On the Singular Part of the Partition Monoid

James East”
School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia

December 10, 2009

Abstract

We study the singular part of the partition monoid P,; that is, the ideal P, \ Sy,
where S,, is the symmetric group. Our main results are presentations in terms of
generators and relations, and we also show that P, \ S,, is idempotent generated, and
that its rank and idempotent-rank are both equal to ("'QH) = %n(n + 1). One of our
presentations uses an idempotent generating set of this minimal cardinality.
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1 Introduction

Let X be aset and Jx the (full) transformation semigroup on X, which consists of all trans-
formations on X (i.e. all self-maps of X) under composition. Let S be a semigroup, and
let S* = S is S has an identity, or otherwise S' = S LI {1} where 1 is an adjoined identity.
Cayley’s Theorem (see [15] or [17] for example) states that the map ¢ : S — a1 : 5 +— ©s
determined by ¢, : ST — S : ¢t ts is an embedding. If S = S*, then ¢ maps invert-
ible elements of S to invertible elements of g, i.e. to permutations from the symmetric
group .%s, the group of units of Z5. On the other hand, if S # S*, then sy is not invertible
for any s € S (the identity of S is never in the image of sp), so ¢ maps S into Fg1\.%s1, the
“singular part” of Jg1. (Of course this is not to say that any representation of a non-unital
semigroup S by transformations uses only singular transformations; for example, the free
monogenic semigroup embeds in the symmetric group on Z.) The singular part Jx \ x
of Jx is sometimes denoted by Singy, and is a subsemigroup (indeed an ideal) of Jx if
and only if X is finite. (Even when X is infinite, the set of non-surjective transformations
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does form a subsemigroup, and so too does the set of all non-injective transformations.)
When X = {1,...,n} is finite, we write 7, = Ix and .¥,, = . The semigroup 7, \ .7,
was first studied in 1966 when Howie [16] showed that it is generated by its idempotents.
Howie later showed in [18] that the rank and idempotent rank of .7, \ ., are both equal
to (5) = 3n(n — 1), and also characterized all idempotent generating sets of this minimal
cardinality. These results were generalized in [19] to semigroups of transformations of rank
at most r, whose ranks and idempotent ranks were shown to be equal to S(n,r), the Stir-
ling number of the second kind. Defining relations for .7, \ .#, were obtained in [8] with
respect to a different generating set; this set did not consist of idempotents, and was not of
minimal cardinality, but due to the asymmetry of the generating sets from [18], the author
suspects that presentations in terms of minimal idempotent generating sets may not be
particularly “natural”. (Of course such presentations may be obtained by rewriting the
defining relations from [8].) For further studies on 7, \ .%,, see for example [1, 2, 20].

In sub-branches of semigroup theory, different semigroups play the role of Zx. The Wagner-
Preston Theorem (see for example [21] or [24]) states that any inverse semigroup S embeds
in .Zg, the symmetric inverse semigroup on S. Again, when .S does not have an identity, S
is mapped into the singular part g \ .#s. Similarly, the FitzGerald-Leech Theorem [11]
concerns embeddings of inverse semigroups in dual symmetric inverse semigroups .#¢, and
the singular part .5\ s arises when S has no identity. In [12] it was shown that .7, \ .7,
has rank n + 1, which also coincides with its nilpotent rank if n is even. Defining relations
for .7, \ ., — again in terms of a larger more manageable generating set — were given
in [6], where the submonoid of all order-preserving partial permutations played a central
role. To the author’s knowledge, the singular part of the dual symmetric inverse mon-
oid £ has not yet been studied. Further studies have been conducted into other singular
semigroups of transformations (and similar objects); for example, the partial transforma-
tion semigroups [9], the Brauer monoids [23], and various semigroups of order-preserving
transformations [13].

It is the purpose of the current article to consider the singular part P, \ S,, of the partition
monoid P,,. The partition monoid arises in its connection to the partition algebras which
have a role of fundamental importance in the representation theory of the symmetric
groups; see [14] for a detailed survey, and [7] for a study of presentations. Here we view P,
from a more semigroup theoretic point of view, motivated in part by the fact that P,
contains most of the semigroups described above as subsemigroups (see Section 3 for more
details). Our main results include presentations for P, \ S, in terms of generators and
relations, and we also show that the rank and idempotent rank of P, \ S, are both equal
to ("3') = in(n +1). This is reminiscent of Howie’s result [18] concerning the rank
of 7, \ Z,; however, in the P, \ S, case, we are able to obtain a rather nice set of defining

relations with respect to a particularly symmetric idempotent generating set.



2 Preliminaries

Throughout this paper we will be mainly concerned with generation and presentation
as semigroups, but we will from time to time have to deal with monoid presentations.
Let X be an alphabet (a set whose elements are called letters), and write X* for the
free monoid on X, with the empty word being denoted by 1. The free semigroup on X
is Xt =X*\{1}. f RC X*x X* [or R C X x X7] then we denote by R* the congruence
on X* [or X*] generated by R. We say that a monoid [or semigroup| S has monoid [or
semigroup| presentation (X | R) via a mapping ¢ : X* — S [or ¢ : XT — S]if (i) ¢ is an
epimorphism, and (ii) ker ¢ = Rf. If the mapping ¢ is “obvious” from context, then we
will simply say S has presentation (X | R), or just write S = (X | R). We will also call the
elements of X generators, and elements of R relations; typically a relation (wy,ws) € R
will be displayed as an equation, i.e. w; = ws.

There are a number of important conventions to note regarding lists and words. First, a
list x;,...,x; is assumed to be empty if either

(i) i > j and the subscripts are understood to be increasing; or
(ii) ¢ < j and the subscripts are understood to be decreasing.

Similarly, a word x; - - - z; is assumed to be empty if either (i) or (ii) above hold. (Such a
word will always be a subword of a larger non-empty word if we are dealing with semigroup
presentations.) This convention will also be employed in other situations, such as in the
drawing of graphs. Secondly, we will adopt a kind of “Einstein convention” regarding
subscripts, where an expression involving an unconstrained index is assumed to represent
a list of expressions, one for each admissible value of the index (or indices). For example,
if X ={x1,...,2x} is an alphabet, then
:L’? =z and TiTj = T;T;

represents a list of k + k? relations which state that all elements of X commute and are
idempotents, while if Y = {y;; |1 < i < j <n} then, in an expression such as

2 _
Yij = Yijs

we are implicitly assuming that ¢ # j (among other things). Finally, all numbers we
consider are integers, so a statement such as “let 1 < < 5” should be read as “let ¢ be an
integer for which 1 <7 <5”.

3 The Partition Monoid P,

The partition monoids have a variety of descriptions, but the geometric one is the one
that will be most convenient here. Fix a positive integer n for the remainder of the



article, and write n for the finite set {1,...,n}. Also write n’ = {1,...,n'} for a set
in one-one correspondence with n. Consider the equivalence relation on the set of all
(simple, unlabelled, undirected) graphs on the vertex set nUn’ under which two graphs are
considered equivalent if and only if they have the same connected components. A partition
onnUn’ (or simply a partition) is defined to be an equivalence class of graphs under the
above equivalence. In practice, we will think of a partition simply as a graph, identifying
two graphs if they belong to the same equivalence class. When picturing partitions we will
always arrange the vertices so that vertices 1,...,n appear in a horizontal row (increasing
from left to right) with vertices 1’; ..., n’ directly below; see Figure 1 below for an example.
The set of all partitions on n U n’ is denoted by P,, and forms a monoid — the so-called
partition monoid — under the operation we now describe. Let «a, (3 € P,. To calculate

[ ] ———@
1/ o 3/ 4/ 5/ 6

Figure 1: A partition from Pg.

the product a3 € P, we first stack o and (3 so that vertices 1’,...,n' of a are identified
with vertices 1,...,n of (3, then delete the middle row of vertices as well as any connected
components that are not joined to an upper or lower vertex, before finally smoothing out
the resulting graph on the vertex set n Un’. See Figure 2 for an example calculation. It
is easy enough to check that this product is associative, and that the partition 1 =[] "]
with n vertical edges is an identity element.

