MORITA EQUIVALENCES OF CYCLOTOMIC HECKE

ALGEBRAS OF TYPE G(r,p,n) II: THE (¢, q)-SEPARATED CASE

1.

JUN HU AND ANDREW MATHAS

ABSTRACT. The paper studies the modular representation theory of the cy-
clotomic Hecke algebras of type G(r,p,n) with (e, q)-separated parameters.
We show that the decomposition numbers of these algebras are completely
determined by the decomposition matrices of related cyclotomic Hecke alge-
bras of type G(s,1,m), where 1 < s < r and 1 < m < n. Furthermore, the
proof gives an explicit algorithm for computing these decomposition numbers
meaning that the decomposition matrices of these algebras are now known in
principle.

In proving these results, we develop a Specht module theory for these alge-
bras, explicitly construct their simple modules and introduce and study ana-
logues of the cyclotomic Schur algebras of type G(r, p,n) when the parameters
are (e, q)-separated.

The main results of the paper rest upon two Morita equivalences: the first
reduces the calculation of all decomposition numbers to the case of the I-
splittable decomposition numbers and the second Morita equivalence allows us
to compute these decomposition numbers using an analogue of the cyclotomic
Schur algebras for the Hecke algebras of type G(r,p, n).
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1. INTRODUCTION

The cyclotomic Hecke algebras [5] are an important class of algebras which arise
in the representation theory of finite reductive groups. These algebras can be de-
fined using generators and relations and they are deformations of the group algebras
of the complex reflection groups. The cyclotomic Hecke algebras can also be con-
structed using the monodromy representation of the associated braid groups [6] and,
in characteristic zero, they are closely connected with category O of the rational
Cherednik algebras by the Knizhnik-Zamolodchikov functor [17].

This paper is concerned with the representation theory of the cyclotomic Hecke
algebras 4, , », of type G(r,p,n), where r = pd, p > 1 and n > 3. Throughout we
work over a field K which contains a primitive pth root of unity . The algebra
A, »n depends upon e and parameters ¢ € K and Q = (Q1,...,Q4) € K? (see
Definition 2.1). The parameters Q are (e, q)-separated over K if

IT II II (@-¢d@)+#o

1<i,j<d —n<k<n 1<t<p

in K. In general, 4% ,,, is not semisimple if Q is (¢, ¢)-separated over K.
Our main result is the following.

Theorem A. Suppose that K is a field of characteristic zero and that Q is (¢, q)-
separated over K. Then the decomposition matriz of 2., , is determined by the
decomposition matrices of the cyclotomic Hecke algebras of type G(s,1,m), where
1<s<randl<m<n.

To prove Theorem A we explicitly compute the [—splittable decomposition num-
bers (Definition 1.2) of J2.,,,,, where [ divides p. Theorem D at the end of this
introduction gives our closed formula for the I-splittable decomposition numbers.
This formula depends on the decomposition numbers of the Hecke algebras .77; ,,
of type G(s,1,m), ¢ and certain scalars g which are roots of certain quotients
of the (known) Schur elements of these algebras. This result implies Theorem A
because in earlier work [23, Theorem B and Theorem 5.7] we showed that every
decomposition number of JZ7. ,, ,, is a sum of [-splittable decomposition numbers for
certain Hecke algebras J7 | ,,, where 1 < s <r and 1 < m <n. The proof of The-
orem A also gives detailed information about the decomposition numbers of J77. , ,,
in positive characteristic.

Our proof of Theorem A, when combined with the results of [23], gives an
explicit algorithm for computing the decomposition numbers of 77 ,,, when Q
is (e, ¢)-separated. Ariki [2] determined the decomposition numbers of the Hecke
algebras 7. ,, of type G(r,1,n) when he, famously, proved and generalised the LLT
conjecture. Hence, combining [2] and Theorem A implies the following.

Corollary. Suppose that K is a field of characteristic zero and that Q is (g,q)-
separated over K. Then the decomposition matriz of 5., is, in principle, known.

We note that Theorem A and its corollary have both been obtained by the first
author in the special case of the Hecke algebras of type D, when r = p = 2 [22].

All of the results in this paper are geared towards computing the [-splittable
decomposition numbers of 7., , and this requires a considerable amount of new
representation theory.
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This story begins with the Morita equivalence theorem of Dipper and the second
author [10] which shows, modulo some technical assumptions on the parameters Q,
that there is a Morita equivalence

(11) %,n Morita @ %,ba
beCp,n
where %), is the set of compositions of n into p parts and if b = (bq,...,b,) €

Gpn then Gy, = Hyp, @ -+ @ Hgyp,. This result is proved by constructing an
explicit (g b, S ,)-bimodule Vi, = vy, (Definition 2.6), and showing that V4
is projective as an . ,-module and that 73 = End s, , (Vb).

For each b € %),,5,, we show in Theorem 2.26 that there exists an invertible central
element zp, in the centre of J73 1, such that ep = 2y, L upTp is the idempotent in
A, which generates V4, where Ty, = Ty, for a certain permutation wy. As a
byproduct we construct a parabolic subalgebra of F¢, ,, which is isomorphic to 5
and we show that the Morita equivalence (1.1) corresponds to induction from these
subalgebras.

More importantly, however, the element 2y, allows us to decompose certain J27. ,,-
modules when we restrict them to %%, ,, ,,. To describe this, recall from [9] that /7,
is a cellular algebra with cell modules the Specht modules S(\), which are indexed
by the r-multipartitions A = (A, A@) . X)) of n. If 5, , is semisimple then
the Specht modules gives a complete set of pairwise non-isomorphic irreducible
S n-modules. More generally, define D(X) = S(X)/rad S(A), where rad S(A) is
the radical of the bilinear form on S(A). Then the non-zero D(X) give a complete
set of pairwise non-isomorphic 7. ,-modules.

For each A € &, ,,, we write A = (A1 ... | APl) where

Al = ()\(dt_d+1),)\(dt_d+2), cl )\(dt)), for 1 <t <p.

Let b = (by,...,by) € € and set Pyp = {AE P, | A =0, for 1 <t <p}.
We want to describe the Specht modules of #5, for cach A € Pyp. By [9] the
algebra /), is a cellular algebra with cell modules Sp(A) =2 S(AM) @ - - @ S(AP]),
for A € P41, and Dp(A) = Sp(A)/rad Sp(A) is either absolutely irreducible or
Z€ero.

Let F = Q(e, 4, Q, A(g, 4, Q), where € € C is a fixed primitive pth root of unity
in C, ¢ and Q are indeterminates and A(¢, ¢, Q) is a certain polynomial which
ensures that Q is (&, ¢)-separated over F; see Definition 2.17. Then the cyclotomic
Hecke algebras .77, and 7, over F are semisimple and they come equipped with
non-degenerate trace forms Tr and Try, respectively. Define the Schur elements
5, and §8 in F by

1 1

Tr = g —y* and Trp, = g —_ }‘,

N 5)\X b 5[>)\Xb
EPrn AEPap

where x> and xjp are the characters of S(A) and Sp (), respectively. The Schur
elements §, and $% are explicitly known [27].

Given an integer k € Z and a sequence a = (a1, das,...,a,) define ak) =
(@41, Qkt2, - - - s Qktm), Where we set a;4jm = a; whenever j € Z and 1 < i < m.
Now define o,,,(a) = min { k > 1 | a(k) = a }. In particular, for A = (A ... AlP)) €
Pqb we define

ox =0,(A) and px =p/oa.
Note that oy divides p so that py is an integer, for all A € Py .

Theorem B. Suppose that Q is (¢, q)-separated over K and that A € Pay. Then
there exists a nonzero scalar fx € K such that zp, - v = fav, for all v € S(A).
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Moreover,
fa = (5)\/5?) Tr(vpTh) = g%doxn(lfpx)gz;f’

where gx € K and where (sx/s8)(e,q,Q) = (55/5%)(c,q, Q) is the specialization
of the rational function $y /5% at (¢,4,Q) = (¢,q,Q) (which is well-defined and
non-zero).

Roughly the first half of this paper is devoted to proving Theorem B, but the
payoff is considerable as the scalars gx play a role in everything that follows. To
show that 6%d°*”(p*’1)f>\ has a pxth root we use seminormals forms for the Specht
modules over F and an integral independence result from commutative algebra.
Further, we explicitly compute Tr(vpT},) in Corollary 2.33. This yields an explicit
closed formula for fy.

As s, ,, is a cellular algebra, { D(A) | D(A # 0} is a complete set of pairwise
non-isomorphic irreducible 4%, ,-modules. Let %7, = {X € &, ,|D(A) # 0}. Then
Hy.n is the set of Kleshchev multipartitions (for QV¢). Define an equivalence
relation ~, on &, by XA ~, p if A = p(k), for some k € Z and A\, pu € P, . If
Q is (e, q)-separated over K, then ~, induces an equivalence relation on %, ,, (cf.
Lemma 3.3). Let &7, and %%, be the sets of ~,-equivalence classes in &, ,, and
., respectively.

As a first application of Theorem B we develop a Specht module theory for S, p .
More precisely, if A € Py and 1 <t < px define

S ={z €S\ |Ox(x) =c"rgrz},

where 0y is an ¢, , ,-module endomorphism of S(A) which depends on the central
element zp, € I3 1; see Definition 4.30. Then S} is an H;. pn-module. Let D}
be the head of S. Then we have the following explicit construction of the simple
A7 pn-modules.

Theorem C. Suppose that K is a field and that Q is (g,q)-separated over K.
Then:

a) If p € A, then DY is an absolutely irreducible 2, ,,-module, for 1 <i <
Pu-

b) {Df | pne %7, and 1 <i < p,} is a complete set of pairwise non-isomorphic
absolutely irreducible F,. , »-modules. Hence, K is a splitting field for ., ».

¢) The decomposition matric of H; , p is unitriangular.

We are able to say quite a bit more about the structure of the Specht modules
S} and the simple modules D for ., ,; see Theorem 4.33 and Theorem 4.35 for
details.

We are finally able to define the [-splittable decomposition numbers of 27 ..
Suppose that A is a K-algebra and suppose that M is an A-module and D is
an irreducible A-module. Let [M : D] be the composition multiplicity of D as a
composition factor of M.

1.2. Definition. Suppose that | divides p, A\, € Pqp and that 1 < i < px and
1 < j < pu. The decomposition number [S} : D;‘] is -splittable if px =1 =p,.

By the results in section 4, and the general theory developed in [23], the decom-
position number [S? : D;-* ] is p-splittable if and only if S;‘ and D;-‘ both have trivial
inertia groups in the usual sense of Clifford theory.
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Now suppose that [ divides p and let m = p/l. To describe the [-splittable
decomposition numbers of %, , , let V(1) be the [ x [ Vandermonde matrix

1 1 o 1
em gZm . ghm
V() =
S-Dm o 20-m  0-Dm

For 1 < i < p define V;(I) to be the matrix obtained from V(1) by replacing its ith
column with the column vector

l
dAm Hm

1
(82)'d3 ..

l— I _
(&) hag,

where dy, .., = [S(AM, .. XM - D plmh] and 1 = ged(1,t).

Theorem D. Suppose that K is a field, that Q is (g, q)-separated over K and that
the decomposition number [S;\ : D;‘] is l-splittable so that px =l = p,, for some |
dividing p. Then

det V;_;(1)

57 - Dj] det V(1)

(mod char K),

for1<i,j <l=px=pu.

The main idea underpinning Theorem D is the introduction of a new algebra
rpm, which is an analogue of the cyclotomic Schur algebra [9] for 2., ,. We
introduce Weyl modules and simple modules for .. ,,,, and then compute the I-
splittable decomposition numbers of .7, ,, , using the twining characters of .. ,, ,,.
These characters are a generalization of the formal characters of a quasi-hereditary
algebra and they compute the trace of a certain element ¥ € .., , on certain
weight spaces of .7, ,-modules. The map ¥ is constructed from the action of z,
upon certain .7, ,-modules. Finally, Theorem D is proved using a considerable
amount of Clifford theory and some natural functors

@Fﬁf’)

b jad
Frpn = yr,pm(b) > Eq = Ed,b — A pn-
Morita
be%y, be%g,

where the first functor is an analogue of the Schur functor and the second functor
lifts the Morita equivalence of (1.1) up to 72, ,.

