommutative

setting, where the dependent variables take their values in an associative algebra. An important

case is the matrix algebra, and in section 3 conditions on the matrix forms of the dependent

variables and parameters of q-PIV are derived such that it has a well-defined evolution and is

ultradiscretizable. In section 4 the ultradiscrete version of this system is derived, and some of the

rich phenomenology of multicomponent ultradiscrete PIV is displayed and analyzed in section 5.

2. Symmetric q-PIV on an associative algebra

In this section it is shown that the symmetric q-PIV of [11] can be derived from a Lax formalism

in the noncommutative setting, where the dependent variables {fi} take values in an a priori
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arbitrary associative algebra, A, with unit I over a field K (when we turn to ultradiscretization,

the requirement of a field will be modified, but not in such a way as to affect the derivation

from a Lax pair). This puts the present work in the context of other recent work on integrable

systems such as [14] and [15] where the structure of integrable ODEs and PDEs (respectively)

was extended to the domain of associative algebras, and [1] where Painlevé equations were

defined on an associative algebra (see also [15]). This trend has also been present in work on

discrete integrable systems, such as [2] where the higher dimensional consistency (consistency

around a cube) property was investigated for integrable partial difference equations defined on

an associative algebra, and [5] where an initial value problem on the lattice KdV with dependent

variables taking values in an associative algebra was studied, leading to exact solutions.

The auxiliary (spectral) parameter x, time variable t and constant q belong to the field K.

The dependent variables {fi} ∈ A, system parameters {bi} ∈ A (i ∈ {0, 1, 2}), and we define

Γi := I + b3
i fi + b3

i b
3
i+1fifi+1, (2.1)

up to an arbitrary ordering of the b3
j and fj factors. (It will be shown that the ordering of these

factors within Γi is of no consequence for either the integrability of the system or the existence

of a well defined evolution in the ultradiscrete limit.) The invertibility of these expressions is

assumed, that is Γ−1
i ∈ A.

We derive the system from a linear problem to settle other ordering issues in the

noncommutative setting. The q-type Lax formalism is given by

φ(qx, t) = L(x, t)φ(x, t) , φ(x, qt) = M(x, t)φ(x, t) (2.2)

where

L(x, t) =




(1 + x2)I b0f0t
− 2

3 0

0 (1 + x2)I b1f1t
− 2

3

b2f2t
− 2

3 0 (1 + x2)I


 (2.3a)

M(x, t) =




0 b−2
2 Γ2 0

0 0 b−2
0 Γ0

b−2
1 Γ1 0 0


 . (2.3b)

The ultradiscrete version of this linear problem (for the usual commutative case) originally

appeared in [10].

The compatibility condition for this linear problem reads

M(qx, t)L(x, t) = L(x, qt)M(x, t), (2.4)

and leads to

b0 f 0 = q2/3 b−2
2 Γ2 b1 f1 Γ−1

0 b2
0,

b1 f 1 = q2/3 b−2
0 Γ0 b2 f2 Γ−1

1 b2
1,

b2 f 2 = q2/3 b−2
1 Γ1 b0 f0 Γ−1

2 b2
2,

(2.5)

where the overline denotes a time-update and bi = bi.
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Following [11], we show a product of the dependent variables can be regarded as the

independent variable. With {f−1
i } ∈ A, {b−1

i } ∈ A (i.e., we are working with a skew field) and

specifying that the product b0f0b1f1b2f2 is proportional to I, it is seen that b0f0b1f1b2f2 = qc2I

where c ∈ K and c = qc. Without loss of generality we set c = t. From now on

b0f0b1f1b2f2 = qt2I (2.6)

will be imposed (so the algebra generated by all three {fi} and I is not free). The invertibility

of the algebra elements {fi} and {bi} is a consequence of the explicit matrix representation of

these objects for the well-defined multicomponent systems studied in the next sections.