R ~ . .:1 : .
/ o o
/8 = ’_I [ ] [ ] o o
Figure 2: Calculating the product of two partitions «a, 3 € Ps.

There is a natural anti-involution (i.e. an anti-isomorphism of order 2)
o . . o
P —Pnia— «

defined by reflection in a horizontal axis. More precisely, for i, 7 € nUn’, {i,j} is an edge
of v if and only if {7/, j'} is an edge of a°. (Here we have also written ’ for the inverse
bijection n" — n.) This map illustrates the regular structure of P,; we have aa’a = «
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and a°aa® = a° for all o € P,. However, P, is not inverse if n > 2, as it is easy to find
non-commuting idempotents.

We now pause to record some definitions and terminology. With this in mind, let a € P,,.
The connected components of (any graph representing) « are called its blocks and, for
i € nUn’, we denote by [i], € nUn’ the block of a that contains i. We define the domain
and codomain of o to be the sets

dom(ar) = {i € n|[i]o Nn" # 0},
codom(ar) = {i € n|[i'l Nn # 0}.

We also define the kernel and cokernel of o to be the equivalences

Basic properties include formulae such as

dom(a®) = codom(a), ker(a®) = coker(a),
dom(af3) C dom(a), ker(a) C ker(af3),
codom(af) C codom(3),  coker((3) C coker(af).

The equivalence classes of n with respect to ker(a) and coker(«) are called the kernel-
classes and cokernel-classes of a. A number of important semigroups of transformations
(and related objects) are submonoids of the partition monoids, and may be described in
terms of the above notions. Write A = {(1,1),...,(n,n)} for the trivial equivalence on n
(i.e. the equality relation). The sets

o I, = {& € P, | ker(a) = coker(ar) = A},
o I = {o € P, | dom(a) = codom(a) = n}, and
e 7,={a € P,|dom(a) =n and coker(a)=A}
are all submonoids of P,,, and are isomorphic to (respectively):
e .7, the symmetric inverse semigroup on n,
o .7* the dual symmetric inverse semigroup on n, and
e 7, the (full) transformation semigroup on n.

(See [11, 15, 17, 21, 22, 24] for further information on these semigroups.) The intersection
of all three submonoids (or indeed of any two of them) is the set

e S, ={aecP,|ker(a) = coker(a) = A and dom(e) = codom(c) =n},



which is isomorphic to the symmetric group .#,, and is easily seen to be the group of
units of P,,. Without causing confusion, we will identify the semigroups .%,, .7,, etc. with
their isomorphic copies inside P,. So for example, if a € 7,, and ¢ € n, we will sometimes
write ia for “the image of 7 under «; that is, the unique element of n for which {7, (ia)’'}
is an edge of a. Note that the definition of 7,, above is not symmetric, but the submonoid

e 7o ={a€eP, } codom(a) =n and ker(a) = A}

is anti-isomorphic to 7,, and will also play an important role.

4 The singular Subsemigroup P, \ S,

We now turn our attention to the singular part of the partition monoid P,; namely, the
subsemigroup P, \ S,,. But first we review a structural result regarding P,, from [7]. This
will require the definition of another submonoid of P,,. With this in mind, let « € 7,, and
suppose the kernel-classes K7, ..., K, of a satisfy min(K;) < --- < min(K,). We say that
a is block-order-preserving if Kija < -+ < K,a. Put

A, = {a € T, | o is block-order-preserving and codom(c) = k for some k € n},

which was shown to be a submonoid of 7,, in [8]. Also, put B, = A2, the image of A,
under the anti-involution °. The following was shown in [7].

Proposition 1 Let « € P,. Then o« = (70 for unique 8 € A,, v € I,,, 6 € B, with
dom(vy) C codom(3) and codom(vy) C dom(d). O

The factorization of the partition from Figure 1 is given in Figure 3.

Figure 3: The factorization of a partition from Py = AsZsBs.

Of particular importance to us here is the following special case of Proposition 1.

Corollary 2 Let « € P, \ S,. Then a = v for unique 5 € A,, v € I, \ Sy, 6 € By,
with dom(y) C codom(f3) and codom(y) C dom(d).
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Proof Let a € P, \ S, and suppose that o = (7§ where (3,7,0 are as in Proposi-
tion 1. It suffices to show that v € Z, \ S,, so suppose for the moment that v € S,.
Then n = dom(y) C codom(3) C n, forcing codom(3) = n, so that in fact 5 € S,,. Simi-
larly, we see that § € S,,, so that a = v6 € S,,, a contradiction. O

For1 <i<j<n,leta; €A, and Bij € B, denote the partitions pictured in Figure 4.
(The reason for our overline notation will become clear shortly.)

Figure 4: The partitions @;; (left) and ﬁ (right).

It was shown in [8] that A, is generated (as a monoid) by the set A={a;|1<i<j<n},
and it follows also that B, is generated by B = {ﬁij |1<i<j<n}. Forl<i<nand
1 <r <n—2, denote by \;,7;,3, €Z, \ S, the partitions pictured in Figure 5.

Figure 5: The partitions ); (left), 5, (middle), and p, (right).

It was shown in [6] that Z, \ S, is generated (as a semigroup) by the set LU S U R, where

L={\,...,\}, S=1{351,...,502}, R={p,...,0.}

By Corollary 2, we see that P, \ S, = A,(Z, \ S,) B, is generated (as a semigroup) by the
set AULUSURUB. This set has 2(3) + (2n — 1) + (n — 2) = n* + 2n — 3 elements (note
that A\, = p,), and is not the smallest generating set. We will see later that the minimal
size of a generating set is in fact ("+1) = %n(n + 1). However, this larger generating set
will prove useful in deriving a system of defining relations, which can then be manipulated
to yield defining relations with respect to a more compact generating set.

5 A Presentation for P, \ S,

In the previous section, we exhibited a factorization P, \ S,, = A,(Z, \ S,)B, and obtained
a generating set for P, \ S,, by piecing together generating sets for the three subsemigroups
featuring in the factorization. We now piece together presentations for these subsemigroups



(also necessarily adding new relations) in order to obtain defining relations for P, \ S, in
terms of the above-mentioned generating set. With this task in mind, we define alphabets

A=A{ay|l<i<j<n}, B={8;|1<i<j<n}
L:{)\l...,)\n}, S:{Sl,...,sn_g}, RZ{Pl,Pn}

Consider the sets of relations

PiPi = PiPj+1 ifi<j<n (R1)
PnPi = Pi for all 4; (R2)
)\n)\j—lpi if 4 <j
)\n)\jpi—l if j < 1
Sidp = S; for all 4 (S1)
52 = An for all 4 (S2)
$iSj = 5;S; if ‘Z — j‘ > 1 (SB)
S5i5jS; = 55855 if |Z —]| = 17 (S4)
sy =4 4! . (SL1—SL4)
L )\n)\jsi_l if ] <1
([ sipipn ifi<j—1l<n-—1
) picipn ifi=j—l<n—l S
Pi% =\ prap i = j ( )
| Si—1PjPn if j <j;
ARiOin = Ol for all ’i, ]ﬁ?,l (Al)
Q5 = OGOl = OGOl 1 if 4 <j <k (AQ)
Qi O—1,1-1 if 1< j <k<l
QO = § OG0 11 if i<k< j <1 (A37A5)
QG 1O ifi<k<l<j<n;



BinBri = Bri
BiiBir. = BijBix = Bir—108ij
Br—1,-184
BiiBri = S Bra—10ij
BriBij+1

for all 7, k,1 (B1)

ifi<j<k (B2)
ifi<j<k<l
ifi<k<j<l (B3—B5)

fi<k<li<j<n.

Proofs of the various parts of the following theorem may be found in [6] and [8].