Very briefly, the outline of this paper is as follows. Section 2 studies the right
ideals Vp, = vps4;.,, in long and technical detail. The main results are Lemma 2.21
which shows the existence of the central element zy,, Theorem 2.26 which produces
a subalgebra of J7, ,, isomorphic to .77 1, and Theorem 2.31 which is a comparison
theorem for the natural trace forms on 5, and 7. ,,. In Section 3 these results
are used to compute the scalars fy, for A € 2, ,, which describe the action of
zp on the Specht modules S(X) of 7. ,, and proves the first half of Theorem B.
Section 4 marks the first direct appearance of the algebras J¢, ,,. Using semi-
normal forms we factorize the scalars fx, completing the proof of Theorem B. We
then use the roots of the scalars fx to decompose the Specht modules, culminat-
ing in Theorem 4.33 and Theorem 4.35 which describe the Specht modules and
simple modules of 77, ,, respectively. Section 4 concludes by lifting the Morita
equivalence (1.1) to a new Morita equivalence between % ,, and a new algebra
E; in Corollary 4.41. Section 5 begins by introducing analogues of the cyclotomic
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Schur algebras for ¢, ,. Theorem 5.29 computes the [-splittable decomposition
numbers of these algebras using twining characters, using Schur functors and the
algebras &y we then prove Theorem D and hence complete the proof of Theorem A.

INDEX OF NOTATION

~g Equivalence relation b ~ b(t)

~b Equivalence relation A ~ A(op)

Tg, J,g Induction/restriction functors

Ae,9,Q) Hi7j7‘k‘|<n,lsi<p(Qi - thij)

A 2, 0P, . 0, 1t

aVvb The concatenation of a and b

b(z) The shift of the sequence b by z

Gp,n Compositions of n of length p

ch M >, (dim M, )e”

chiy M > Tr(¥%, M, )e

eb The idempotent z, LoopTe

d r/p

D(X) Simple module for 7. ,,

Dyp(X\)  Simple module for 54

ijp Simple module for &y,

D} Simple module for J7. , n

A(X) Weyl module for ., ,,

Ap(A)  Weyl module for .y

AR, Weyl module for .7, n

€ Primitive pth root of unity in K

5 Primitive pth root of unity in C

éadb = El’ldﬁfhpyn (Vb)

F The field of fractions of A

fA The scalar: zp ~LS()\): f>\ idS(A)
(£) =™ factor of fa

g fa = ezdoan(i=pa) ga

Hp A functor Mod-743,, — Mod-. .
| The map h — Y:ih

0% The map h + Yymh

0t,m = O’m o 0£7m

Oy = 00,0, (b) Testricted to Mg‘

Ox = 00,0,(x) restricted to S(X)

Jb Oy restricted to Mf,‘

'R ﬁib/)\

(:)b, Op Two maps b — Hn

AR Hecke algebra of type G(r,1,n)

%ﬁim Hecke algebra of type G(r, p,n)

@,b =Hap, @ Q@ Hap,

Ha =Hip-eo = Hap

Hrn Kleshchev multipartitions in & ,,

Hab Kleshchev multipartitions in Z4 b

L(X)
Lp(X)
L3y
My
op(b)
Ob

ox

2N
Po/x
Pu/x
Prn

Simple module for .7 ,,

Simple module for .74 b

Simple module for .7 p.»
Permutation module in V}
=min{z>0|b(z)=b}

= op(b)

=0p(A)

p/op(A) =p/oa

Pb/Dx = 0x/0b

Pu/Px = ox/op

The set of r—partitions of n

(A€ Py bi= A 1<i<d}
(GO | @y

[T, (Lr — °Qi)

ngkgm HSEIU ‘Cch)

(Qla EEE) Qd)
eQVvelQv---verQ

Sy = Ay Ty s €207,

An automorphism of .7 p n
(i,i+1) €6,

Specht module for .77 ,,

Specht module for 5,

Specht module for &y,

Specht module for J&. , »

Schur element of S(A)

Schur element of Sp(A)
Cyclotomic Schur algebra for 7,
Cyclotomic Schur algebra for .75 v,
Cyclotomic Schur algebra for 2. , »

Twa,b

Tw, where w = wi’fg
h— Ty ' hTo

up(Q) = v;fu; = up Vg
ub(c' Q)

The ideal vp 5% 1,

= vff)c%ﬁ,n

Seminormal basis of $7 (X)*™)

(3a+b+k—1 ce. Sk+1)b

—2
(I w(bb w v
bp—1,bh 7" Tbg,bE T b1,by
(t+1,t+p—1)
‘Cl,bt Ty n—b,

YimYim—1... th(mfl)+l
Central element of .7

2. MORITA EQUIVALENCES FOR THE HECKE ALGEBRAS OF TYPE G(r,1,n)

This section introduces and studies some very useful right ideals V}, of the cyclo-
tomic Hecke algebras of type G(r,1,n). In the next section we use these ideals to
construct ‘shifting homomorphisms’ linking certain Specht modules. These maps,
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which will turn out to be multiplication by a scalar, are the key to the main results
of this paper. We start by recalling the definition of the cyclotomic Hecke algebras.

Throughout this paper we fix positive integers n,r,p and d such that n > 3,
p > 1and r = pd. Let R be a commutative ring which contains a primitive pth
root of unity € and suppose that ¢,Q1,...,Qq are invertible elements of R. Let

Q:(Q17"'7Qd) andQVEZEQVEQQV"'\/EPQ.

2.1. Cyclotomic Hecke algebras. The Ariki-Koike algebra f%”ﬁl = %ﬂﬁl (¢,Q)
with parameters ¢ and QV€ is the unital associative R-algebra with generators
To,T1,...,T,_1 and relations

(Ty = Q7). (Ty — Q) =0,
(T; —q)(T; +1) =0, for1<i<n-—1,
ToT1ToTy = ThIoT T,
Tip Tl =TT Ty, for1<i<n-—2,
;T = 15T, for0<i<ji—1<n-2

When the ring R and the parameters Q are understood we write 2., = 5 (Q).

2.1. Definition. The cyclotomic Hecke algebra of type G(r,p,n) is the subal-
gebra A, n(Q) of ., (Q) which is generated by the elements T§, T, = To_lTlTO
and T17T23 T 7Tn71-

In this paper we are interested in understanding the decomposition matrices of
the algebra .7, ,, ,. We have chosen the ordering of the parameters eQVe?QV - -V
ePQ so that we can extend the Morita equivalences developed in [10,23] to prove
a new Morita reduction theorem for 4%, , ,,; see Corollary 4.41.

Let &,, be the symmetric group on n letters and let s; = (i,i+ 1) € &,, be a
simple transposition, for 1 < i < n. Then {s1,...,s,_1} are the standard Coxeter
generators of the symmetric group &,,. Let {:S,, — N be the length function
on &,, so that {(w) = k if k is minimal such that w = s;, ...s;,, where 1 <
i1,...,%, < mn. As the type A braid relations hold in 4%, ,, for each w € &,, there is
a well-defined element T, € S, ,,, where Ty, = T3, ... T;, whenever w = s;, ...s;
and k = ¢(w).

Inspecting the relations, there is a unique anti-isomorphism * of %, ,, which fixes
To,T1,...,Th—1. We have T = T},-1.

k

2.2. Jucys-Murphy elements. For non-negative integers a,b with 0 < a+b<n
we set Wap = (Satp—1---51)° (In particular, weo = 1 = woy.) If we write
Wb € Sqyp as a permutation in two-line notation then

_ ( 1 e a a+1 -+ a+bd )
Wab=\pr1 - a4b 1 - b )
For simplicity, we write Ty, = Ty, ,. Similarly, if £ is a non-negative integer such

that 0 < a + b+ k < n then we set wflkg = (Satbik—1---5ks1)?. Then Wop = w((log

and, abusing notation slightly, we write THU? =T, -
’ a,b

The following result is easily checked.
2.2. Lemma. Suppose that a, b and ¢ are non-negative integers such that a+b+c <
n. Then we ptc = wa,bwy’)z and Wotp,c = wéfgwa’c, with the lengths adding. Conse-
quently, To pyc = aJ,Téf)c) and Toip e = T;?Ta’c. Moreover, TiTa{C> = Té,ch(i)w“z
ifl<i<nandi+#a+c. '

Set Ly = Ty and Ly 1 = q T LTy, for k =1,...,n—1. These elements L; are
the Jucys—Murphy elements of .. ,, and they generate a commutative subalgebra
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of S ,,. We will use the following well-known properties of the Jucys-Murphy
elements without mention.

2.3. Lemma (cf. [3, Lemma 3.3]). Suppose that 1 <i<mn and 1 <k <n. Then
a) T; and Ly commute if i # k,k — 1.
b) T) commutes with LyLi11 and Ly 4+ Liy1.
C) TkLk = Lk+1(Tk —q+ 1) and TkLk+1 = Lka + (q - I)Lk+1.

For integers k and s, with 1 <k <n and 1 < s < p, set
d
£y =T@e - Q).
i=1

More generally, if 1 <1 <m <nand 1 <1435 <pthen set

d
el = 11 2= 11 Tl -=qo,
I<k<m I<kE<mt=1
sel;; sel;;
where I;; = {i,i+1,...,j},if i <j,and I; ={1,2...,4,4,a+1,...,p} if ¢ > j.
A key property of the Jucys-Murphy elements of J#. ,, is that T; commutes with
any polynomial in Ly,..., L, which is symmetric with respect to L; and L;y;. In
particular, any symmetric polynomial in Ly, ..., L, is central in 2. ,. Hence, we
have the following.

2.4. Lemma. Suppose that 1 <l <m <n and1 <t <p. Then
T.e) =0T, and  LiL), = £)) L;,
foralli,j suchthat 1 <i<n,1<j<nandi#!l—1,m.

2.3. The elements v, and vf)t ). As remarked after Theorem D in the introduction,

the main results of this paper rely on a Morita equivalence between .77, ,, and a
direct sum of certain algebras &3 . This equivalence builds upon previous work
[8,10,23] which gave similar Morita equivalences for the algebras 2. ,, and 2, ,,.
The starting point for all of this work is a generalization of a fundamental lemma
of Dipper and James [8, Lemma 3.10].

2.5. Lemma ([10, Proposition 3.4]). Suppose that a, b, s and t are positive integers

withl<a+b<nandl <s<t<p. Let v((;l’f) = Egsj(’f)T%bEgt’bH’sfl). Then

Tl =T

s,t s,t
ab L(iywas and Ljvi,b)zvc(a,b)l’(j)wa,b?

for alli,j such that 1 <i,5 <a-+b andi# a,a+b.

Recall from the introduction that %), is the set of compositions of n into p
parts. Thus, b € 6, ,, if and only if b = (by,...,b,), b1 +--- + b, =n and b; > 0,
for all i. Finally, if b € %),,, and i and j are integers then we set b! = b; + - -- + b;
ifi <jandbl =0ifi>j.

The following elements of 77 ,,, which generalize the elements ”t(zsi;t)
introduced in [23, Definition 2.4], play an important role throughout this paper.

and were

2.6. Definition. Suppose that b € €, . Let

1,p—1 1,p—2 1,1 2 3
w(Q) =L} >pr’b,fflc§,bj_l>pr_hb,;72 . .c§7b2>Tb27bic§7gic§,g§ - Li{?o,f,l

We write vp, = v,(Q) and for t € Z we set vét) = vp(e'Q).
Set Vy = vp I, and, more generally, let Vb(t) = vl()t)%’i)n.
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We start by showing that vy, can be written in many different (and useful) ways.
This requires several long and involved calculations. On the first reading the reader
might prefer to skip these calculations and start reading from Section 3.

Recall from the introduction that if b € €}, ,, and k € Z then b(k) = (bg+1, br+2, -
where we set bjy, = b; for 1 <1 <p.

2.7. Lemma. Suppose thatb € 6,,. Then
_ p2p-1) (2,2) (3) (p) 1) (2,p)
a) Vp = /:/Lbi pr,bg—l e El,b_g TbBabgﬁl,bg e ‘C]_Z’)bgfl‘cl,bgTbgvblﬁlybzl) .

b) vb € L1, A

Proof. To prove the Lemma, if 1 < s < p then define

L(s) = L5 Ty wg o L850, 2P, e )

— ~1bsqa L,bi """ T1piTtTLb 0
_ p(2,9) (2,2) (3) (s) (s+1,p) p(1) (2,p)
R(S) = £17b5+1Tbs+11b; N ‘Cl,bg Tb31b%£1,bg N £17b3_1£17b§ £17b;+1Tb;+1,b1£1,b1 .