With the restriction

b3
0 b3

1 b3
2 = qI (2.7)

imposed, the map (2.5) is a noncommuting generalization of q-PIV.

If all variables commute, then after the change of variables ai := b3
i the map reduces to

q-PIV, (1.1), as presented in [11].

3. Multicomponent systems

The conditions (2.6) and (2.7) can be used in conjunction with (2.5) to give an evolution on A
as a free algebra with two constant (say b1 and b2) and two variable (say f1 and f2) generators.

Regarding these as N × N (or even infinite dimensional) matrices leads to multicomponent

systems. However, the aim of the present work is to derive multicomponent (or coupled)

ultradiscrete systems, and hence, as we require the expressions to be subtraction free, we have

considerably less freedom than this general setting.

Due to this restriction, we restrict ourselves to a special subgroup of A. Inspired by Flor’s,

[6], extension of Brown’s theorem, [3], that every maximal bounded group of non-negative

matrices is isomorphic to the symmetric group Sn (where n is the rank of the matrices in the

group) we take

A = Sn nKn (3.1)

where K will further be restricted to be R+ in models where we wish to perform

ultradiscretization. For our purposes Sn is realized as matrices of the form δiσ(j) for σ ∈ Sn.

We define the homomorphism π : A → A/Kn = Sn to be the homomorphism obtained as a

result of the above semidirect product. This allows us to more easily deduce the form of the

matrices {fi}, {bi}, that give a well-defined evolution.

Since A is a semidirect product, the elements bi and fi can be uniquely written in the form

bi = βi si

fi(t) = zi(t) zi,
(3.2)

where π(bi) = si ∈ Sn, π(fi(t)) = zi ∈ Sn, and βi and zi(t) are diagonal matrices containing the

n components of bi and fi(t) respectively (we leave the matrix representation implicit).

We now derive further restrictions on {si} and {zi} such that the evolution is consistent,

and all terms in the map (such as the Γi) remain in A, (3.1).
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Consider the following form of Γi,

Γi := I + b3
i fi + b3

i b
3
i+1fi+1fi. (3.3)

As π(I) = I, π(Γi) = I and this implies

s3
i zi = I i ∈ {0, 1, 2}. (3.4)

This is the only condition that arises from the requirement that Γi ∈ A, where A is given by

(3.1). It is immediately seen that condition (3.4) is independent of the ordering of the b3
i fi

term in Γi. There are 24 possible orderings of b3
i b

3
i+1fi+1fi (we do not consider the possibility of

splitting up the bi factors, as b3
i =: ai is the parameter in the commutative case [11]). Of these 24

possibilities, 8 also require the commutativity of s3
1 and s3

j (equivalently zi and zi+1). It is shown

in Appendix A that these additional commutativity relations do not change the restrictions on

{si} and {zi}. (That is, commutativity of s3
i and s3

j is a consequence of the full set of relations.)

Requiring the preservation of (3.2) as the variables evolve, the projection of (2.5) onto Sn,

with (3.4), gives

s4
i = s2

i+1s
2
i−1 i ∈ {0, 1, 2}. (3.5)

The projection of the constraints (2.6) and (2.7) onto Sn, with (3.4), gives

s2
2s

2
1s

2
0 = I (3.6)

and

s3
0s

3
1s

3
2 = I (3.7)

respectively.

Therefore, to give a consistent evolution that permits ultradiscretization, {si} are

homomorphic images of the group generators of

G = 〈g0, g1, g2 | g4
0 = g2

1g
2
2, g4

1 = g2
2g

2
0, g4

2 = g2
0g

2
1, g2

2g
2
1g

2
0 = 1, g3

0g
3
1g

3
2 = 1〉 (3.8)

in Sn; {zi} are given by (3.4). The group G has order 108. The order of the generators of G is

shown to be 18 in Appendix A.