Theorem 3 We have the monoid presentations

A, = (A|(A1—A5))

and the semigroup presentation

In\Sn%<LUSUR‘

B, = (B|(B1—B5)),

(L1—L2), (R1—R2), (RL1—RL3), -
(S1—84), (SL1—SL4), (RS1—RS4) >

We now define an alphabet 2" = AULUSURU B. Let Z be the set of all the above

relations, together with

)
An Qi1 510k

AnQtk i1k
)\nai,j—lﬂkl
An Qi B
Brij = An

An @ik Bi
)\naijﬂk,z—1
)\naijﬂi,l—l

[ An¥ijBe-1,-1

()\k

o ai+1,j+1)\k
)\kaij =

ai,j+1)\k

\aij)\k—l

if [ <1

if =1

if i<l<y

it k<i<j=lI
it k=1<y=1
ifi<k<l=y
if k<j<l
if j=k

if 7 <k

(BA1—BA9)

if j=n
ifk<i<j<n
ifi<k<j<n
if 7 <k;

(LA1—LA4)



ﬁijpk =

SrQYi; =

Bijsr = 1

(

\

Pk
Pkﬁi+1,j+1
Pkﬁi,jﬂ
Pr—1i;

Sr

)\nOéier
)\nai—l,jsr
)\nai+1,j3r
)\naij
)\naijsr
)\nai,j—l

)\nai,j—l—l

L )\naijsr—l

Ve

Sy

SrBij Pn
Sri—1,5Pn
3r6i+1,jpn
6ijpn
S¢Bij Pn
Bij—1Pn
Bij+1Pn
87«—1@';'%

QijAn = Qj

Pnﬁz’j = ﬁij

PrQij =

\

.
Qi—1,§-1PkPn

Sjgt S
Pn
Qi j—1PkPn
Pn

Qi Pk—1Pn

if j=n

iftk<i<ji<n
ifi<k<j<n

if j <k

if j=n

fr<i—-1l<j—1<n-1
fr=i—-1<j—1<n-1
ifr=i1<j—-1l<n-—1
ifr=i1=j—-1<n-1
fi<r<j—1l<n-—1
ifi<r=j5-1

if r=y
if j <,
if j=n

ifr<i—-1l<j—1l<n-—1
ifr=i—-1<j—1<n-1
ifr=i<j—1l<n-—1
ifr=i=7—-1<n-1
ifi<r<j—1l<n-—1
ifi<r=75-1

if r=y
if j <,

for all 4,

for all 1, 7;

if k<1

if k=i<j—1
if k=i=j—1

ifi<k<y
if k=
if 7 <k;
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()\n)\kﬂi—l,j—l if k<i
Sj+ 82 lfk:Z<j—1
BijAx = M Tf k —d (BL1—BL6)
A AiBij—1 ifi<k<y
A T
\)\n)\k—lﬂij if j < k.

It is our goal in this section to show that P, \ S, = (2" | # ). With this in mind we define
O: 2t =P, \S,

to be the epimorphism that extends the map 2~ — P, \ S,, which sends each letter £ € 2~
to its corresponding partition £ € P, \ S,. We will also expand our use of the overline
notation, so that for any word w € 2t we write w for the partition w® € P,. Denote
by ~ = Z"* the congruence on 2 T generated by Z.

Lemma 4 We have the inclusion ~ C ker ®.

Proof This follows by a straight-forward (but time-consuming) check that the relations
from & are all preserved under ®. O

The proof of the presentation P, \ S, = (2 |#) makes crucial use of the following
proposition which concerns factorizations of words over 2  and mirrors the structure

of P, \'S, = A,(Z, \ S,)B, given in Corollary 2.

Proposition 5 If w € 2", then w ~ wywows for some wy € A*, wy € (LUS U R)T,
w3 € B* with dom(w,) C codom(w;) and codom(ws) C dom(ws).

The proof will be deferred until we have collected some intermediate technical results.

Lemma 6 Let 1 < i < j <nandw € (LUSURU B)*. Then wo;; ~ wywy for
some wy € A* and wy € (LU S U RU B)t with {(wy) < 1.

Proof First, if /(w) = 0, then wo,; = a;; ~ a;;A, by (AL1), so suppose that ¢(w) > 1.
Write w = w'{ where { € LUS U RU B. If we can show that {a;; ~ wyws, where wy, w,
are words of the required form, then we will be done by an induction hypothesis, seeing
as l(w') = l(w) — 1. Now, if £ € L U R, then we are done immediately, by the relevant
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relation from (LA1—LA4) or (RA1—RAG). Suppose next that £ =y, € B. If k =i and
[ = j, then Bya;; ~ A, by (BA5). In all other cases we have

Britij ~ AnQpgBrs forsome l1<p<g<n—1landl1l<r<s<n,
by (BA1—BA4) or (BA6—BA9)
~ QpgAn—1Drs by (LA4),

as required. Finally, the case £ € S is covered in essentially the same way, using relations
(SA1—SA9). O

Corollary 7 If w € Z'", then w ~ wywy for some wy € A* and wy € (LUSURU B)™*.

Proof Define x : 2" — (N, +) to be the extension of the map

1 ifécA

%HNfH%iMG%VL

The proof proceeds by induction on k = x(w). If & = 0 then we are already done, with
w; = 1 and wy = w, so suppose k > 1. Then w = wsw;jw, for some ws € (LUSURU B)*
and wy € Z°*. Then

W = W3 Wy ~ WsWeW,y for some ws € A* and wg € (LUSURU B)™"
~ W5W7Ws for some w; € A* and wy € (LUSURU B)™,

where the first equivalence follows by Lemma 6, and the second by an induction hypothesis
applied to wgw,. Since w; = wswy; € A*, the proof is complete. O

The proofs of the next two results are almost identical to those of Lemma 6 and Corollary 7
(respectively).

Lemma 8 Let 1 < ¢ < j < n and w € (LUSUR)*, then Bjw ~ wywy for some
wy; € (LUSUR)Y and wy € B* with {(wy) < 1. O

Corollary 9 Ifw € (LUSURU B)", then w ~ wywy for some w € (LU S U R)" and
wy € B*. O

Corollary 10 If w € Z'F, then w ~ wywews for some wy € A*, wy € (LUSUR)T,
ws € B*.

12



Proof This follows immediately from Corollaries 7 and 9. O

This proves part of Proposition 5. To prove the part concerning domains and codomains,
we first define words

Ur =N+ Np1 €EL", 0, =ppy1--pp € R,

* *
Ap = Qp_1p° " Qprpyl € A s br = 67“,7“—1—1 te 6n—1,n € B

for each 1 < r < n, noting that all these words are empty in the case r = n.

Lemma 11 Let 1 <r <n. Then u, ~ v, and, regarding u, as a partial permutation, we
also have u, = id,.

Proof This is essentially Lemma 26 of [6]. O

Lemma 12 Let1 <r<n-—1. Then
(i) ayu, ~ a,; and

(ii) v.b. ~ b,.

Proof We prove (i) by (backwards) induction on r. The r = n — 1 is covered by (AL1),
so suppose r < n — 1. Then

ArUy = ar—l—lar,r—l—l)\n)\n—l te >\r+1

~ A 1O 1 A1 7 Arg 1 by (AL1)
~ Qg1 An o Arg2Q g by several applications of (LLA4)
= Qr41Ur4100 141
~ Qpg1 Oyl by an induction hypothesis
= Gy,
completing the proof of (i). Part (ii) is proved analogously. O

Corollary 13 Let1 <r<n-—1.
(i) If w € A* and codom(w) = r, then w ~ wu,..

(ii) If w € B* and dom(w) = r, then w ~ u,w.