Part (a) of the Lemma is the claim that L(p — 1) = R(p — 1). To prove this we
show by induction on s that L(s) = R(s), for 1 < s < p. If s =1 then

1 2,
L(1) = £, T £15) = (D),
and there is nothing to prove. Assume by induction that L(s) = R(s). Then

1,s+1 542,
L(s+1) = £§7bs+2 )Tbs+2’bi+l L(s)- ‘Ci)'i-‘rliptz?rl

_ p(l,s4+1) (s+2,p)
= Ligers oy pgrt - B(S) [:biﬂ,lo‘i+1

_ p(ls+1) (2,5) (2,2)
- £17bs+2 Tbs+2’bi+1 ' £17bs+1Tbs+1’b§ to £17b3 TbB,b%
(3) (s) (s+1,p) p(1) (2,p)  p(st2,p)
X Ce E .
El,bg Ll,bgflﬁl,bé E1,b;+1Tb§“,b1 Lb £b§+1,bf+l

_ pllstl) (b37h) | p(2.5) (2,2)
- £17b5+2 ’ bs+2’b;+1Tbs+27bl ’ 17bs+1TbS+1*b§ T £17b3 Tb3,b§

« £(3) ,C(S) £(5+17P) ’U(l’l) . )C(S-"-?,P)

1LbZ " F1bs 1 TLbs T Uity Tbs41,bit!

by Lemma 2.2. Using Lemma 2.5 twice, and Lemma 2.4 many times, we find

_ @) (2,5+1) (2,8) (2,2)
L(S + 1) - £17b5+2 ’ £17b5+2 Tbs+2,b;+1’Cl,bsﬂTbS*—l*b; T £17b3 TbB’bg

S P BVl IR R e
o) o 5Tt
x Efl))% "'Efl)ngflcgs,;rél) 'Tlff;;in;“,blﬁféf)
- Ulff:;g“ ' £1(31;)+1+1,b§+2 ' Efl;ilTbsHvbS - "Cfl’i)Tbsvbi
x 432» L ﬁl)a;*lﬁ(lf;al) ' Tb;“,blﬁféf)’

which, after some more rearranging using Lemma 2.4, is equal to R(s + 1). This
proves the claim and hence completes the proof of part (a). To prove part (b),
looking at the second last equality we see that there exists an h € 7 ,, such that

— M (2,5+1) _ st p(D)
L(S + 1) - ‘Cl,bs+2vbs+27b§+1h = Ubs_*_g,b;“‘cl,b;“h
—_r (Lst1) 5 p(D) (2,5+1) (s+2.p)
= Lbs+2+1,b§+2vbs+2,b§+lh = El,b;+2£1,bs+z Tbs+2»b;+1£1,bg+1 h,
so that L(s+1) € £ ;. Taking s = p — 2 proves (b) and so completes the

1,b5T?
proof of the Lemma. O

<3 bhgp),
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2.8. Corollary. Suppose that b € €, and t € Z. Then US) € Elt::;)%”

Proof. It is enough to consider the case when ¢t = 0 and this is exactly part (b) of

Lemma 2.7. O
Fort=1,...,p, let Y, = LTV, oy

2.9. Corollary. Suppose thatb € €, , and 1 <t < p. Then

(1) _ 0y
Yivg 1y = Ui Yr-

Proof. It is enough to consider the case ¢t = 1. If ¢ = 1 then by Lemma 2.7(a)

Yivp = nglf)Tbl,bS .£§2l;p_1)Tp7bg_l E?bi)Tvab%ﬁfzﬁ ' ﬁgpl))p !

* Ly

(2,p)
Tbé’,blﬁl bI;
1 2,p
= Ul()()1>Tb§,b1£§7b1)’
as required. 0
The point of Corollary 2.9 is that left multiplication by Y; defines an 2. ,-module
homomorphism from Vb(zt 11)) = U&;i)l)%., Vé% = &)wjﬁ,n

2.10. Definition. Suppose that1 <t <p andb € €, . Then 0, is the . ,,-module

homomorphism
0, : (tt 11)> —>Vé2>;x — Yz,

for all x € Véz;ll)).

Since v, = Uf)p&», composing the maps 9; o---00] gives an ;. ,-module endo-
morphism of v, 52, ,,. We need to describe this map.

2.11. Lemma. Suppose thatb € 6,,. Then Y,Y,_1...Y3Y] = vpTh.

Proof. To prove the Lemma it is enough to show by induction on ¢ that
1,t—1 1,1 2 t bi~!
Voo Vi =050, e 0850, 3 2 T 2501 +>1 Ty, g

When t = 1 the right hand side of this equation is just Y7 so there is nothing to
prove. Now suppose that 1 <t < p — 1. Then, by induction and Lemma 2.4,

_ pt+2.t4p) (1,t-1) (1,1)
Yigr Vi =020 00T, b ...El’bz T, pi

(2) s) (b1)
x £1vb1 ’ H E 1,bt bt’ : sz bPTbl b}
t<s<p
(t42,t+p) (b?) (Lt=1)p, (1,1)
El Jbig1 T t+1,bt Tbt+1,bf+2 ‘Cl by b bt 1... ‘Cl,b2 sz,b%
(2) (t) H () bf (b1)
X El,bl Ll bt 1 El bt bt bf+1 . 1})2 b”Tb1,b§
t<s<p
_ a2 (L) (1,t-1) (11)
- El,bt+1 biy1,bY ‘Cl ,bg T ‘Cl .bo Tbg, 1

(2) (t) (bl) (CHa! (b1)
X ’Cl,b1 e £17b1171 ZTbH_1 bt+2 bt7b€+1 . sz,bg bl,bg
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Therefore, by Lemma 2.5 we have

vi=olht o eln e e T,

Y;”H T biy1,bt bi+1,bit! 1,b¢ be,by

(2) (t) (b) (b h (b1)
X £1,b1 .. 'El,b'l"l . Tbt+11,bf+2 . Tbt’bf“ .. .Tb llop
(1,)

_ , (1,1 (2) £+ (s)
= Ly Toemg - Lipy Doy b1 £59, -+ £y II ¢ o
t+1<s<p

Tb1 bp

><T<b>

bisnbly 1 TbrbEs

t+2 ’

completing the proof of our claim. Taking ¢ = p in the claim proves the Lemma. [
We close this subsection by generalizing Lemma 2.7 to show that v, can be
written in many other forms.

2.12. Lemma. Suppose that b € €, and that 1 < j < s <p. Then

I e g T1 €l 11 26

i<k<s J<k<p 1<i<y

_ (3+1, k) (4) (2) (k)
- H ‘Cl Jbrt1 bk+17bk+1 £1 b +1Tb§'+l’bi H ELbP ‘Cl,bffl’
j+1<k<s 1<i<j j<k<p

where all products are read from left to right with decreasing values of i and k.

Proof. Let L(s) and R(s), respectively, be the left and right hand side of the formula
in the statement of the Lemma. We show that L(s) = R(s) by induction on s. To
start the induction observe that, by our conventions,

=11 z: T 28 e, =R

J<k<p 1<i<y

Hence, the Lemma is true when s = j. If j < s < p then, by induction,

L(s+1)= £ Ty, e L(s) = L9 Th,, e R(s)

1,b. s+1
_ pd:s) (J+1,k) () © (k)
- £175s+1TbS+17b§ H ﬁlvbk+1 Tbk+1vbk 'L:l +1Tb§+1’bf Hﬁpr H ﬁl bt
j+1<k<s 1<i<;j j<k<p
_ pds) H (j+17k) H
- £17bs+1TbS+1’b§ ‘Cl,bkﬂ bit1,b% 41 ‘C bs, +1,b7,
JH1<k<s 1<i<j

(1,9) (k)
X Vps I | L -
J+17b b]‘Jrl,b? b

Jj+1<k<p
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since T, ;, commutes with £§ZL by Lemma 2.3 whenever a+b < k and 1 <14 < p (we
use this fact several times below). Therefore, using Lemma 2.2 and Lemma 2.5,

_ ps) (b7 1) H (J+1, k H (%)
L(s+1)= 51,bs+1Tbg+1, ]+1Tbs+1,b,- Ly Dbrt1 Y S E b3, ,+1,b?
J+1<k<s 1<i<y
(s+1,p) (LJ) H (k) H (k)
X B 1 _
Ly le bs, b 'Cb j+1,b5 71 'Cb;IJrl,bf !
]+1<k:§s s+1<k<p

(4) (j+1,8) H (J+1.k) H (1)
=Ly bar1 Vbay1 s Lipe Tbk+1,b§+1 L, b, +1,b%,
j+1<k<s 1<i<y
(b J+1> J+1’p (k) (k)
X Tsﬂ b; Tbj+1’b H ‘cb1+1 bht’ H ‘cb;+1,b§—1
JH1I<k<s s+1<k<p
_ (j+175) (]) H (.7+17k) H
- ’Ubs+1,b§+1['b;f+l+1’b;i} Ll,bk+1 brt1,b¥, [’bs+1+1 bl
j+1<k<e 1<i<y

J+17P H H (k)
X Ty s .
bjii, ﬁb +1,bk1 Ebj-ﬁ-l,b?’l
JH1I<Ek<s s+1<k§p
_ (U+1.k)p H

JH1<k<s+1 1<i<y

(S+1,p) 1,5 (k (k
x Ly, b, 1()*+Z b; H Lbi—l e H Loy e
j+173 0 Pj
JH1I<k<s s+1<k<p

=R(s+1),

where the two lines we have, in essence, reversed some of the previous steps. This
completes the proof. O

The following result includes the definition of vy and Lemma 2.7(a) as special
cases (corresponding to j = 1 and j = 2, respectively). We proved Lemma 2.7 first
because its proof is considerably easier than the proof of Proposition 2.13, even
though the underlying argument is very similar.

2.13. Proposition. Suppose thatb € €, and 1 < j < p. Then

_ (4,k) (k) (i.p)
b = H Elj,bchrlTka’b?. H El bl H £ 1,b%~ v H bevbi—l‘clvblz—l’

J<k<p 1<i<g J<k<p ! 1<i<y

where all products are read from left to right with decreasing values of i and k.

Proof. We argue by induction on j. When j = 1 the Lemma is a restatement of
Definition 2.6, so there is nothing to prove. Suppose now that 1 < j < p and that
the formula in the Proposition holds. Then by induction and Lemma 2.12 (with
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s =p), we see that

_ k) (4) (k) (i,p)
Ub = H 'C’ljbk+1Tbk+1»bk ’ H El bP ’ H £1 bk 1 H be>bi—1£1,bﬁ71

jH+1<k<p 1<i<j j<k<p 1<i<j
_ (G+1.0) (4) H H (k)
- H ‘Cl b1 bk+17b§+1 ‘Cl +1 J+1» El b1p+1 L bk 1

JH1<k<s 1<i<y J<k<p

£p)
X H pr bi—1 1 i
1<i<y

_ (J+1.k) H (i) (1.9) H (k)
- H El bk41 Tbk+1=b?+1 £ J+1+1 by, vb§+1,bj ‘ij+1,b;.°71

j+1<k<p 1<i<y j+1<k<p

(i,p)
< I Tora £33,
1<i<j

_ (3+1,k) H (2) H (k)
= I & T, Lor v1br,, Ly pin

jH+1<k<p 1<i<j jH+1<k<p :

(1}‘] H T 7p)
1-7
7+1) b 1 1 1 b1 1
1<'L<g
_ (J'+1J€) H H (k) H (%p)
- H £17bk+1 brt1,b¥, El berl L b" ! pr b1 1 bi_1?
J+1<k<p 1<i<j+1 JFHI<ELp 1<Z<j+1
which is precisely the statement of the Proposition for j + 1. O

2.4. The central element z;,. . We now want to study the modules th& B ><%’17n.
To do this we first need to recall the following important property of vy, which was
established in [23]. Before we can state this result, for b € ), ,, set

_ (PR (bER) (b1)
Wb =Wy, b5, b2 Woy b2 W1 T

In two-line notation, wy, is the permutation

( 1 ... bl bl+1 ... b2 b2+1 ... bFl41 . b’f)
by+1 ... by bi+1 ... by bi+1 ... 1 ... bb

Note that by = b{, b, = b? and n = bf. Also, if b = (a,b) then wp = wa.

For convenience we set Ty, = T, . For example, T, ;, = T,

For any b = (by,...,bp) € €p,, we define b’ = (b,,...,b1). Since wa_i = wpq it
follows that wy = wy L

Finally, set &, = &, X &, X --- x &, which we consider as a subgroup of &,,
in the obvious way. Similarly, J¢,(Syp) is a subalgebra of % (S,,) via the natural
embedding.