4. Ultradiscretization

We now consider the ultradiscretization of the multicomponent systems derived in the previous

section. The components of the ultradiscretized systems belong to the max-plus semiring, S,

which is the set R∪{−∞} adjoined with the binary operations of max and + (often called tropical

addition and tropical multiplication). To map the pre-ultradiscrete expression to the max-plus

semiring, we may simply make the correspondences (1.3) on the level of the components. (So −∞
becomes the additive identity and 0 becomes the multiplicative identity.) By ultradiscretizing

matrix operations, we arrive at the following definitions of matrix operations over S. If A = (aij)
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and B = (bij), then following [19], we define tropical matrix addition and multiplication, ⊕ and

⊗, by the equations

(A⊕B)ij := max(aij, bij)

(A⊗B)ij := max
k

(aik + bkj)

along with a scalar operation given by

(λ⊗ A)ij := (λ + aij)

for all λ ∈ S. In the ultradiscrete limit 0 is mapped to −∞, and 1 is mapped to 0; hence the

identity matrix, I, is the matrix with 0s along the diagonal and −∞ in every other entry. In the

same way it is clear what happens to matrix realizations of members of Sn in the ultradiscrete

limit.

An ultradiscretized member of the group A, (3.1), has a decomposition of the form

D = ∆⊗ T

(cf. equation (3.2)) where ∆ has −∞ for all off-diagonal entries and T is an ultradiscretization

of an element of Sn. Its inverse is given by

D−1 = T−1 ⊗∆−1,

where (∆−1)ii ≡ −(∆)ii and all off-diagonal entries are −∞.

As well as the multicomponent map, the correspondence also allows us to easily write the

Lax pair over the semialgebra.

L(X,T ) =




max(0, 2X)⊗ I B0 ⊗ F0 ⊗−2T
3

−∞
−∞ max(0, 2X)⊗ I B1 ⊗ F1 ⊗−2T

3

B2 ⊗ F2 ⊗−2T
3

−∞ max(0, 2X)⊗ I


 (4.1a)

M(X,T ) =




−∞ B−2
2 ⊗ Γ2 −∞

−∞ −∞ B−2
0 ⊗ Γ0

B−2
1 ⊗ Γ1 −∞ −∞


 . (4.1b)

Where the ultradiscretization of Γi, as given in (2.1), is the matrix

Γi = I ⊕ (
B3

i ⊗ F 3
i

)⊕ (
B3

i ⊗B3
i+1 ⊗ Fi ⊗ Fi+1

)
. (4.2)

The compatibility condition reads

M(X + Q, T )⊗ L(X, T ) = L(X, T + Q)⊗M(X, T ), (4.3)

and gives the ultradiscrete equation over an associative S-algebra

B0 ⊗ F 0 = 2
3
Q⊗B−2

2 ⊗ Γ2 ⊗B1 ⊗ F1 ⊗ Γ−1
0 ⊗B2

0 ,

B1 ⊗ F 1 = 2
3
Q⊗B−2

0 ⊗ Γ0 ⊗B2 ⊗ F2 ⊗ Γ−1
1 ⊗B2

1 ,

B2 ⊗ F 2 = 2
3
Q⊗B−2

1 ⊗ Γ1 ⊗B0 ⊗ F0 ⊗ Γ−1
2 ⊗B2

2 .

(4.4)

The ultradiscrete version of the restrictions (2.6) and (2.7) are

B0 ⊗ F0 ⊗B1 ⊗ F1 ⊗B2 ⊗ F2 = (Q + 2T )⊗ I (4.5)
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Rank g0 g1 g2

1 1 1 1

2 (1, 2) (1, 2) 1

3 (1, 2, 3) (1, 2, 3) (1,2,3)

(1, 2, 3) (1, 3, 2) 1

4 (1, 2)(3, 4) (1, 3)(2, 4) (1, 4)(2, 3)

6 (1, 2, 3, 4, 5, 6) (1, 6, 5, 4, 3, 2) 1

(1, 2)(3, 4)(5, 6) (1, 3, 6)(2, 4, 5) (1, 5, 3, 2, 6, 4)

(1, 2, 3)(4, 5, 6) (1, 4, 3, 6, 2, 5) (1, 4, 3, 6, 2, 5)

Table 1. Lowest rank cases of homomorphic images of the generators of G in Sn.

and

B3
0 ⊗B3

1 ⊗B3
2 = Q⊗ I. (4.6)

(Of course, it would have been equally legitimate to apply the correspondence on the level of the

map (2.5) without starting from a derivation from the ultradiscretized Lax pair.)