13



1 T n 1 r n
Figure 6: The partitions @, (left) and b, (right).

Proof Diagrammatically, it is easy to see that wa, = w; see Figure 6 for an illustration
of @, (and b,). It follows by Theorem 3 that wa, ~ w. But then using this, and Lemma 12,
we have

W~ WAy ~ WAy ~ Wy,

showing that (i) holds. Again, (ii) is proved in a similar fashion. O

Proof of Proposition 5 Let w € 2. By Corollary 10 we have w ~ wjw)ws for some
wy € A%, wh € (LUSUR)T, wyg € B*. Now, codom(w;) = r and dom(ws) = s for some
1 <r s <n. Put wy =u,whus € (LUSUR)T. Then

1 /
W ~ WWyW3 ~ WUy WU W3 = W1 WoaW3,

where the second equivalence follows from (both parts of) Corollary 13 if  and/or s are
not equal to n (recall that u, = 1). Further, we have

dom(wy) = dom(u, w)us) C dom(w,) = r = codom(wy),

and similarly codom(ws) C dom(ws), completing the proof. O
We are now able to prove the main result of this section.

Theorem 14 We have the presentation P, \ S, = (2 | X ).

Proof All that remains is to show that ker & C ~. so suppose (w,w’) € ker &. Now, by
Proposition 5,
W ~ W WaW3 and w' ~ wiwyws

for appropriate w;, w, (i = 1,2,3). We then have

)

— / — 1 —
W W3 = wd = w P = W Wyws.

But then by Corollary 2, we have w; = w, for each i, so that each w; ~ w] by the relevant
presentation from Theorem 3. It follows that w ~ w’, and the proof is complete. a

14



Remark 15 Note that the set 2 contains some redundant generators. Indeed, A, and 7,
as well as all of the 5, are unneeded since

D = An = B15010 by (RL2) and (BA5), and
S = 0,02 = Brppos for all r, by (RA2) and (BL2).

In fact, we will see in the next section that no more generators may be removed from this
set, but that the minimal size of a generating set for P, \ S, is ("}') = in(n + 1), as
compared with the 2 (Z) +2(n—1) = n®> +n —2 elements of this irreducible generating set.

6 The Rank of P,\ S,

Recall that the rank of a semigroup S, denoted rank(S), is the minimal cardinality of a
subset of S which generates it (as a semigroup). If S is generated by its idempotents, then
the idempotent rank, denoted id-rank(.S), is the minimal cardinality of a set of idempotents
that generates S (as a semigroup). It is our aim in this section to show that P, \ S, is
idempotent generated, and that rank(S) = id-rank(S) = ("}'). With this in mind, define
(idempotent) partitions g; (1 <i <n)and ¢; (1 <i < j <n) as in Figure 7.

NN =

Figure 7: The partitions &; (left) and #;; (right).

Proposition 16 The semigroup P, \ S, is generated by the set

Proof It suffices to show that Z is contained in (X)), the subsemigroup of P, \ S,
generated by . Now )\, = &, and, as may be easily checked diagrammatically, we
have \; = (8;fii41)\is1 for all 1 < i <n — 1. Inductively, this gives rise to the expression

Ai = Eitii1€it1tit1it2 - En—1tn—1nEn-

By applying the anti-involution ° : P,, — P,, it follows that

Pi = Entn_1nEn-1" " tiz1,i+28i+1tii+18i-

One may also verify that

@ij =tijAj, By = Ditij,

Sp = gntr,ngrtr,r—i-157’-1—1257“—i-1,ngn7

and the proof is complete. O
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Remark 17 In the reverse direction, the new generators can be expressed in terms of the
old as

and tij = @i]ﬂij.

Remark 18 The subsets {g; |1 <i <n}and {#; |1 <i < j <n} respectively generate
(as monoids) E(Z,) and E(Z}), the idempotent semilattices of the symmetric and dual
symmetric inverse monoids (see [3, 4, 10]. So this proposition also shows that

(Pu\ Sa) U{1} = (E(P,)) = (E(Z,) UE(T})).

Theorem 19 The semigroup P, \ S, is generated by its idempotents, and we have

n+1\  n(n+1)
2 ) 2

rank(P, \ S,) = id-rank(P, \ S,) = (

Proof Since every element of ¥ is idempotent it suffices, by Proposition 16, to show that
rank(P, \ S,) > ("3'). With this in mind, let I' be an arbitrary generating set for P, \ S,.
We must show that [['| > ("}).

Let ¢ € n, and consider an expression g; = 7 - - - ¥, where vy, ...,7 € I'. We wish to show
that dom(y;) = n '\ {i}, so suppose for the moment that this is not the case. Now

n\ {i} = dom(g;) = dom(y; - - - yx) € dom(v1),
and it follows (by assumption) that dom(y;) = n. We also have
A = ker(g;) = ker(vy - - - y) 2 ker(m1),

so that ker(y;) = A. Together with dom(y;) = n, this implies that v, € S,,, contradicting
the fact that v, € P, \ S,. It follows that dom(vy;) = n\ {i}. Repeating this argument
for all i € n, we see that I contains (at least) n distinct partitions with domain a proper
subset of n.

Now let 1 < ¢ < j < n, and consider an expression ¢;; = n; - - -1 where n,...,n; € T
Note that
n = dom(?;;) = dom(n; - - -n) C dom(ny),

so that dom(r;) = n. Write &; for the equivalence AU {(i, ), (j,7)}. Now
&i; = ker(t;;) = ker(n: - -ni) 2 ker(m),

so either ker(n;) = A or ker(n,) = &;;. But since dom(n;) =n and , € S,,, we cannot have
ker(n;) = A, so it follows that ker(n;) = &;;. Repeating this argument for all 1 <i < j < n,
we see that I' contains (at least) (g) distinct partitions with domain equal to n.

Putting together the conclusions of the previous two paragraphs, we have

|F|2n+<g) — (";1)

and the proof is complete. O
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Remark 20 Dual arguments to those in the above proof show that any generating set I
of P, \ S, must contain an element with codomain n \ {i} and cokernel A for each i, and
an element with cokernel &;; for each 4, j. This shows that the generating set

{a;[1<i<j<n}u{B;ll1<i<j<niu{l|1<i<n-1}U{p|l1<i<n-—1}

discussed in Remark 15 cannot be reduced further, although it is not of minimal cardinality.

Remark 21 The set X is not the only idempotent generating set of minimal rank. The
characterization of such minimal idempotent generating sets is the subject of another
work [5].

7 Refining the Presentation

We now set out to find a presentation for P, \ S, in terms of the idempotent generating
set ¥ from Proposition 16. To do this, we start with the presentation (2 | %) from
Theorem 14, and perform a series of Tietze transformations. With this in mind, define an
alphabet
Beginning with (2" | %), we add the generators from %, along with the relations
g, — )‘Zﬂz for all 4 (Dl)
tij = aij/@ij fOI' all i,j, (DQ)
which define them in terms of the original generators. Writing 2 for the set of rela-
tions (D1-—D2), the presentation becomes (Z U% |Z U Z). In the statement of the
next lemma, and indeed for the duration of this article, we will use the symmetric nota-
tion tj; = t;; for all 1 <4 < j < n (think of both expressions standing for the slightly more
clumsy t; ;1)

Lemma 22 With 1, , k,l ranging over all possible indices, subject to the stated constraints,
the following relations are in (# U 9)*:

2
€] = &; E1
€i€j = £;&; E2
2 _

= =
W DN
S N . e N N N N N N

Lijtr = tritij

A~ N N~~~
H
—_

Lijtin = tiktri = Trilij

tijer = €xtij if k¢&{i, 7} (ET1

tiewty = by it ke {i,j} (ET2

extij€r = €x if ke {i,j} (ET3
Extri€ilij€itjkEr = ExlrjE tjicitinEr (ET4
Exlri€itizetucitiner = Extricilicitiie tjker. (ET5

17



Proof This follows from a simple diagrammatic check, and the fact that (2" U % | Z U Z)
is a presentation. O

Denote by 2 the set of relations in the statement of Lemma 22. We add these relations
to the presentation to obtain

(X UV | RUDU2D).