2.14. Lemma ([23, Proposition 2.5]). Suppose thatb € 6, ,, and 1 <1i,j <n, with
i #bl for1 <t <p. Then

a) T;up —vbT() o1 and
b) LJ'Ub = UbL(g)wgl‘

Using this fact we can prove the following two results.
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2.15. Lemma. Suppose that 1 <t < p and let i and j be integers such that 1 <
ihwj<nandi#bl fora=t—p+1,t—p+2,...,t. Then

(t-1) N
(Vi) = 3 e f1si<h,
(v ) — ]
i b(t—1) Y;,U'(j(ti)l) T(i)wb<t71>” Zf by +1<i<n,
Yoo 2y ) Lis if1< )< by

t—1
L; (thl()@—)n) =

Yiug Dy ) L ifbi+1<j<n,

I We(t—1y7”
Proof. For the first equality, if ¢ # b; then using Lemmas 2.2 and 2.4
t—1 t+1,t+p—1 t—1
Tthvl(o@—)U = Tiﬁg,bt P )Tbmn—btvl()(t—)w

(t=1)

_ pt+Lttp—1)p
=Ly, TiTo, b, Vg 1)

_ p(t+Ltp1) (t-1)
=Ly, Ty, n—b: T(iywo,.n—b, Vb (t—1)

The first claim now follows using Lemma 2.14. For the second claim observe that
by Corollary 2.8(b) there exists an h € 2. ,, such that

LiYoply = Loty h = o L,
= Lgt,;l’teril)Tbm—btL(j)wbt,n—bt ”lgt(;i)n
= YiL(ywy, ns, “g&ﬂ)'
So the result again follows using Lemma 2.14. O

2.16. Lemma. Suppose that 1 <t < p and let ¢ and j be integers such that 1 <
,7<n andi;ébfl whenevert —p+ 1< a <t. Then

(Y. YaYiop)T, i, if1<i<by;

(Yt cee Y2}/1Ub)Ti—bt+b1+"'+bz727 Zf bt +1<i< bi—l;
T(Ys... YaYiop) = :

(Yi ... YaYi00)Tipys ifbh+1<i<bi;

(Ve . YaY10u) T -ty ifbl+1<i<mn;

(Vi YaYion)L, e s, iF1<5<by

(Y;f N -Y-levb)Ljfbt“Fbl“F“"‘rbt—Z’ Zf bt +1 < ] < bifl;
L;i(Y;...YoYup) = :

(Yi... YaYivn) L, s, ifbl+1<j<bi;

(Y;f"'yéylvb)l’(j—btl)wbm Zfbﬁ—’_l SJ <n.

Tl(Y% e Yngvb) = (}/t N }/ZYI'Ub)T(i)w(bt YYYYY b1)
LJ(Y% e Yngvb) = (}/t N Y2Y1”b>T(j)w<bt VVVVV b1)
In particular, taking t = p, we have

Tl(}/p SN 5/2}/1’1]1)) = (Yp e Y2Y1rUb)T(i)wb/7

Lj (Yp ‘e YQYﬂ)b) = (YZD . Y2Y1/Ub)L(j)wb/ .

Proof. This can be proved in exactly the same way as Lemma 2.15. Note that the
final claim also follows from Lemma 2.11 using Lemma 2.2. (]
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All the results we have obtained so far are valid for the cyclotomic Hecke algebra
H;.n, defined over an arbitrary ring.

For the rest of this paper we make the following assumption. This definition is
repeated from the introduction.

2.17. Definition. Suppose that R is a commutative ring with 1 and set

Aee@= 11 11 I @-<de).

1<4,j<d —n<k<n 1<t<p
Then Q is (e,q)-separated in R if A(e,q, Q) is invertible in R.

Observe that, even though our notation does not reflect this, whether or not Q
is (e, g)-separated also depends on n and the ring R.

Fix b € €, and set Vi, = vp 4., and Ay = Hp, (€Q) @ - - @ Hyy, (PQ).
Then an important result from [23] is the following.

2.18. Lemma ([23, Prop. 2.15]). Suppose that b € %,, and that Q is (e,
separated if d > 1. Then 3y, acts faithfully on Vi, from the left and End s, , (Vp)
Hypb-

2.19. Remark. When d = 1, the algebra J7;(Sp) can be naturally embedded into
S, as a subalgebra; see [20]. In that case, the condition of being (e, ¢)-separated
means that H|k\<n,1§t<p (1 — thk) is invertible.

0

To describe the action of 1, on V4, given a permutation w = s;, ...s;, € &,

and an integer ¢ € N such that i;4+c < n, for 1 < j <k, define wle = Siy4c - - - Sipte-

Then w'® € &,,. Note that this is compatible with our previous definition of wffg.

Define ©y, to be the ‘natural inclusion map’ €, — 47 ,. That is, Oy is the
R-linear map determined by

eb((L‘f“ LT ) @ (LY Ly T,) ® - @ (LY ...LZ:“’PTIP))

_ a1,1 a1,bq az,1 a2,by . ap 1 p,bp

(L L) (L L ) e (L L Ty
_ ai,1 ai1,bqy az,1 az,bq ap,1 Ap,by

= (L Ly ") (T - Ly ) - (Tt oo I ) Tt Ty T

for all z; € &3, and 0 < aj; < d, for 1 <t < pand 1 < j < b, and where
t—1

xp = x§b1 >, for 1 < t < p. The second equality follows because all of the

terms commute. Thus, we have z}{ = 2, and Oy (T, ® --- ® T,) = T, where

1 p—1
w = xwébl) ...x;bl ) € Gy, for x; € Gp,. We emphasize that Oy, is an R-module

homomorphism but not a ring homomorphism.
Similarly, define O, to be the R-linear map Oy : 551, — ;. , determined by

@b((L‘;1>1 LT ) @ (LY Ly T,) ® - @ (LyY ...LZ:”’”T%))
= (LY Ly Tay) - (Lyghy - L™ Ty (Lpghy - Ly ™ Ty

bi+1 bb+1-
_ ap.1 ap,bp a2 1 a2,bo ai 1 a1,bq
= (Ll ...pr ) (ng—‘rlng )(ng—i-l ...Lbzly )Tm/lleg Tz;)/,
” —1, (b7 -1
where the x; and a;; are as before and z} = w, z; wp = Wy Tywp. In

1 1
particular, 2j) = x, and 2{zy ...z = wgl(x1x§b1> x;bp >)wb € Gpr.

Given these definitions, the proof of Lemma 2.18 (that is, of [23, Prop. 2.15]),
shows that h € €1, acts on V4, as left multiplication by ©y(h). Moreover,

o~

(2.20) @b(h)vb = Ub@b(h), for all h € Ay,
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by Lemma 2.14. Typically, if h € 54, then we will write h-v, = (:)b(h)vb in what
follows. Thus, we have

h-vp = Ub@b(h), for all h € L%’fj,b,
for h € 5 .

2.21. Lemma. Suppose that Q is (g, q)-separated and let b € €p,,. Then there
exists a unique element zp in Hqp such that

Zb " VUp = Ypr,1 N Y2Y1'Ub = Ubi(zb).
Moreover, zp belongs to the centre of .

Proof. By Lemma 2.11, left multiplication by Y, ...Y2Y; defines a homomorphism
in End s, , (Vb). Therefore, there exists a unique element 2y, in ¢, such that

}/pr—l N Yngvb = (:)b(zb)vb = vb®b(zb)

by Lemma 2.18 and (2.20).
It remains to show that zy, is central in J¢; . As J€;, acts faithfully on Vj, it is

enough to show that @)b(zbh)vb = @)b(hzb)vb, for all h € ;. By Lemma 2.14,
@b(zbh)vb = (:)b(zb)@b(h)vb = @b(zb)vbi(h) = ifp e Y2Y1Ub®b(h).
Applying (the last statements in) Lemma 2.16, we see that
Y;D .. .Y2Y11)b@b(h) = @b(h)yp .. YQYﬂ}b, = @b(h)éb(zb)vb = (:)b(hzb)vb,
as required. O

2.5. A Morita equivalence for /7, ,,. By [23, Prop. 2.15], V}, is a projective 52, ,,-
module. Let 77 ,,(b) be the smallest two-sided ideal of 4%, ,, which contains V4, =
Vb, as a direct summand. By [10, Theorem 1.1] there is a Morita equivalence

Hp, : Mod-#, ——— Mod-.4, ,,(b)
Morita

given by Hp(X) = X ®.,, Vb. Hence, by Lemma 2.18 and the general theory of
Morita equivalences (cf. [4, §2.2]), we have the following.

2.22. Lemma (cf. [10, Corollary 4.9]). Suppose that Q is (g, q)-separated in R and
let X be a right ideal of 54 y,. Then, as right €, ,,-modules,

Hp(X) = Op (X) V.

We next show that Hy, can be realised as induction from a subalgebra of J ,,.
To do this we need to produce a subalgebra of % ,, which is isomorphic to S .

Before we state this result, given a sequence b = (b1,...,b,) € 6, define
_ @2 pB) (p) — _ pl-1) (2) (1)
(2.23)  uf(Q) = £1,b}£1,b’;‘ e £1”)b]1,,1 and uy (Q) = £1’7bg . '£1,b§£1,bg'
In the notation of [9, Definition 3.1], v\ (Q) = ufy, , where wy, = (wpM, - wp)

is the multipartition

1%), if s = da f
wb(s):{( ), 1 s « Tor some «,

(0),  otherwise.

o+ o+
Hereafter, we write u, = ug, (Q).
By Proposition 2.13, we can write vp, = vf)ru:)r = uy vy, , Where

+ _ p(1p-1) (1,p—2) ) (1,1)
Uy = E1,bp Tb,,,bg’—lﬁl,bp,l pr,l,bf;—z : ~'£1,b2 Tb2,b}
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and

- _ (p.p) (3,p) (2,p)
vb - Tbg7bp—1£1,bp_1 e Tb§7b2£1,b2 Tbgyblﬁl,bl :

(Take j =1 and j = p in Proposition 2.13, respectively.)

The following key lemma plays an important role throughout this paper.

2.24. Lemma. Suppose that Q is (g,q)-separated in R. Let b € €. Then zy, is
invertible in S p.

Proof. The module W, = vp.7%,. ,, is a projective submodule of /. ,,-module by [23,
Prop. 2.15], so Vy, = e#%, ,, for some idempotent e € 52, ,,. Therefore, Vi, = e, ,, =
62%’;,” C e nedy , = ng so that Vp = Vb2. Therefore, using the formulae for vy
given before the Lemma,

Vo = (Vb)? = 0606y 0 = vy, (uf A mug, ) vy S

= (uszug%‘;(Gb))vg%m,

where the last equality follows by Du and Rui [11, Prop. 3.1(a)]. Lemma 2.4 shows
that 2, (6y)vy, = vy, #;(Gy). Hence,

Vo = vpTouy, vy, Ho(Sv ) n € vpThvn il = 2b - Vb,
by Lemma 2.11 and Lemma 2.21. Therefore, the endomorphism of V}, given by left
multiplication by 21, has a right inverse in End s, (Vp). Consequently, 21, has a

right inverse in 77 by Lemma 2.18. Hence, zp is invertible in J¢3 1, since it is
central. 0

Under the conditions of Lemma 2.24 we can make the following definition.

2.25. Definition. Suppose that b € 6,, and that Q is (¢, q)-separated in R. Let
ep = zgl -vpdp € Vb and define

%,b:{}keb | hE%b}:{eb@b(h) | hE%J,} C V.
Quite surprisingly, JfZ,b is something like a ‘parabolic’ subalgebra of 7, .
2.26. Theorem. Suppose that b € 6, ,, and that Q is (¢, q)-separated. Then:
a) ep is an idempotent in H;. ,, and Vo = ep Iy .
b) b is a unital subalgebra of J,.,, with identity element ey,.
¢) The map 4 —> Hgp;h— h-en is an algebra isomorphism.
Proof. Suppose that z,y € ;. Then using the definitions, (2.20) and Lemma 2.21
we have that
(x-ep)(y-ep) = (ngl . vbTb)(yzgl ~opTh) = ngl . vbTbUbi(yzgl)Tb
= nglzb . vb@b(yzgl)Tb =x- Ubi(yzgl)Tb
=ayz, ' opTh = (7Y) - €.
Taking * = y = 1., shows that ey is an idempotent in J7.,. As Gy acts

faithfully on V3 by Lemma 2.18, all of the claims now follow. (]

Theorem 2.26 says that the natural inclusion map Oy : I, — I, is an
inclusion of algebras when it is composed with left multiplication by ey. Note that
the image of Oy, is not a subalgebra of J77. ..

Combining Theorem 2.26 and Lemma 2.22 gives a second description of the
Morita equivalence Hy,. If A is a subalgebra of an algebra B then let Tf be the
corresponding induction functor.
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2.27. Corollary. Suppose that Q is (e,q)-separated and that X is a right Hyp
module, where b € €}, ,. Then

Horn

Hb(X) (X eb) % =X- 6b®% %

2.6. Comparing trace forms on V4. Recall that a trace form on an R-algebra
A is a linear map tr : A— R such that tr(ab) = tr(ba), for all a,b € A. The form
tr is non-degenerate if whenever 0 # a € A then tr(ab) # 0 for some b € A.