It is easily seen that if 2Q/3, the parameter T , and all components of the map belong to Z
then at all time-steps all components (not formally equal to −∞) belong to Z. It is this property

which motivates the term ‘extended cellular automata’.

5. Phenomenology

As mentioned in the above discussion, we are required to find homomorphic images of the group

G in Sn. To do this, we use the computer algebra package Magma. The homomorphic images

of G in Sn give rise to reducible and irreducible subgroups, which in turn translate to reducible

and irreducible multicomponent systems. By definition, the reducible systems are decomposable

into irreducible systems, and hence we restrict our attention to the irreducible cases.

We may use any homomorphism to induce a group action of G onto a set of n objects. In

this manner, we may state by the orbit stabilizer theorem that the size of any orbit of G must

divide the order of the group. Since the group has order 108, this implies the irreducible images

of G be of sizes that divide 108. In terms of multicomponent systems, the implication is that

any irreducible multicomponent systems are of sizes that divide 108.

The lowest rank cases of the homomorphic images of the generators of G in Sn are given

in table 1 using the standard cycle notation for the symmetric group. The rank 1 case is well

understood [11]; hence we turn to the rank 2 case. For the examples presented here, we restrict

our attention to the ordering within the {Γi}, (4.2).

Typical behavior of the rank 2 map is shown in figure 1. The initial conditions and parameter

values in this case are

B0 =

(
−∞ 0

0 −∞

)
B1 =

(
−∞ 0

4
5

−∞

)
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F0 =

(
−∞ 0

0 −∞

)
F1 =

(
−∞ 0

0 −∞

)

where B2 and F2 are determined by the constraints, and Q = 1. For most initial conditions and

parameter values, the behavior has a similar level of visual complexity.

5 10 15 20

-20

-10

10

20

30

40

(a) F0: both components

5 10 15 20

-20

-10

10

20

30

40

(b) F1: both components

5 10 15 20

-10

10

20

30

40

(c) F2: both components

Figure 1. Generic behavior of the rank 2 case. Component values are plotted against time step
values.

It is a hallmark of the integrability of Painlevé systems that they possess special solutions

such as rational and hypergeometric functions [21]. A remarkable discovery of our numerical

investigations is that (4.4) displays special solution type behavior. These solutions only occur

for specific parameter values and initial conditions. One example of this comes at a surprisingly

close set of parameters and initial conditions to those displayed by figure 1. By setting the

parameters to be

B0 =

(
−∞ 0

0 −∞

)
B1 =

(
−∞ 0

3
5

−∞

)

with the same set of initial conditions, the behavior coalesces down to the much simpler form

shown in figure 2.

5 10 15 20

-10

10

20

30

(a) F0: both components

5 10 15 20

5

10

15

20

25

30

(b) F1: both components

5 10 15 20

-5

5

10

15

20

(c) F2: both components

Figure 2. Some special behavior of the rank 2 case.

The graphs of the single components in figure 2 strongly resemble the recently discovered

ultradiscrete hypergeometric functions of [16]. This implies that the special solution behavior

shown here may be parameterized by a higher-dimensional generalization of the ultradiscrete
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hypergeometric functions of [16]. We discuss this possibility further in section 6. Behavior

resembling rational solutions has also been observed in our computational investigations.