It is our ultimate goal to show that the presentation simplifies to (# | 2). Throughout
our pursuit of this goal, certain simple words (and longer words built up out of them) will
play a crucial role. For a pair of distinct indices 7, j € n, we define

Xij = Eitijfj € @—i_.

As always, we are using symmetric notation for the ¢;; = t;;. However, it is important to
note that X;; # X;;. We further define words

j {Xi,i+1Xi+1,i+2 e Xosin for 1<i<n-—-1
’ €n for i=n
no_ {Xn,n—l o Xivo i Xig1 for 1<i<n-—-1
' €n for i=n
Aij =t;;L; for 1<i<j<n
B;; = Rjty; for 1<i<j<n
Sy = X Xy r1 X g1 for 1<r<n-—2.

As the notation suggests, these words over % map to the generators \;, p;, etc., of P, \ Sy,
as made precise in the statement of the next lemma.

Lemma 23 The following relations are in (ZU 2 U 2)*

)\i = Li, Pi = Rz fO’f’ all 1
Q5 = Aiju 6@' = Bij fOT all ’L,j
S$r =S, for all r.

Proof Again a simple diagrammatic check is sufficient, since (Z"U % |ZUZ2U 2) is
known to be a presentation. O

As a result, the generators from 2 may be removed from the presentation, with their
every occurrence in the relations Z U & being replaced by the words L;, R;, A;;, B;j, S, as
appropriate. We denote the resulting relations by (L1)’, etc., and the entire set of modified
relations by #’' U 2'. The presentation has now become

(Y% UP'U2),
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and our goal has become to show that relations ' U 2’ follow from 2. For the remainder
of the article, we will write ~ = 2* for the congruence on #'* generated by 2.

We will be aided in our goal by a duality in the relations. Define the anti-involution
A/

to be the extension of the identity map % — %'.
Lemma 24 Let wi,wy € #*. Then wy & wsy if and only if W, = W,.
Proof This follows immediately from the fact that 2 is closed under . a

Of special importance is the fact that )A(Z] = X, from which it follows that

Zi =R, ﬁz = Ly, A\ij =B gij = Ay

17
We will see later that §T ~ S, also.

Before considering the relations from %’ U 2’ one-by-one, we first prove some results
concerning the words X;; = €;t;;¢; defined above.

Lemma 25 With 1, 3, k,l ranging over all possible indices, subject to the stated constraints,
we have:

(25.1)
(25.2)
(25.3) Xy (X Xij) = Xji(XjuXij) = (X X)) Xje = (XjnXij) Xij = XjpXij, if 0 # ks
(25.4) (XijXjk)Xji = X (Xij X i) = gieg, it @ # k; and

(25.5) X

P~ E;.

Proof First we have
Xz2] = é?itijé?jé?itijéj ~ é?itij&i&jtij&j ~ €i€j,
by (E2) and (ET3), while
Xlsj ~ EiEinj = 5i5j5itij5j ~ 5i€i€jtij5j ~ Eifj,
by (E1—E2), (ET3), and the previous calculation, completing the proof of (25.1).

Relation (25.2) is an immediate consequence of (E2), (T2), and (ET1).
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For (25.3), note that if ¢, j, k are distinct, then

Xijij = c":‘jtjké?ké?itijéj ~ 8i€jtjktij€j€k by (E2) and (ETl)
~ Xt X by (25.1) above
~ X;.tjktin,fj by (25.1) again.

By another application of (25.1) we see that, modulo the relations, X, X;; acts as a right-
zero for X;; and Xj;, and as a left-zero for X, and Xj;.

Next, with 1, j, k distinct again, we have

(XZ]Xjk)XjZ = Eitijﬁjéjtjkékéjtjiéi

~ eitijeitinejticic by (E1) and (ET1)
R eitijejlji€ic by (ET3)
~ eitijEick by (ET2)
R EiEk by (ET3),

establishing the first part of (25.4). The second part follows from the first by duality (i.e. an
application of Lemma 24) and relation (E2).

Finally, (25.5) follows quickly from (E1), (ET2), and (ET3). O

We now begin to eliminate the relations from 2 U %#’. The order in which we proceed
is determined partly by difficulty, but also by convenience in terms of using established
relations in the subsequent proofs of other relations.

Lemma 26 Relations (D1-—D2)" are in 2.

Proof For (D1)" we must prove that ¢; = L;R;. We do this by backwards induction on .
Now if i = n, then we are done by (E1), since L, = R,, = €,, so suppose 1 < i <n — 1.
Note that

Li~ X;i1Lin and Ri ~ Riy1 Xiq1,.

(Indeed, we have equality in the case 1 < i < n — 2, but must apply (E1) in the case
i =n — 1.) It then follows that

LiR; = X; i1 Livi Rip1 Xiv1 = Xiin€iXon = X1 Xig1: = &,
where we have used an induction hypothesis, as well as (E1) and (25.5).

For (D2)', we have
Az’jBij = tiijRjtij ~ tijgjtij ~ tija

where we have applied (D1)" and (ET2). O
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Lemma 27 Relations (L1—L2)" and (R1—R2)" are in 2*.

Proof Relation (L2)" follows immediately from (E1). For (L1)’, it will be convenient for
the moment to use the notation x; = X; ;4 fori =1,...,n — 1. By (25.2) and (25.3) the
following (braid) relations hold:

TiTiy 1T = Tjp1TiTi41 if 1 <i:<n-—2. (272

If we further define x,, = ,, then one may easily check that (27.1) and (27.2) above also
hold when the indices are allowed to be n. Now, using (27.1) and (27.2), observe that if
1<i1<k<n-—1,then

Lixp = @+ Tp 1T T 1Thy 2+ T 1Tk A T+ Ty 1 Tt 1 T Tht 2 * * * T1

~

RTi T 1T 1 T T 1Thg2 " Tl N T 1 g+ Tp 1 DT 1 T2 " * * Tl = Tpy1 Ly

(Here, note that the first equivalence is an equality unless k = n — 1, in which case the
subword Zgis - - - x,_1 is assumed to be empty.) So, for 1 < i < j <n — 1, we have

LZ‘L]‘ = LZ'LU]‘ e Ty Tjq1: anz ~ Lj+1LnLi ~ Lj+1Li,

by the above observation and (L2)’, completing the proof of (L1)". (Again, the second
equivalence is an equality unless j =n — 1.)

Finally, relations (R1—R2)’ follow from (L1—L2)" and duality. O

Lemma 28 Relations (RL1—RL3)" are in 2°.

Proof For (RL2), note first that R, L, = 2 ~ ¢, = L, by (E1), while if 1 <4 <n — 1,
then
RiLi = Ri1 X1, X i41Liv1 = Rip1€i1Lign = Ry Lipy = €, = Ly,

where we have used (25.5), (E1), and an induction hypothesis.

We now consider (RL1)". Again it will be convenient to use the notation z; (i € n) defined
in the proof of the previous lemma. We further define y; = Z; for each 4; that is, y; = X411
fori =1,...,n—1and y, = &,. By (24.2) and (24.4) the following (singular braid)
relations hold:

TiYj N Y if [i —j| >1 (28.1)
TilYit1Yi = Yir1YiTiv1 if 1<i<n-2 (28.2)

Using these, a similar calculation yields
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We also calculate
Inln-1 = 5n5n—1tn—1,n5n ~ 5n—15ntn—1,n5n N Ep—1&n (284)

by (E2) and (ET3). Putting this together, for 1 <i < j <mn — 1, we have

RLi=Rix; Tp1 R Tj_1- TyoR; by (28.3)
R Tj1 Tp_2En—1EnR; by (E1)
R Tj1- - Tp_oTpln_1 R, by (28.4)
R Tplj—y - Tp_oln_1 R, by (27.1)
= L,L; 1R

Finally, for the j = n case of (RL1)’, note first that by (28.4) above, and duality, we have
R, 1R, = Yn_1Yn X €pn_16p & TpXp_1 = LpL,_1. (28.5)
By (R1—R2)" and (28.5), if 1 <i < n, then
R,L,=RR,~R, 1\Ri=~R, 1R,R;,~L,L, 1R;,

completing the proof of (RL1). For (RL3)’, suppose 1 < j < i <n. Then

R;L; ~ L,L;_1R; by (RL1)’
~ Li_1L, 1R, by (L1)’
~ Li_1L,L,_1R; by (L2)’
~Li_1R,_1R,R; by (28.5)
~Li_1R, 1R, by (R2)
~ L,_1R;R, by (R1)".
By duality it follows that R;L; ~ L,L;R;_1, and the proof is complete. O

In order to deal with relations (A1—A5)" and (B1—B5)’, we first need some knowledge of
how the words X}, and Lj interact with the generators t;;.