By [26] the Hecke algebras ¢, and 7., are both equipped with ‘canonical’
non-degenerate trace forms Try, and Tr, respectively. The aim of this subsection is
to compare these two trace forms. More precisely, we show that

TI‘(h . ’UbTb) = Trb(h) TI'(UbTb),

for all h € 5. This result will be used in the next section to compute the
scalar fx from the introduction.
The trace form Tr : 5% ,, — R on /7, ;, is the R-linear map determined by

¢ ifag=---=a,=0and =y,

(2.28) Te(LY* ... L2 T,T,) = { )
0, otherwise.
The trace form Try, on 751, is defined similarly.

Comparing these two trace forms requires some preparation. Before Lemma 2.24
we noted that v, = vg uy,, for some element vb We need to understand vb better
in order to compare Tr and Try,.

Let HL be the R-submodule of 77, ,, spanned by the elements

{T,LYy .. Ly 0<ag,...,am1 <7and w € Gy, }.
Note that ’H,TLn is not, in general, a subalgebra of 47, .

2.29. Lemma. Suppose that a,b,k and | are positive integers such that k <1 < a
and 1 < s <t <p. Then

b+l d(t—s+1)
(s,t) _ ( t) .
EARCTE (TR DD DR S

m=b+k e=1

for some hy, o € ’an

Proof. For the duration of this prooflet Ly ;(Q) = Hl (Lm—Q), for Q € R. Then

m=k

L’,(jf) = Hle HZ:S Ly 1("Q;). By the right handed version of [27, Lemma 5.6],
b+l
Lii(Q)Tap =Tap (Lb+k,b+l(Q) + Z thm),
m=b+k

for some h,, € HL. Therefore, there exist elements hmit € HE such that

b+1

LO T,y = abHH<Lb+kb+l “Qi)+ D> hmial m)

i=1u=s m=b+k

Collecting the terms in the product, we obtain Lb -He p41» as the leading term, plus
a linear combination of terms which are products of d(t — s + 1) elements, each
of which is equal to either Lyt p+1(“Q;) Or Ry i wLim, for some m,i,u as above.
Expand the factors Lyt p+1(¢"Q;) into a sum of monomials in Lytg, ..., Ly and
consider the resulting linear combination of products of these summands with the
terms My, ;o Lm above. Fix one of these products of d(t — s + 1) terms, say X,
and let m be maximal such that L,, appears in X. By assumption the rightmost
L,, which appears in X cannot have both T,, and T,,_1 to its right, so using
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Lemma 2.3 we can rewrite X as a linear combination of terms of the form hx .L

where 1 < e < d(t—s+1) and hx,. € HE. Note that when we rewrite X in this
form some of the L, , with m’ < m, are changed into L,, when we move them
to the right. However, T,, never appears to the right of these newly created L,,.
The final exponent of L, is at most d(t — s+ 1) because no factor can increase the
exponent of L,, by more than one. The result follows. O

2.30. Lemma. Suppose that b € €,,,. Then

p—1 bl+1

+ _ (1) (2) (p 1)
vy = Ty (‘Cb}-‘rl,n‘cbf-i-l,n" bP~ 1+1n+2 Z Zh“’“ )

=1 m= bl+1e 1

for some hy e € ’an.

Proof. Recall that vy = 5&;271)pr bo- Vel Ei%éi)sz,b}- To prove

1,by 1 bp 1,bf72"'
the lemma let v;p =1 and set v;k = Ulf,k-ylﬁfl;lz)“Tka,b’fa for 1 <k < p. We
claim that if 1 < k < p then

p—1 bt g

+ (1,p—1) (1k7 e
Ub,k_T(bm---,bkﬂ,b’f)(ﬁbp Ty1,pP bk+1b’“+1+z Z ZhlmeL

1= km—bl+1e 1

for some A me € ’H,Ln When k& = p there is nothing to prove, so we may assume

that 1 < k < p and, by induction, that the claim is true for vg xt1- Therefore, by
Lemma 2.29,

p—1 bt g

+ _ (1,p—-1) (1,k+1) § ’
Vb k= Lo, brya bi ) (ﬁbg’*lﬂ,bf o £b’f+1+1 bht2 + Z Z M, e Lo
= k+1m—bl+1e 1

bk+1
( 4 e
x Tbk+lvblf (Eb’“-&-l prt! + Z Zh elm),
m=bk+1e=1

"
for some hj,, .. hy, .

€ HL. Now, by Lemma 2.3, Ty, ., bk commutes with L,

whenever m > b¥*1. Moreover, if m > b} then
e /
L Tbk+1 bk hl m ETbk+1 bkL Tbk+1 bk hl m, 6

lme

€ an. Next

— +
note that T(bp"”ybk“yb;fﬂ)Tka7b11c =Ty, bgsr bk Therefore, vy, ;. is equal to

where lm e =T, 11,bk hz moe Loy b It is easy to check that lm .

-1 plt

4= b e >y oy
Vb= T(bp,...,bk+1,b’f) (‘Cbp 141,b? " ‘Cbk+l+1 bk+2 + h‘l m,e m
I=k+1 m—bl+1 e=1

bk+1
(1,k
x <£bk+1bk+1+ Z Zh eLn )
m= bk+1(’ 1

To complete the proof of the claim observe that

(1,p—1) (1,k+1) _ A (k+1) (k+2) (p—1)
ﬁbp '41,bP Eb’““-ﬁ-l bFt2 T £b’f+1+1,n o '£b’f+1+1,n£b’f+2+1,n T Lb{’—1+1,n'

410> Lm, the

exponent of L,, is at most dl if bll <m< bllJrl for some k4+1 <[ <p—1. Using

this observation it is now a straightforward exercise to expand the formula for vg &

Therefore, when we write this element as a polynomial in Lb’f“
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above and show that vg  can be written in the required form, thus completing the
proof of the claim. ’

Returning to the proof of the lemma, observe that vg = v:;l and that the
statement of the lemma is the special case of the claim above when k£ = 1 (and
setting k = 0 in the last displayed equation). O

We can now prove the promised comparison theorem for Tr and Try,.

2.31. Theorem. Suppose that Q is (e, q)-separated and that b € €, . Then
Tr(h - vpTh) = Try(h) Tr(vpTh),
forallh € 5.
Proof. By linearity, it is enough to let i run over a basis of 95 . Let
By, = { L' ...Lzll”’ngc1 ® @ L ...LZ:’b"Txp |0<a;s <dand z; € &, }

be the ‘Ariki-Koike basis’ of .74 . Then it is enough to show that

Tr(h - vpTp) = Trp(h) Tr(vpTy), for all h € By,
If h = 1,, there is nothing to prove. Therefore, by (2.28) it remains to show
that Tr(h - vpTp) = 0 whenever 1,4, # h € By. For the rest of the proof fix such
an h. Write h = L{"" ... L)' Ty, @ -+ ® L™ ...LZ:’bPT%, where 0 < a;; < d
and z; € Gy,, and set b’ = Op(h). Then

ai,by yaz,1 azp ap,1 Ap,b
Bo=L{ Lyt Lt LYt Lt LT,
1 bl bi+1 b? b2 41 b? )

where z = x {b1) (bi ")
= T1Toy o Tp .
Recall from before Lemma 2.24 that v, = vg ulf . Therefore, using Lemma 2.30

and the fact that Tr is a trace form,
Tr(h - vpTh) = Tr(vph'Ty) = Tr(viuf W' Ty)
p—1 BT
= Tr(To iy W'To) + Y > Y Tr(Torhim e L ul ')
=1 m=bl+1e=1
p—1 b g
= Te(dput M ToTor) + > > Y Tr(Luf h' ToTorhim,e),

=1 m=bl+1e=1

where him.e € Hpy and iy = L0008 00T
from the sum, with 1 < [ < p, bll < m < bll+1 and 1 < e < dl. By as-
sumption, L,, appears in b’ with exponent 0 < aj41,, < d, where m = bl +
m'. Therefore, L;ulf R ToTo him,e is a linear combination of terms of the form
Leut fi(L)Ty f2(L), where w € &,, fi(L) is a a polynomial in Ly, ..., L, of de-
gree at most aj41,m < d as a polynomial in L,,, and where fa(L) is a polynomial
in Ly,...,Ly_1. As Tr is a trace form,

Te(Lyu f1(L)Tw f2(L)) = Te(fo(L) Ly, uy f1(L)To).-

Now, considered as a polynomial in L, fo(L)L,u f1(L) is a polynomial with zero
constant term (since e > 0) and degree

O<fi=et+dlp—Il—-1)+at1m <dp—1)+d=r.

. Fix a triple (I, m,e),

By the same argument, if m < k < n then Ly appears in fo(L)LS,u;; fi(L) with
exponent at most d(p — I}, — 1) + aj 4100 < d(p — 1) < r, where k = b~ + &/
and 1 < k' < by, . If k < m then Ly could appear in fo(L)LS,u;; f1(L) with
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exponent greater than r — 1, however, by Lemma 2.3 this will not affect the ex-
ponents of L,,,..., L, when rewrite this term as a linear combination of Ariki-
Koike basis elements. Hence, Lf, is a left divisor of fo(L)L¢ugl f1(L) when it
is written as a linear combination of Ariki-Koike basis elements. Consequently,
Tr(f2(L)LEuyt f1(L)) = 0 by (2.28). Therefore, Tr(L¢ui h'ToTo him.e) = 0 so
that TI‘(h . Ubh/Tb) = TI‘(’Ubh/Tb) = Tr(ﬁgulfh’TbTb/).

Now consider Tr(iy, ui BTy Ty ). By definition,

c—o s p) &) (p-1) @ pB) (» ’
Uy up b’ = Lb%+1,n£b%+1m . Ebf,1+17n . £1,b}£1,b§ e £1,bf*1h

p
_ G p@ /
= Hcl,bi_lcbw’” h.
=1

If a s # 0, for some [ and m/, then Lyb™ divides k', where m = bll_1 +m’ as
above. By the argument above i ug k', when considered as a polynomial in L,,,
is a polynomial with zero constant term and degree strictly less than r. Therefore,

Tr(h - vpTh) = Tr(dy ut W' T Ty ) = 0,

as required. It remains, then, to consider the cases when a;,,,» =0, for 1 <[ <p
and 1 < m’ < b;. That is, when b/ = T, for some 1 # x € . By (2.28), in this
case we have

(232) Tl'(h . UbTb) = ’IY(ﬁgungbeTb/) = Tr(ﬁgulf) TI‘(TszTb/)
Recall that wy, is a distinguished coset representative for &y, so that £(zwp)

£(z) + l(wp). Therefore, Tr(T:ToTw) = Tr(Tiw,Tb) = 0 by (2.28) since x # 1.
Hence, Tr(h - vpTp) = 0, completing the proof. O

We can improve on Theorem 2.31 by explicitly computing Tr(v,Tp). In fact,
in proving the theorem we have essentially already done this. To state the result,
given b € €),,, set a(b) = > 0_ ib; € N.

2.33. Corollary. Suppose that Q is (e, q)-separated and that b € 6, . Then
Tr(vpTp) = (—1)# P gtws) czmnp=1)=da®) (g, Q,)"P~1),
Proof. By (2.32), and (2.28), we have that
Tr(veTh) = Tr(Ly,,, - v6Th) = Tr(iy ) Tr(Th Th) = ¢°®) Tr(ay ).

Now, Tr(dy, uy)) is just the constant term of 4y, u;l by (2.28). Therefore,

Tr(vpTh) = qz(wb) ﬁ ((—1)d5tdQ1 . Qd)n_bt
= (_1)0l7f(:p1—1)qf(’wb)g%muﬂ—l)—cloz(b)(Q1 Q)P
since by + - -+ b, = n. O
2.34. Remark. Suppose that b € €, . Then it is not difficult to see that

lws) =Y bibj.

1<i<j<p
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3. SHIFTING HOMOMORPHISMS AND SPECHT MODULES

In this section we begin to apply the results of the last section to the representa-
tion theory of 4. ,, ,,. First, we recall a construction of the Specht modules for the
algebras 5 1, and 7, ,, and use this to define the scalars f from the introduction.
Next we explicitly compute these scalars. Building on these results, and using Clif-
ford theory, we then define analogues of the Specht modules for the algebras 2. , ,,.
As a consequence we construct the simple modules of 777, ,, , over a field.

Throughout this section we maintain our assumption that Q is (g, ¢)-separated
over R (see Assumption 2.17).

3.1. Specht modules for /7, and % ,. The algebras /¢, and 7, ,, are both
cellular algebras [9,18] with the cell modules of both algebras being called Specht
modules. In this subsection we quickly recall the construction of these modules and
the relationship between the Specht modules of these algebras.