The typical behavior of the rank 3 map is shown in figure 3. The initial conditions and

parameter values are

B0 =



−∞ 1

5
−∞

−∞ −∞ 1
4

−3 −∞ −∞


 B1 =



−∞ −∞ 1

7
3
5

−∞ −∞
−∞ −1

2
−∞




F0 =




−2 −∞ −∞
−∞ 1 −∞
−∞ −∞ 3


 F1 =




−1
4

−∞ −∞
−∞ −5 −∞
−∞ −∞ 1




where the coupling comes from the forms of the parameters.

5 10 15 20

10

20

30

(a) F0: all 3 components

5 10 15 20

10

20

30

(b) F1: all 3 components

5 10 15 20

10

20

30

(c) F2: all 3 components

Figure 3. Generic behavior of the rank 3 case .

We also find behavior which we conjecture to be parameterized by higher-dimensional

ultradiscrete hypergeometric functions. For initial conditions and parameters

B0 =



−∞ 0 −∞
−∞ −∞ 0

0 −∞ −∞


 B1 =



−∞ −∞ 0

3
5

−∞ −∞
−∞ 0 −∞




F0 =




0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0


 F1 =




0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0




we obtain the behavior exhibited in figure 4.

6. Conclusions and discussion

We have presented a noncommutative generalization of q-PIV. Conditions were derived such

that the multicomponent systems could be ultradiscretized. In section 4, the multicomponent

generalization of ultradiscrete PIV was presented. In section 5, a small snapshot of the

rich phenomenology was presented. Due to space restrictions, only certain aspects of this

phenomenology was presented, yet our preliminary findings suggest many avenues for future
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5 10 15 20
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15

17.5

(a) F0: all 3 components

5 10 15 20

2.5

5

7.5

10

12.5

15

17.5

(b) F1: all 3 components

5 10 15 20

2.5

5

7.5

10

12.5

15

17.5

(c) F2: all 3 components

Figure 4. Some special behavior of the rank 3 case .

research, including the generalization of the results in [16] to higher dimensional ultradiscrete

hypergeometric functions.

It is worth noting that a different generalization of q-PIV, has been studied by Kajiwara et

al. [12], [13]. It would be interesting to know how both generalizations can be combined.
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Appendix A. Miscellaneous properties of the group G

By deducing properties of the group G presented in (3.8), we may deduce properties of our

elements {si} and {zi} since the {si} must be homomorphic images of the generators of G, while

the {zi} are determined by the {si} via (3.4).

Proposition 1

g6
0 = g6

1 = g6
2. (A.1)

Proof Constraint (3.5) implies

g2
2 = g−2

1 g4
0 = g4

1g
−2
0 .

Therefore g6
0 = g6

1, and similarly we have the full proof. ¤
(Note that this implies [gi, g

6
j ] = 0.)

Proposition 2 Group elements {gi} have order 18.

Proof As g6
1 = g6

0 it follows from constraints (3.5) and (3.6) that

g8
0 = g2

2g
2
0g
−2
2 .

Hence

g24
0 = g2

2g
6
0g
−2
2 = g6

0
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and therefore

g18
0 = I. (A.2)

The proofs of

g18
1 = I , g18

2 = I

proceed in the same manner. ¤

Proposition 3

[g3
i , g

3
j ] = 0. (A.3)

Proof Using (A.1), equation (3.7) shows us that

g6
0 = g−3

1 g−3
0 g−3

1 g−3
0 ,

further application of (A.1) reveals

g9
0 = g−6

0 g3
1g
−3
0 g−3

1 ,

hence, using (A.2),

g−3
0 g3

1 = g3
1g
−3
0 .

Therefore we have the commutativity of g3
0 and g3

1, and similarly we obtain (A.3). ¤
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A 37 L559–L565
[10] Joshi N and Ormerod C 2007 The general theory of linear difference equations over the invertible max-plus

algebra. Yet to appear
[11] Kajiwara K, Noumi M, and Yamada Y 2001 A study on the fourth q-Painlevé equation. J. Phys. A 34
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