Lemma 29 Leti,j,k,l € n withi# 5 and k # 1. Then

tij Xkl if {i,j}n{k1} =10
5itij if k=4 and [ = j

(Note that not all “cases” have been considered.)

22



Proof Relation (29.1) follows immediately from (ET1) and (T2). For (29.2) we have
Xty = ertucityy = ertuteier = extjtue = ticrtue = tiXu,
using (ET1) and (T3). Finally, for (29.3) we have
Xijti; = €itijejti; = gily;

by (ET2), and the proof is complete. O

Lemma 30 Let 1 <k<nandl<i<j<n-—1. Then

(4, L if <k
Litij =~  tije1Lk if i <k<j (30.1—30.3)
(tiv1 1L if k<1,
and )
Ryt if j <k
tij Ry, ~ ¢ Ritii if i <k<j (30.4—30.6)

\Rkti+1,j+1 if k£ < i.

Proof Relation (30.1) follows from (29.1) if £ < n, or (ET1) if & = n. For (30.2) we have
Lytij = Xipr1 - Xjo1; X5 501X 41,512+ - Xnoanli

N Xiprt o Xjo1,j Xt Xjrgee o Xooin by (29.1)
~ Xpgrr e Xjoti a1 X X 42 Xnoin by (29.2)
Rt 1 Xkt X1, X i1 X142 Xnoin by (29.1)
= i j+1Lg.

Relation (30.3) follows by a similar calculation, and (30.4—30.6) follow by duality. 0

Lemma 31 Relations (A1—A5)" and (B1—B5)" are in 2°.

Proof For (A1), we use (L2)" and (ET3), noting that L, = &,, to obtain
A Aij = tLitin Ly, = tigLiLptin Ly, = tig Ly Ly, =ty Ly = Apy.
For (A2)', suppose 1 <i < j < k <mn. Then by (30.1) and (T2—T3) we have
A Ay =t Lyti; Ly = tyti; L Ly = tigti; L Ly =ty Lt Ly = A Ay

Also, using one of the intermediate stages of the previous calculation, as well as (T2), (L1)/,
and (30.2), we calculate

AjpAij = tigtii L Ly = tijtig L L1 ~ tij Lt g1 L1 = AijAi 1.

Relations (A3—Ab)’ are proved in a similar fashion. Relations (B1-—B5)’ follow by dual-
ity. O
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Lemma 32 Relations (LA1—LA4)" and (BR1—BR4)' are in 2*.

Proof The proof of (LA1)" is similar to that of (Al). For (LA2),if 1 <k <i<j<mn,
then
LyAij = Litis Ly =t jra bl =ty jra L be = A1 g Ly,

by (30.3) and (L1). Relations (LA3—LA4)" are proved in an almost identical manner.
Relations (BR1—BR4)’ follow by duality. O

Lemma 33 Relations (AL1)" and (RB1) are in 2*.

Proof By (L2) we have
ALy, =t L L, = t;;L; = Ay,

establishing (AL1)". Relation (RB1)’ follows by duality. O

Lemma 34 Relations (BA1—BA9) are in 2.

Proof For (BA1l), suppose 1 <k <l <i<j<n. Then

B Aij = Ritpti; Lj
~ thijtlej
~ o1 1Lty
~tic1j—1Ln L1 Rty
R Lty j 1 Lj_ 1Rty
= LnAi—1j—1Bu.

T2)
30.1) and (30.6)
RL1)

by (
by (
by (
by (30.1)

With the exception of (BA5)', the remaining relations are dealt with in an essentially
identical manner. For (BA5)" we have

Biinj = Rjtijtiij =~ ijjtijgij =~ RjEij ~ Rij ~ Ln

where we have used (T1), (E1), (ET3), and (RL2)". O

Before moving on to the relations that involve the .S;, we must prove some more technical
results concerning the words X;;.

Lemma 35 Let¢,j,k € n be distinct. Then

XikXje = XijXip = XjpXij =~ ;X = Xigej.
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Proof By (E2), (ET1), and (ET3), we have
Xikak = é?itik&?ké?jtjké‘k ~ é?jé?itiké?ktjké?k =~ c":‘jé?itiké’:‘k = 5ink.

The other relations are established analogously. a

It will also help to know that §T ~ S, for all r, so that we will be able to apply duality
arguments to relations involving the S,. This is a special case of the following lemma
which, incidentally, will necessitate our first use of relation (ET4). For distinct integers
1,7,k € n, we define a word

Sijie = XpiXij Xk
Note in particular that S, = S, ,11,, for all . One may easily check that the word S, is
mapped to the restriction of transposition (7, j) to the domain n \ {k}.

Lemma 36 Let ¢, 5,k € n be distinct. Then Sij, = Sjik = §,~j;k.

Proof By (El) and (ET4), we have

Sijie = XpiXij Xjr =~ extricitijejtjner ~ extrcjtjicitiner ~ XpjX;iXik = Sjik u
Lemma 37 Relations (SL1—SL4)" and (RS1—RS4)" are in 2%

Proof For (SL1) suppose 1 <i < j—1<n—2. Then
SiLj = XniXi,i—i-lXi-l-l,an,j-l-l te Xn—2,n—1Xn—1,n

~ X1 Xncon-1X0iXi it Xip1nXn1n by (25.2)

~ X Xnmon1XniXiiriEn—1Xigin by Lemma 35

~ X Xncon-16n-1XniXi i1 Xiv1m by (E2) and (ET1)
~ Xjjr1 o Xn—2n-1En-1EnXniXiit1 Xit1n by (E1)

~ X Xncan 1 Xn 10X 10 Xni X i1 Xiv 10 by (25.1)

= L,L,.5;

~ L,L;S, by (L1)".

For (SL2)" and (SL3)’, we have
SiLiv1 = XpiXiit1 Xit1nXiv1i42Xiv2i43 - Xn1n

~ XniXiir1EnXiv1i2Xit2,i43  Xn—1n by Lemma 35

~ XnienXiit1Xit1i+2Xit2i13 Xn-1n by (E2) and (ET1)
= entni€i€nli

~ Entni€ncili by (E2)

~enL; by (ET3) and (E1)
= L,L;,
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and

Sili = XniXiit1 Xip1nXiit1 X142 Xno1n

~ XniXiin1 Xin€it1 Xivrive X1 by Lemma 35

~ XniXin€iv1€ir1 Xit1iv2  Xno1n by Lemma 35 again
~enXittite Xn-1n by (25.5) and (E1)
= LnLit1.

For (SL4)’, suppose 1 < j < i < n—2. We first show that S;X;_1;X; ;41 ~ X;_1,X; 4151
Indeed, we have

SiXic1iXiit1 = XniXiit1 Xiv1nXiz1,: X541

~ XX i1 Xic1,iXir1 0 X i1 by (25.2)
~ XpigiXio1i+1€i41Xin by Lemma 35
~ XniXic1,i+1Xin by (E1)7

while a similar calculation shows that also X;_1,;X; ;4151 =~ X3 Xi—1,41Xin. (This ex-
pression simplifies further to X;_1;+1€,, although we do not need this.) Now, returning
to (SL4)’, we finally calculate

Sily = SiXjjr1- Xic2i1Xi1,: X1 Lina
~ X1 Xicoim15: X1, X i1 Liva by (25.2)
~ X1 Xicois1 X1, X iv15i-1Lina by the previous calculation
~ Xjj+1 Xic2io1 X1 X1 Lo Liy1Si—1 by (SL1)’
~ Lo X1 Xioasr Xo1aXiin L Siot by (E2) and (ET1)
= L,L;Si 1.