First, recall that a partition of n is a sequence A = (A1, \g,...) of weakly
decreasing non-negative integers which sum to |A| = n. The conjugate of X is the
partition X = (A}, X5,...), where X, =#{j >1|\; >}

A multipartition of n is an ordered r-tuple A = (/\(D7 .., A" of partitions
such that [AM| 4+ ... + X" = n. Let 2., be the set of r-partitions of n. The
partitions A\(*) are the components of A and we call A a multipartition when
is understood. If A = (A, ... A"} is a multipartition then its conjugate is the
multipartition A’ = ()\(T)/, RN )\(1)/). To each multipartition A we also associate a
Young subgroup Gy = S,a) X -+ X Gy of &, in the obvious way.

The diagram of X is the set [A] = {(4,4,8) |1 <j < )\ES) and 1<s<r}. A
A-tableau is a map t: [A\] — {1,2,...,n}, which we think of as a labeling of the
diagram of A. Thus we write t = (t(l), . ,t(’")) and we talk of the rows, columns
and components of t.

By [9, Theorem 3.26], .77, , is a cellular algebra with a cellular basis of the form

{mst | 5,t € Std(A), for A e £, }.

Hence, the cell modules of 77 ,, are indexed by &, and if A € &, , then the
corresponding cell module S(X) has a basis of the form {my | t € Std(A) }.

3.1. Definition. a) Suppose that X € Z,,,. Then the Specht module S(\)
for . ,, is the cell module indexed by X defined in [9, Defn 3.28].
b) Suppose that X € Pyp. Then the Specht module for 5y, is the module
Sp(A) = SAM) @ -~ @ S(AP).

We write ST (A) when we want to emphasize that S(\) is an R-module. We will
give a more explicit construction of these modules in Section 4.2.

When 74 1, is semisimple the modules Specht modules { Sp(A) | A € Py | give
a complete set of pairwise non-isomorphic simple .7 p-modules. Similarly, the
modules { S(A) | A € 2, ,, } give a complete set of pairwise non-isomorphic simple
H;. n-modules when J77. ,, is semisimple.

More generally, the cellular basis of 4., endows each Specht module S(A) with
an associative bilinear form and the radical rad S(A) of this form is an /. ,-module.
Define D(A) = S(A)/rad S(A). Let 4, ,(QVE) ={A € P.,,| D(A\) #0}. Then a
multipartition A is Kleshchev if X € 7, ,(QV¢) and

{DN) [ X e An(QF)}
is a complete set of pairwise non-isomorphic irreducible 727, ,,-modules. Typically
we write ., = ;. ,(QVE) in what follows.

If A is an algebra and M is an A-module let Head(M) be the head of M. That
is, M is the largest semisimple quotient of M. For example, if A € JZ., then
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D(X) = Head(S(A)). If S and D are modules for an algebra, with D irreducible,
let [S : D] be the multiplicity of D as a composition factor of S.
If XA and p are two multipartitions then A dominates u, and we write A > p if

t—1 i t—1 4
2 AN = 3+
s=1 j=1 s=1 Jj=1

for1<t<randi>0 Wewrite A> pif A> pand A # . The dominance
partial order on &, , is useful because of the following fact.

3.2. Lemma ( [9, §3]). Suppose that [S(A) : D(u)] # 0, for \,p € P, ,,. Then
A > p. Moreover, if p € Ay, then [S(p) : S(p)] =1 and D(pn) = Head S(p).

Let Zgp ={ A€ Pap | AU € Hyp,(c'Q) for 1 <i <pl. If XA € Hgp let
Dp(A) = Sp(A)/rad Sp(A) = DAY @ - .- @ D(AP)),

The remarks above imply that { Dp(A) | A € Zgp for 1 <t <p} is a complete set
of pairwise non-isomorphic irreducible J# ,-modules.

Recall the functor Hy from §2.5. By [10, Prop. 4.11] (see also [23, Prop. 2.13]),
we have the following.

3.3. Lemma. Suppose that A € Pyy,. Then
a) Hp(Sb(A)) =2 S(X) as . ,-modules.
b) Hy(Dp(A)) = D(X) as ;. ,-modules.
c) A= (A NP € 75, (QVe) is Kleshchev if and only if ) € 5, (c1Q),
for1 <t <np.

In particular, we can consider S(A) 2 Hp (Sb(A)) = Sy(A) - Vp to be a submodule
of Vb.

3.2. The scalar fx. We are now ready to define and compute the scalars f5 which
play an important part in all of the main results of this paper.

Recall from the introduction that A = Z[¢,¢*', QF, ..., Q! A(¢,¢,Q) ],
where ¢ is a primitive pth root of unity in C and ¢ and Q = (Ql7 . .,Qd) are
indeterminates over Z[¢]. Let F be the field of fractions of A. If Q is (e, q)-
separated over R then R can be considered as an 4-module by letting ¢ act on R as
multiplication by €, ¢ act as multiplication by ¢ and Ql act as multiplication by @Q;,
for 1 <i < d. Therefore, % (¢,Q) = jf;ﬁl(q, Q) ®4 R are isomorphic R-algebras.
In particular, 77, = jf;ﬁl(q', Q) ®.4 F. The algebra A%, is semisimple by Ariki’s
semisimplicity criteria [1]. The algebra 7, is split semisimple because J77, is a
cellular algebra (and every field is a splitting field for a cellular algebra).

Abusing notation, we call the elements of A polynomials and if f(¢,q, Q) e A

then we define f(g,q,Q) = f(¢,4,Q)1r to be the value of f(¢,¢,Q) at (g,¢, Q).
The scalar §x in the next Proposition plays a key role in all of the main results,

Theorems A-D, from the introduction.

3.4. Proposition. Suppose that Q is (¢, q)-separated in R and that b € 6, and
A€ Pgp. Then there exists a non-zero scalar fx € R such that

Zpb T = f)\xa
for all x € S(X). Moreover, there exists a non-zero polynomial fa = (6,4, Q) e A
such that fx = fa(e,q,Q) € R.

Proof. The Specht module S, (A) is free as an R-module so, by the remarks above,
Sp(A) =2 S{{(A) @4 R. Therefore, so to show that such a scalar exists it is enough
to consider the case when R = A. Similarly, since S{'(A) embeds into S () =
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S’{)“(A) ® 4 F we may assume that R = F. By the remarks above, the algebra %‘Zlﬁ)
is split semisimple and the module S,f (A) is an irreducible %’Qﬁ)—module, so by
Schur’s Lemma the homomorphism of S, (A) given by left multiplication by zp, is
equal to multiplication by some scalar fA. Notice that ]-S\ is an element of A4 because
2b2b(A) - vpTp € jfr"}l By specialization, the scalar fx € R in the statement of
the Lemma is given by evaluating the polynomial fx (£,4,Q) at (e,¢,Q). Finally,
observe that fx # 0 since zp acts invertibly on W, by Lemma 2.24. [l

We will determine the scalar fx € R by computing the polynomial f>\ in A. In
fact, we have already done all of the work needed to determine f>\ To describe fA
we only need one definition.

Abusing notation slightly, let Tr be the trace form of 7 7 given by (2.28). Let x*
be the character of S7(X), for A € 2,.,,. Then {x* | A e @r,n } is a complete set
of pairwise inequivalent irreducible characters for %‘jﬁb, so it is a basis for the
space of trace functions on %‘jfl In particular, Tr can be written in a unique way
as a linear combination of the irreducible characters. Moreover, it is easy to see
that every character x» must appear in Tr with non-zero coefficient because Tr is
non-degenerate; see, for example, [14, Example 7.1.3]. Consequently, the following
definition makes sense.

3.5. Definition. The Schur elements of T
F, for A € Py, such that

are the scalars 55 = 5,(¢,4,Q) €

n

1
Tr = A
2 50
AE«@T,TL
For A € &, ,, fix F a primitive idempotent in jf}— such that FAjﬁfl ~ S]:()\).
Using, for example seminormal forms 77, [27 Theorem 2.11], it is easy to see

that X)‘(Fp) =0, for A, p € 2, . Hence, a second characterisation of the Schur
elements is that

. 1
T Te(Fy)

Similarly, for each A € P41 the trace form Trp determines Schur elements
51/{ € F for %ﬂd]j), for A € P4 . By the remarks above, the Schur elements of ﬁfdj’;
satisfy

£ 1
E 9 8 T /T 0\
K= Lo 0029 = 5 )
where Fy, () is a primitive idempotent in J£7; 7 b such that SE(N) = b(A)%ﬁ)

3.6. Theorem. Suppose that b € €,,, and that X € Pyyv. Then
. 5')‘
fa = Tr(vwTh).
Sx

Consequently, fx = (—1)"(r=dgtw)gzrnlp—1)—da®) (), (Q,)n(P—1) %'

SX
Proof. To compute f5 we may assume that R = F and work in A%, Let Fy(X) be
a primitive idempotent in %@ﬁj such that S{ (X) = Fb()‘)%,}l;- Then Fp(A) - ep is
a primitive idempotent in %7, such that Fy,(A)-ep#,7, = S7(X) by Theorem 2.26
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and Lemma 3.3. Therefore, using the remarks above,

1
— =Tr(Fp(N) - ep) = Tr(zglFb()\) -vpTp),  since zp, is central in S b,

Sx

1

= f— Tr(Fo(A) - vpTh), by Proposition 3.4,
Py
1

= f— Trp (Fo(A)) Tr(vpTh), by Theorem 2.31,
Py

1

. TI"(UbTb)
)\5)\

Rearranging this equation gives the first formula for f)\. Applying Corollary 2.33
proves the second. O

3.7. Remark. The proof of Theorem 3.6 is deceptively easy: all of the hard work is
done in proving Theorem 2.26 and Theorem 2.31.

We want to make the formula for f5 more explicit. To do this we recall one of
the formulas for the Schur elements obtained in [27]. First, given 1 < i < j <p
and 1 < a,b < d such that (i — 1)d+a < (j — 1)d + b, define

.ia g IA@E=DH0) gy (d(im1)Fa) y—xz i—]
) = SIS T (g, - i)
(z,y)E[NEGE=D+b)]
/\(d(] 1)+b1)) " P /\(d(]’—l)+b)/ -j—z' .
Sv—u j—i q Qa —q Qb
x H (4 Q“ < Q H G- A(dG=D+b)
() €A D+a)] el 4V Qa — iy

Then by [27, Cor. 6.3],

sx=ax [[ - ]I 11 SH(N),
zE€[A] 1<i<j<p 1<a,b<d
(i— 1)d+a<(] 1)d+b

where h? is the hook length of = € [A] (see, for example, [25, §3.2]), and
p d A
ax = (_1)n(r71)q~7a(>\’) H H(étQi)l)\(d(t—l)Jrl)‘in.
t=1:=1

with a(p) = >0 122>1( ) for p € 2,,. There is an analogous formula
for 55 = T[V_, 5 involving the scalar g5 = []'_, qaw, which equals

d
( 1)be(d=1y —a(A H(étQ’t)l)\(d(t—l)+i)|_bt).

=1

um@

Miraculously, as the reader may check using Corollary 2.33, ¢“(*»)g8 = qx Tr(vpTh).
Hence, by Theorem 3.6 and the equations above, we have the following.

3.8. Corollary. Suppose that b € €, and that A € Pqy. Then

a=d@ T 11

1<i<j<p1<a,b<d

It is evident in the formulae above that fx € F. We remind the reader that,
in fact, f € A by Proposition 3.4, for A € &,.,,. Hence, we can evaluate these
expressions for the polynomials fx at (¢, ¢, Q) whenever Q is (e, g)-separated over R.

3.9. Corollary. Let b € €, pn, A € Pap and t € Z. Suppose that Q is (e,q)-

separated over the field K. Then Vb(% = V(E;:_%
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Proof. Tt is enough to consider the case where t = 0. By Lemma 2.21 left multi-
plication by Y7 induces an J%, ,-module homomorphism. This map is an isomor-
phism because left multiplication by Y, ...Y;7 is invertible by Lemma 2.24 (and
Lemma 2.21). O

4. A SPECHT MODULE THEORY FOR J%.,

We are now ready to start studying the algebras 7, ,, ,,. In this section we show
that the scalars f from the last section have p/mth roots in A whenever A = X(m).
Using this we then define analogue of the Specht modules for the algebras 27, .

The relations in 7, , imply that there is a unique algebra automorphism o of
., such that o(Ty) = Ty and o(T;) = T;, for 1 < i < n. By definition, o is an
automorphism of order p. Further, applying the definitions

Hpn = I, ={he A, |oh) =h}.

n

That is, %, , is the fixed point subalgebra of 777, under 0. As we will see, this
gives /7, ,, the structure of a graded Clifford system.