Relations (RS1-—RS4)’ now follow by duality (and Lemma 36). O
The next lemma shows how the words S, interact with the generators ¢;;.

Lemma 38 Let 1 <r<n—2andl1 <i<j<n-—1. Then

(1,5, if r{i—1,4,5—1,5}
ti1;S, ifr=i—1

tiy159, ifr=i#j—1

Entij if r=i=j—1
tijiaS, ifr=j—1%#i
(tij+15r if r=j.

26



Proof Relation (38.1) follows immediately by (29.1). For (38.2), we have

Sicitiy = Xoic1 X1, Xintsj

R X1 Xio1,itnj Xin by (29.2)
~ Xnicitnj Xic1,iXin by (29.1)
Rt Xni—1Xi—1,iXin by (29.2)
= ti—1,;Si-1-

With only one exception, the remaining cases are treated in an almost identical manner.
For (38.4), note that for distinct a, b, ¢ € n, we have

XbaXactab = epthaCaatacEctab

~ EplpaCalablacEe by (E1), (T2), and (ET1)
~ eptpatacEe by (ET2)

~ eptpetabEe by (T2—T3)

~ eytpetetas by (ET1)

= Xpelab,

from which it follows that

Sab;ctab = XcaXabXbctab

~ XoaXavXvaXactap by the observation
~ Xca€aXaclab by (255)
~ XeaXactap by (E1)
~ ety by (25.5).
Now (38.4) follows, with (a,b,c¢) = (i,7 + 1,n). O

Lemma 39 Relations (SA1-—SA9)" and (BS1-—BS9)’ are in 2°.

Proof For (SA1) we have

SrAin = anXr,r—l-er—l—l,ntingn

~ anXr,T’—l—er—i-l,ngntinEn by (E]-)
~ anXr,r—l—er—l—l,ngn by (ETS)
~ Xm"Xr,r—l—er—l—l,n by (El)
=5,
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For (SA2),if 1<r<i—1<j—1<n—1, then
SrAij - Srtiij

~ t;;5,:L; by (38.1)

~ tijL,L;S, by (SL1)’

~ Lyt L;S, by (30.1)

= L, A;; S,
Relations (SA3—SA9)" are proved analogously, using the relevant part of Lemma 38 and
(SL1—SL4)". Relations (BS1—BS9)’ follow by duality. 0

To tackle relations (S1-—S4)" we need some more technical results. The proof of the fol-
lowing lemma also involves our first use of relation (ET5).

Lemma 40 Ifi,j, k,l € n are distinct, then
Sijk X = XkiSiju- (40.1)
If 1,7,k € n are distinct, then
SijikXni & XpiSkjii- (40.2)
Proof For (40.1), observe first that
XiiXij XX = eptpicitijejtycitiner = extpeitucitiicjtiner = XuXuXij X
by (E1) and (ET5). It follows that
Sijie X = X Xij X X

R X Xij X Xne by (E1)

R X X X X X X by (25.5)

~ X Xip X X Xnj X by Lemma 36

R X X1 X X X X by the observation
~ XX Xigei X by (25.5)

~ XXX Xy by (E1)

= Xi1Siji-

For (40.2), we have

SijkXki = SjiskX i by Lemma 36
= X X;i Xk Xi
~ e Xi Xjici by (E1) and (25.5)
~ X X X Xji by (E1) and (25.5) again
= XiSkjsi-
This completes the proof. O
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Lemma 41 Relations (S1—S4)" are in 2*.

Proof Relation (S1)’ follows immediately from (E1). Next, note that for distinct a,b, ¢ € n
we have

Sgb;c ~ Sab;cShase by Lemma 36
= XeaXabpXpeX b XpaXac
~ Xea Xab€pXpaXac by (25.5)
~ XeaXapXpaXac by (E1)
SN by further reductions using (25.5) and (E1).

Relation (S2) follows with (a, b,c) = (i,i+1,n). For (S3)’, fist suppose that a,b,c,d,e € n
are distinct. Then

Sab;eScd;e = Sab;eXecXchde

~ XeeSabeXcaXde by (40.1)
~ XeeXcaSabaXde by (40.1)
R XeeXcaXdeSabie by (40.1)
= Scd:eSabie

and this time (S3)’ follows with (a, b, c,d,e) = (i,i+1,7,7+ 1,n). For (S4)’, note first that
for distinct a, b, ¢, d € n, we have

Sac;dSab;d = Sac;dXdaXabde

~ XaaSde:aXabXbd by (40.2)
~ XiaXabSde:s Xod by (40.1)
~ XaaXab XdSbe;d by (40.2)
= Sab;aSbe;d-

Together with the result of the first calculation above and (E1), this implies that
SabdSbe:dSabsd X Sac;dSabsdSabid = Sac;d€d = Sacid-
Using this, and Lemma 36, we also have
SbesdSabdObesd X ScbidOba:dOchid X Sca:d ~ Sacid-
These two together imply, with (a,b,c,d) = (i, + 1,7+ 2,n), that (S4)" holds. O
The only relations remaining to be covered are (BL1—BL6)’ (and also (RA1—RAG6)" which

will follow by duality). The most difficult to establish is (RA2)’, for which we will need

one further technical result. If » > 2, and k,,...,7,. € n are distinct, we define a word
Sil ..... irk — Xk‘ilXilig e X Xirka

Tp—1lr

noting that this agrees with our earlier definition of S;;,;, when r = 2.
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Lemma 42 Ifr > 2 and k,i1,...,1. € n are distinct, then

Sllvmﬂr;k ~ SZZy---ﬂryZUk’

Proof The r = 2 case is just Lemma 36, and the r = 3 case was covered in the first
calculation of Lemma 40, while if r» > 4, then

S eoviivik = Xiin Xivin =+ Xiy g1 Xip_rin Xirk
R Xy Xivin Xy _aip_1 Xiy_1in XirkEk by (E1)
R Xiiy Xiyin = Xiy_gir 1 Xiy_yir Xipk X kiy_y X1k by (25.5)
R Xiiy Xivin  Xirain 1 Xir kX ki Xipin g Xin_ 1k by Lemma 36
o X Xigig Xy i 1 Xiv iy XiykXkinXini, 1Xi, 1k by an induction hypothesis
R XiinXigis ** Xipgin 1 Nip1irXipis NiykXki,_,Xi,_k Dby the r =3 case
~ Sig,.ivsi1kEk by (25.5)
~ Sig,.. itk by (E1),
and the proof is complete. a

Remark 43 The word S;, ;% is mapped to the restriction of the r-cycle (i1, ...,4,) to
the domain n\ {k}, so the result of Lemma 42 is natural, given that (is, ..., 1,,41) represents
the same r-cycle.

Lemma 44 Let1 <1 < ] —1<n—-1. Then Bz]Lz ~ Sz s Sj_g ~ Si7---,j—1§n‘

Proof We begin by showing that S;---S;_o = S; _j_1.,. Now if j =i + 2, then there is
nothing to show, while if j > ¢ + 2 then, using an induction hypothesis, we have
S Sj—BSj—2 ~ Si,...,j—z;nsj—2
= XpiXiip1 - Xj3 20X 0nXnj2Xj 21X 10

~ Xm'Xi,i-i-l e 'Xj—3,j—2€j—2Xj—2,j—1Xj—1,n by (25-5)
~ Xm'Xi,i-i-l e 'Xj—s,j—sz—2,j—1Xj—1,n by (El)
= Si,...,j—l;n-
Next, we show that for distinct &, 1,41, ...,7, € n we have
XlkSil,...,ir;kal ~ Sil,...,ir;l- (44-1)
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Indeed, we see first that

Siv vk Xkl = Xioin Xivig =+ Xiy_1in Xiy kX ki
R Xiiy Xigig - Xy 14, Xipk Xpi€ by (E1)
R Xiy Xivin X yir Xip ke X1 X 13, X0 by (25.5)
~ Xiiy Xivin + Xinyin Xt X1k X ki Xi 0 by Lemma 36
~ XX, Xivig + Xip1in Xk X iy X 1 by Lemma 42
~ XX, Xiyin - Xi,_1in€i, Xinl by (25.5)
~ XXy Xiyip - Xy 14, X by (E1)
= X Siyivils
and it follows that
XiieSin,ivik Xkt = XigXi1Siy,.oiva
N E1Siy,.inil by (25.5)
~Sin, i by (E1).