4.1. Graded Clifford systems. Let A be a finitely generated R-algebra. Recall
that a family of R-submodules { A | s € Z/pZ} is a Z/pZ-graded Clifford system
if the following conditions are satisfied:

a) AsAy = Ag for any s, t € Z/pZ;

b) For each s € Z/pZ, there is a unit as € A such that A = a;4; = Ajas;

C) A= EBSEZ/pZAs;

d) 1€ A;.

Recall that any automorphism « of an R-algebra A induces an equivalence
F*: Mod-A — Mod-A. Explicitly, if M is an A-module then F*(M) = M is
the A-module which is equal to M as an R-module but with the action twisted
by a so that if m € M and x € A then m - x = ma® = ma(x), where on the right
hand side we have the usual (untwisted) action of A.

The following general result is proved in [15, Prop. 2.2], together with [21,
Appendix] which corrects a gap in the original argument. Recall that we have
assumed that R contains a primitive pth root of unity e.

4.1. Lemma. Suppose that A and B finitely generated R-free R-algebras such that
A= @fz_ol BO' where 0 is a unit in A such that 6* € B and 6B = Bf. Then there
is an isomorphism of (A, A)-bimodules

p—1 p—1
Aep A= A" 00" @07 = > (007,
t=0 t=0

forbe B and 0 <i,j < p and where (e7'00"17) ) € A% . Here we view @D, A% as
an (A, A)-bimodule by making A act from the left as left multiplication and from
the right on A% as right multiplication twisted by 0%, for 0 <t < p.

The explicit isomorphism in the lemma is constructed in [21, p. 3391].

In the setup of Lemma 4.1 the subspaces { B0® | s € Z/pZ } form a Z/pZ-graded
Clifford system in A. Now we assume that R = K is a field. Let a be the auto-
morphism of B given by a(b) = 0b0~1, for b € B. Let 3 be the automorphism of A
given by 3(b67) = 9b07, for b € B and j € Z/pZ. Let Irr(A) and Irr(B) be the sets
of isomorphism classes of simple A-modules and simple B-modules, respectively.
For each D(\) € Irr(A) fix a simple B-submodule D* of D()) 3. It is clear that
D(\)® = D()\) and (D*)? = D*. Let oy be the smallest positive integer such that
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D()\)ﬁo* = D(A). Then oy divides p so we set py = p/oy. Define an equivalence
relation ~g on Irr(A) by declaring that

D(\) ~3 D(u) <= D(\) = D(M)Bt7 for some t € Z/pZ.
Similarly, let ~, be the equivalence relation on Irr(B) given by
D* ~, DV <= D* = (D“)at, for some t € Z/pZ.

If D is an A-module let Soca (M) be its socle; that is the maximal semisimple
submodule of A. Similarly, let Head (M) be the maximal semisimple quotient
of M.

The following result is similar to [16, Lemma 2.2]. The result in [16] is proved
only in the case R = C. As we now show, the argument applies over any alge-
braically closed field.

4.2. Lemma (cf. [16, Lemma 2.2]). Suppose that R = K is an algebraically closed
field and that A = @f;ol BO as in Lemma 4.1.
a) Suppose that D(X) € Irr(A). Then py is the smallest positive integer such
that D> = (D)™
b) Suppose that D> € Irr(B). Then D* 14 = D(A) ® D(\)? @ --- @ DA
and DN 4 2D & (DM@ @ (Dk)a(prl)
¢) {(DM* | D)) € Irr(A)/~p for 1 <i<pyx} is a complete set of pairwise
non-isomorphic absolutely irreducible B-modules.
d) {DN)?" | D* € Trr(B)/~q for 1 <i < oy} is a complete set of pairwise non-
isomorphic absolutely irreducible A-modules.

Proof. Let D(\) € Irr(A). Let p) be the smallest positive integer such that D* =
(D’\)ap&. By [7, Proposition 11.16], the module D(X) |4 is semisimple. Now,
Homyu (DY, D(A) 13 ) = Homyu (DY), D(A\) 45 ), for any ¢ € Z.

Therefore, there exists an integer ¢ > 0 such that
(4.3) DA = (D e (DY) @@ (DM )
By Frobenius Reciprocity [7, Proposition (11.13)(ii)], we have that

Homp (D(A\) 15, D*) = Homya (D(N), D*13).
Since K is algebraically closed, both A and B are split over K. It follows that

(4.4) (DY) & DOV? @ -~ @ D)™ ) C Soca (DM 1)
By (4.3) and (4.4), we have that

(4.5) dim D()\) = ¢p) dim D* and pdim D* > coy dim D(\).
Hence

(4.6) p > c*plon.

On the other hand, since R contains a primitive pth root of unity, the integer p
and all of its divisors must be invertible in R. Let 7 be a linear endomorphism
of D(X) which induces an A-module isomorphism D(\) = D(A)#™. Then (7 )P €
End4 (D(A)) = K. Renormalising 7y, if necessary, we can assume that (my)P> =
idy, where idy is the identity map on D(\).
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Let X be an indeterminate over K and suppose then o divides p. Differentiating
the identity XP/° —1 = H?iol (X —&7°) and setting X = 7 and o = oy, shows that

prx—1 _ to
DAT, g H T\ — )

7=11<t<px
t#j

Thus,

=15 T - eonm

A j=11<t<p,
t#j

For each integer 1 < j < pa, we define

1
Di(\) ==— [ (mx—e")m " D).
PX 1 <i<p,
t#j

It is easy to check that each D;(\) is a B-submodule of D(\)}5 and D;(\)f =
Dji1(X) for each j € Z/pZ. In particular, this implies that D()) | can be de-
composed into a direct sum of p) nonzero B-submodules. Comparing this with
(4.3), we can deduce that py = p/ox < ¢p). Combining this with (4.6), we get that
c*ploy < p < cp)oy, which forces that ¢ =1, p = 0,p}, and

D 1% = Soca (D 13) = D) @ DV’ @--- @ D)™

This proves the first two statements of the lemma. The last two statements follow
by Frobenius reciprocity using the first two statements. O

We now apply these results to J7., . It is straightforward to check that, as a
right 7., ,-module,

Hrn = Hopn & ToHrpn @ & T Hpn

(For example, use [23, Lemma 3.1].) Hence, /2., is a Z/pZ-graded Clifford system
over ., . Applying Lemma 4.1 to /%, ,, = @f:_ol ;. pnT¢ we obtain the following
useful result.

4.7. Proposition. There is a natural isomorphism of (€., 7 n)-bimodules

pfl

IR

Hn Q. Hrom
m:O

m

where 4., acts from the left on (%n)g as left multiplication and from the right
with its action twisted by o™

4.8. Corollary. Suppose that M is an S, ,-module. Then, as S, ,-modules,

n %,n ~ O’i
Mg A =DM

i=0

Proof. By definition, Miﬁf: ﬁ}: =M Qup., Hn Q. , Hn. Now apply

o i
Proposition 4.7. U
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4.2. Twisting modules by o. It is easy to check that o(Ty,) = Ty, and that
o(Ly) = €Ly, for w € &, and for 1 < m < n. Hence, using the definitions we
obtain the following.

4.9. Lemma. Suppose that 1 <b<mn and1l <s<t<p. Then

U(ﬁfi,t)) _ abd(t—s-s-l)ﬁgs,;l,t—l).
Consequently, if b € €, then o(vp) = 6_"‘1111(;1) and o(Y;) = e~®Y,_ 4, for
1<t<p.

By the remarks in Section 4.1, the automorphism ¢ induces a functor F° on
the category of JZ ,-modules. We want to compare F° with the functors Hy, for
b € €, ,, which appear in the Morita equivalences discussed in Section 2.5.

4.10. Lemma. Let b € 6, ,, and t € Z. Suppose that Q is (e, q)-separated over K.

Then Vb(t) = Vlg(t-i-l)'

Proof. It is enough to show that V{7 = V(1) which is equivalent to the statement
in the Lemma when ¢ = 0. By Corollary 3.9, there is an isomorphism V;, — Vb(<11)>.
On the other hand, V,[;f1 > (V) = Vb(_l) by Lemma 4.9. Therefore, the map
v (Yi)° ', for v € Vp, gives the required isomorphism V,;’_l = Vo) O

Suppose that b € ), ,, and recall that, by definition,

Hyp = Hap(QVF) = Hyp, (eQ) ® -+ @ Hp, (€7Q).

Suppose that h =h1 @ --- @ hy, € Hgp and set A{(—1) =h, ®h1 ® - @ hp_1. It is
trivial to see that there is an isomorphism of algebras

(411) Ay —> Hp—yhi @ @by h{(—1) =h] @h{ @ -+ @ h7

p—1>

where we abuse notation slightly and define O'(To(t)) = 6*1T£t+1) and U(Ti(t)) =
Ti(tH), for 1 < ¢ < b and where we equate superscripts modulo p. It follows that
there is an equivalence Fy : Mod-73 1, — Mod-J75 ,(_1y given by

Fg(M1®"'®Mp):MP®M1®"'®MP—17

for an 73 p-module M; ® -+ ® M, and where 73,1y acts via the isomorphism
above.

4.12. Proposition. Let b € 6, ,,. Suppose that Q is (e, q)-separated over K. Then
the following diagram commutes

Mod-J 1 —2— Mod-J 1)

HbJ/ le(—m

MOd-%«’n T> MOd-%’n
Proof. Let M be an J; p,-module. Then we have to prove that

(M Ry v Vb)g = Fg(M) ®%d,b(fl) Vb<*1>

as right 77, ,-modules. Mimicking the proof of Lemma 4.10, the required isomor-
phism is the map m ® v = m(—1) ® (Y1v)7, for m@v € M @z, ,, Vb. O
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We want to use this result to determine the o-twists of various .77 ,,-modules.
To this end set a2, = [A=dHD| ... 4 |\@t=dts—1)| for 1 <i<dand 1<t <p
and define

d ast
u;"[t] = H H (Lj —¢ 'Qs) and T = Z Ty,
s=2j=1 LUSICIN
ya = > (=11,

wEGA[t]

which we think of as elements of 77, (¢'Q) in the natural way. Now set uj\'ﬁb =
ui_[l] ®®ui_
that u;b and z p commute using Lemma, 2.3.

By [12, Theorem 2.9], there exists an element sp(A ) ( Ne---@sAl) e
Hap such that Sp(A) = sp(A) A p. Explicitly, ()\[Z]) = ( iQ )yu T () TAlil ili]
where pl? is the multipartition conjugate to AL, for 1 <4 S p. By Lemma 3.3, we
have that

p and Txp = Ty ® - @ xy\p. We remark that it is easy to check

S(A) = Hp(Sb(A)) = s6(A) - v A
Henceforth, we identify S(X) with sp(A) - Vb and Sp(X) with su(X)HGp via these
isomorphisms. Observe that Hp(Sh(A)) = S(A) with these identifications.
4.13. Definition. Suppose that b € €, ,, and A € Pqy. Define
Mb()\) = u;bx&b%’ﬁ,b and Mg\ = Hb (Mb()\))

The definitions above apply equally well to 7, ,-modules by taking p = 1. In
particular, we have elements uj\' and xx in 7., and an J7 ,-module M(X) =
uix)‘%”nn. Using the definitions it is easy to check that zx = Op(zxp) and that
uy = ufOp(uf ), where u is the element introduced in (2.23). It follows that
M = vf M(X). Hence, in general, M is a proper submodule of V,.

We can now prove the promised result about o-twisted modules.

4.14. Proposition. Letb € 6, ,, and XA € Pq . Suppose that Q is (g, q)-separated
over K. Then

(M) = MpTY) and  S(A)7 = S(A(-1)).

Moreover, if A € ;. then D(X)? = D(X(—1)).
Proof. We have that o (u}, (c'Q)) = e ul, (e'7'Q), for some integer ki, exactly
as in Lemma 4.9. From the definitions, F}J (Mb()\)) My, —1y(A(=1)). Therefore,
using Proposition 4.12,

(M3)" = F7 (Ho (Mp (X)) = Hy (1) (FS (Mb(A)))

~ ~ A=
2 Hy(—1y (Mp—1y (A(—1))) = Mb<<711)>7

giving the first isomorphism. A similar argument shows that S(X)? = S(A(-1)).
Finally, if X is Kleshchev then D(A) # 0 and there is a short exact sequence

0 — rad S(A) — S(A) — D(A) — 0.

The functor F7 is exact, and D(A(—1)) is the head of S(A({—1)), so D(A)7 =
D(X(—1)) because S(A)? = S(A(—1)) by the last paragraph. (Note that X is
Kleshchev if and only if A(—1) is Kleshchev by Lemma 3.3(c).) O

As o is trivial on 4%, ,,, Lemma 4.10 and Proposition 4.14 imply the following.