Finally we calculate that
Bszz == R]tZ]LZ
= Xpn-1 X1t Xiigr - Xjo 1 X1 X501 Xnzip
N Apn—1-" 'Xj+1,j€jtij€iXi,z‘+1 o 'Xj—2,j—1Xj—1,ij,j+1 o 'Xn—1,n by (El)
=1 X1 i X iK1 Xjo X521 X i1 Xnn
=1 X1, j-15Xj 41 Xooin

R Oi,..j—1in by (44.1).

.....

This last calculation needs to be slightly modified to cover the j = n case; we simply
replace the products X, ,—1--- X415 and Xj,41--- X1, by €; = €5, and the last line
follows by (E1) rather than (44.1). In any case, the proof is now complete. O

Lemma 45 Relations (BL1—BL6) and (RA1—RAG6)" are in 2.

Proof For (BL1),if 1 <k <i < j <n, then by (30.3) and (RL3)" we have
BijLy = Rjti; Ly, = R;Lyti—1 j—1 =~ Ly LpyRj_1ti—1 ;-1 = Ly LBy j_1.
Relation (BL2)" was dealt with in the previous lemma. For (BL3)', if 1 <i < n — 2, then
B Li = Ripati i1 X ip1Li

~ Ri+15i+1ti,i+15i+1Li+1 El) and the dual of (293)
ET3)
E1)

RL2)'

by (
~ Rip1€ip1Lin by (
~ Riv1Liva by (
~ L, by (
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If1<i<k<j<n,then
BijLy = Rjti;Li, = R;Lyt; j_1 =~ L, LyR; _1t; j—1 = L, Li,B; j_1,
so that (BL4)" holds. For (BL5)’, we have
Bi;Lj = Rjt;;Lj = Rjejtije;L; = Rje;L; =~ R;L; = L,.
Finally, if 1 <17 < j < k < n, then
Bi;jLy = Rjti;Li, = R;Lyt;j = L,Ly_1R;t;j = L, Li_1B;;,
showing that (BL6)" holds. Relations (RA1—RAG6)" follow by duality. O

We have finally dealt with all the relations from 2’ UZ%’, showing that they follow from 2,
and have therefore proved the following.

Theorem 46 We have the presentation P, \ S, = (¥ | 2). 0

Remark 47 Theorem 46 has implications for partition algebras. As in [25], we may
describe these algebras as twisted semigroup algebras of the partition monoids as follows.
Let F' denote a commutative ring with identity, and let £ € F' be an invertible element.
Recall that one of the steps in defining the product a3 of two partitions «, 3 € P,, involved
the removal of any connected components that lived entirely in the middle portion of the
concatenated graph. If we denote by m(a, ) the number of connected components deleted
when forming the product a3, then the map

TPy X Py — F:(a,f) — emer)
is a twisting from P, to F. That is, it satisfies the identity

(e, B)7(af,7) = (e, B7)7(8,7)-

This enables us to construct an F-algebra F7[P,], with basis P,, and multiplication %
defined on basis elements by

ax =g (ap)

and then extended by linearity to combinations of basis elements. This algebra is known
as the partition algebra and, without causing confusion, if we allow ourselves to write 7 for
the restriction of the twisting to the singular part P, \ S,, the singular part of the partition

algebra is F7[P, \ S,]. By [7, Prop. 44], this algebra has (algebra) presentation ( % | 2 )
where 2 is the set of relations obtained from 2 by replacing (E1) by

e = &gy for all 7.

32



References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. André. Semigroups that Contain all Singular Transformations. Semigroup Forum,
68(2):304-307, 1966.

G. Ayik, H. Ayik, Y. Unlii, and J. M. Howie. The Subsemigroup Generated by the
Idempotents of a Full Transformation Semigroup. J. London Math. Soc., 41:707-716,
1966.

D. Easdown, J. East, and D. G. FitzGerald. Presentations of Factorizable Inverse
Monoids. Acta Sci. Math. (Szeged), 71:509-520, 2005.

D. Easdown, J. East, and D. G. FitzGerald. A Presentation of the Dual Symmetric
Inverse Monoid. Internat. J. Algebra Comput., 18(2):357-374, 2008.

J. East. On the Rank of the Singular Part of the Partition Monoids. In preparation.

J. East. A Presentation of the Singular Part of the Symmetric Inverse Monoid. Comm.
Alg., 34:1671-1689, 2006.

J. East. Generators and Relations for Partition Monoids and Algebras. Preprint,
2007.

J. East. A Presentation for the Singular Part of the Full Transformation Semigroup.
Preprint, 2007.

J. East. Presentations for Singular Subsemigroups of the Partial Transformation
Semigroups. Preprint, 2007.

D. G. FitzGerald. A Presentation for the Monoid of Uniform Block Permutations.
Bull. Austral. Math. Soc., 68:317-324, 2003.

D. G. FitzGerald and J. Leech. Dual Symmetric Inverse Semigroups and Representa-
tion Theory. J. Austral. Math. Soc., 64:146-182, 1998.

G. M. S. Gomes and J. M. Howie. On the Ranks of Certain Finite Semigroups of
Transformations. Math. Proc. Cambridge Philos. Soc., 101(3):395-403, 1987.

G. M. S. Gomes and J. M. Howie. On the Ranks of Certain Semigroups of Order-
Preserving Transformations. Semigroup Forum, 45(3):272-282, 1992.

T. Halverson and A. Ram. Partition Algebras. European J. Combin., 26(6):869-921,
2005.

P. M. Higgins. Techniques of Semigroup Theory. Oxford Science Publications. The
Clarendon Press, Oxford University Press, New York, 1992.

J. M. Howie. The Subsemigroup Generated by the Idempotents of a Full Transfor-
mation Semigroup. J. London Math. Soc., 41:707-716, 1966.

33



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

J. M. Howie. An Introduction to Semigroup Theory. L.M.S. Monographs, No. 7.
Academic Press, New York, 1976.

J. M. Howie. Idempotent Generators in Finite Full Transformation Semigroups. Proc.
Roy. Soc. Edinburgh Sect. A, 81(3-4):317-323, 1978.

J. M. Howie and R. B. McFadden. Idempotent Rank in Finite Full Transformation
Semigroups. Proc. Roy. Soc. Edinburgh Sect. A, 114(3-4):161-167, 1990.

K. A. Kearnes, A. Szendrei, and J. Wood. Generating Singular Transformations.
Semigroup Forum, 63(3):441-448, 2001.

M. V. Lawson. Inverse Semigroups. The Theory of Partial Symmetries. World Scien-
tific Publishing Co., Inc., River Edge, NJ, 1998.

S. Lipscombe. Symmetric Inverse Semigroups. American Mathematical Society, Prov-
idence, R.I., 1996.

V. Maltcev and V. Mazorchuk. Presentation of the Singular Part of the Brauer Mon-
oid. Math. Bohem., 132(3):297-323, 2007.

M. Petrich. Inverse Semigroups. Pure and Applied Mathematics. Wiley and Sons,
1984.

S. Wilcox. Cellularity of Diagram Algebras as Twisted Semigroup Algebras. J. Algebra,
309(1):10-31, 2007.

34