4.15. Corollary. Suppose that Q is (e,q)-separated over K and that b € 6, p,
AE Py andt € Z. Then:
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a) Vb\l/jf::nwvb@ i{;ﬁpn
b) M}‘i%ﬂ;:n b(t iﬁ”;;n

) ST, =S <>)¢=m,,n and,

d) if A€ Hp then DN LE" = D) L .

4.3. Shifting homomorphisms Extending the notation that we used for the
modules V , for each multipartition A € 2, let S(A)) be the Specht module
for J¢, , Wthh is defined with respect to the ordered parameters e'QV¢ (rather
than QV¢). Then S(A) = S(A(t))®) as . ,-modules and S(A(t))® is a submodule

of Vé%. The following result makes this more explicit.

C

4.16. Lemma. Suppose that Q is (e, q)-separated over K and that X € Py, for
be G, n, and1 <t <p. Then

Y, ... Y18(A) = S(A(t))®
as subsets of ;. ,

Proof. As we have already observed, left multiplication by Y}, ...Y; is invertible by
Lemma 2.24 and Lemma 2.21. Therefore, Y;...Y15(A) = S(A) as a right 2 ,-
modules, so it is enough to show that Y;...Y;S(X) € S(A(t))®). Recall from before
Definition 4.13 that we are identifying Sp(A) with the ideal Sp(A) = sb(X)Hap
and S(A) = sp(A) - V. Using Lemma 2.16 we compute

Y; . Y1 (Sb(A) . Ub) = Y;g Ylvbi (Sb(A))
= On(sy (b0 (A1) Vi ... Yivp
= 5b(t>()‘<t>) Ub@)Y* Yl*a

the last equality following from Corollary 2.9. Hence, Y;...Y1.S(A) € S(A(t))® as
we needed to show. O

Fix b € 6,, and A € Py and suppose that X = A(m), for some integer
1 < m < p with m dividing p. Then b = b(m) and ¢™ is an automorphism of .7,
of order . Set

Q=(Q1,Qie, Qg™ 1, Qay Qo™+ Quy o, QuE™ ).
Then ., = #.,(QV¢) = #.,(QVE"). By definition, Ay = %”T%H(Q) is
the subalgebra of 7. ,, generated by Té)/m, Ty,---,T,_1, so that
A v Z{h€H | h=0"(h)}.
This observation will be useful below.

For 0 <t < £ we now consider the modules Vétm) and S(A)*™).  Then,
by definition, S(A)™ is a submodule of Vb(tm), (Vétm+m))aim = Vétm) and
(S()\)(tm‘*m))ai = S(A)#™) by Lemma 4.9 and Proposition 4.14, respectively.
Motivated by Definition 2.10, define

Yim = Yinim - Yim2Yeimt1,
for 0 <t < £, and let 6] ,,: Vétm) — Vétmﬂn) be the map 0; ,,(v) = Y; v, for
UNS Vétm).

4.17. Definition (Shifting homomorphisms). Suppose that b € €, and that b =
b(m) for some 1 < m < p withm dividing p. For0 <t < 2 define 0; ,,, = 000, ,,
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4.18. Lemma. Suppose that b € €, ., with b =b(m) for some 1 < m < p with m

dividing p, and suppose that 0 <t < . Then 6, ,, € End (Vb(tm))'

,p/m,n

Proof. By Definition 2.10 and the remarks above, 0; ,, € Endg (Vétm)) since b =
b(m). Moreover, if v € Vétm) and h € J% , then

etﬂn(vh) =o" (arlt,m(vh)) =" (927,m(1}))0'm(h),

since 0y , is an 7. ,-module homomorphism by Definition 2.10. Therefore, 0; ,,,(vh)
is an J77.}, /m n-module homomorphism since %”T’%)n = ﬂfr",;n . O

4.4. Seminormal forms and roots of fx. In this section we show that if A =
A(m), for some integer m dividing p such that 1 < m < p, then there exists a

scalar ff\l) such that fy = emnd(=1)/2 (f()‘l))l, where [ = p/m. We are not able
to prove this directly, however, and instead argue via the semisimple case using
seminormal forms.

Recall that A = Z[¢, ¢, QF", ..., Q3 A(¢,¢,Q) "] and that F is the field of
fractions of A. As we noted in Section 3.2, the algebra jﬁ]; is semisimple. Note
that Q is (¢, ¢)-separated over F so we can apply all of our previous results.

Fix A € &, , and an integer m such that A = A(m) and 1 < m < p and
m | p. Let I = p/m. Since 7, is semisimple the Specht module S(A) = S¥(X)
is irreducible and has, as we recall, a seminormal representation over F. First we
need some notation.

Recall from Section 3.2 that Std(A) is the set of standard A-tableaux. Each
tableau s € Std(\) is an r-tuple s = (s, ... s(")) of standard tableaux. Ex-

tending the notation for A = (AN ... APy write s = (s'),... slP]), where sb] =
(sbd=d+1l  sUdl) is a All-tableau for 1 < j < p. Similarly, if z € Z define
s(z) = (slFt1, ... sl*Pl) where, as usual, we set sV T#7] = sl for 1 < j < p and
ke Z.

Finally, if 1 < k < n and s € Std(\) define the content of k in t to be
CODt5<I€) = éjqb_an S ]:»

if k appears in row a and column b of §(°T7%9) The following useful fact is easily
proved by induction on n.

4.19. Lemma (cf. [24, Lemma 3.12]). Suppose that s € Std(\) and t € Std(u), for
A€ Py, Then s =t if and only if conts(k) = conte(k), for 1 < k < n.

If 5 is a standard A-tableau and 1 <4 < n let s(i,7+ 1) be the tableau obtained
by interchanging the positions of ¢ and 7 4+ 1 in 6. Then s(i,i 4+ 1) is a standard
A-tableau unless ¢ and ¢ + 1 are either in the same row or in the same column.

4.20. Lemma (Ariki-Koike [3, Theorem 3.7]). Let V(X) be the F-vector space with
basis { vs | s € Std(A) }. Then V(X) becomes an ;7 -module with 77, -action, for
1<k<mnandl<i<n, given by

vs Ly = contg(k)vs  and vsT; = Bs(i)vs + (1 + Bs(i))vt,
where t =5(4,4+ 1), ve = 0 if t is not standard and

(¢ —1)cont(s)
Bali) = (conty (i) — conts (7))

Moreover, V(X) = 57 (X) as 7, -modules.

The module V() is a seminormal form for S7 ().
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Recall that we have fixed integers m and [ = p/m such that m | p and A = X(m).
Thus, S7(X)#™) = §7(N), for 0 <t < I = p/m. By definition,

ST = sp () vy " A,

For convenience, we set vgm) = sp(A) v (tm) S

Recall from Section 3.2 that t* is the standard )\-tableau which have the numbers
1,2,...,n entered in order from left to right along the rows of its first component,
then its second component and so on.

4.21. Lemma. Suppose that 0 <t <l. Then
(fm)Lk = cont(_ tm>(k)v( tm),
for1<k<n.

Proof. 1t suffices to consider the case ¢ = 0 when the result is effectively a re-
statement of [27, Prop. 3.13]. Alternatively, this can be proved using Du and
Rui’s proof [12, Theorem 2.9] that the Specht module S(A) is isomorphic to the
corresponding cell module from [9] together with the description of the action
of Ly,..., L, on the standard basis of the cell modules from [24, Prop. 3.7]. O

4.22. Corollary. Suppose that 0 <t < 1. Then there exists a unique %];-L module
isomorphism

s0(}1%%).‘/(}\) =, SF()\)(tm)
such that (pgfm)(vp\(,tm) = vgm).

Proof. By the Lemma, Ugm) is a simultaneous eigenvector for L, ..., L, with the

eigenvalues being given by the contents cont 4, (k), for 1 < k& < n. By Propo-
sition 4.20 the corresponding simultaneous eigenspace in V() is Fug(_ipmy, 80
any ,%ﬂf—module isomorphism from V(A) to S (A)*#™) must send Ver (—¢my O @
scalar multiple of v(tm). As V(A) =2 ST(A) =2 ST (A{tm))t™) = §F (X)) by
renormalizing any 1som0rphism V(A) — ST (A)#™) we get the result. O

Suppose that 0 < t < I. For each standard A-tableau s set v{™ = cp&tm)(v5<_tm>).

Then {vstm) | 5 € Std(A) } is a Young seminormal basis of S¥ (X)) and, by con-
struction,
L, =

(tm)

Vs(tm) ) L = contg gy (k)vs

for 1 < k < n. Recall from Lemma 4.16 that Yt,mS()\)(tm) = S(X)Em+m) | Finally,
we are able to describe this map more concretely.

4.23. Proposition. Suppose that 0 <t < m and s € Std(X). Then there exists a
scalar f( b m)( ¢, Q) € F such that

(tm) (t+1 m) (tm+m)

YemUs(my =

for all s € Std(A).

Proof. By definition, if 5 € Std(A) then pltmtmip, — cont5<tm+m>(k)v§tm+m), for

1 < k < n. The same statement holds true for Yt,mvitgg, so by construction

Y: mv&m; must be a scalar multiple of vétm+m). By direct verification, we know

5(m) to v{mtm™) (for each s € Std(X)) defines an ;7 -
isomorphism. By Schur’s Lemma thls scalar is independent of s so the Lemma
follows. 0

that the map which sends 0!
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We write f()f) = f()‘t:m) (¢,4,Q) if m is clear from context. It is tempting to say
that f()‘t) € A since left multiplication by Y;,, is defined over A, however, the
construction of the basis {vf””} is only valid over F. Nonetheless, we will show
below, using the fact that A is integrally closed in F, that f()f) e A

4.24. Lemma. Let o:V(X)—V(X) be the F-linear map such that
P(Vs) = Vs(my for all s € Std(X).

Then ¢ is an ji’jf(@n)—module homomorphism. Moreover, p(vz) = @(v)o™(x),
for allv e V(A) and z € %”r]; Hence, ¢ is an AT -module homomorphism.

r,p/m,n

Proof. Suppose that s € Std(A) and 1 < i < n and let t = (4,4 + 1). Then, by
Lemma 4.20,

P(vsTy) = Bs(i)p(vs) + (1 + Bs(@))p(ve) = Bs (i) Vs (my + (14 Bs (1)) ve(m)
= Us(m>Ti = (vs)Tj,

where the second last equality follows because (3(i) = Bs(m)(i). Hence, ¢ is a
Hy(6S,,)-homomorphism. To prove the second claim it is enough to show that
©(vsLy) = €Mvg(myLg, for all s € Std(A) and 1 < k& < n. This is immediate
because conty,, (k) = ¢~ cont, (k). O

4.25. Corollary. Suppose that 0 <t < and that s € Std(\). Then

o™ (’Ugtm)) — é—dmnvétm—m).

Proof. First note that cfm(vg\m)) = é*dm”vg\m_m) because
O‘m(’l}gm)) = g™ (Sb(A) ’U]E)tm)) — E-—dmnsb(A) -Ul()tmim) — é—dm'rLUEim*m)’

by Lemma 4.9. Therefore, writing oit™ = vgm)h = <p()‘tm) (Ver (—tmyh) we have

'UtA<_t7n>h = vs(—tm}a and so

o™ (vétm)) = Um(vgm))am(h) = é_dm”vgmfm)om(h)
= &7 OU ™ (00n (e tmy 0 (B)) = €L (0 (0 (—myh))

= &I OU T (o (vg ) = &ML

. tm—
—¢ dmnvgm m)’

Us(mftm>)

as required. 0

4.26. Theorem. Suppose that A € P41 be a multipartition such that X = A(m),
for someb € 6, , and 1 <m <p withm |p. Setl=p/m. Then

= ) = b0 )
Consequently, f()‘t) eAfor1 <t<l.
Proof. By Lemma 3.4 and Proposition 4.23, if s € Std(A) then
i =Y, Vil =Yg Yool
= Yt Yoy = =1,

s(—m)

Therefore, fy = f&l) ... f()f), since v{" = v{”). This proves the first claim.

For the second claim, observe that by Lemma 4.9

. p— m .-—
O-m(}/t,m) = 5(1) L)dmby Yzfl,m =€ dmn/l}/tfl,my
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since €? = 1 and (b* = bY = n. Therefore,
c(t+1 tm—+m tm —m m m
fg\H )vg ™= Yt»mvgm)@) =0 "(o (Y;,m”gm)z))

— éfdmn(lqtl/l)o,fm (}/t—l,mvt(szln_wm))
_ E-—dm,n(l—',—l/l)f()\t)a_—m (Ugm))

— E-—dmn/l g)vg‘m+m)

Therefore, f(;H) = é_dm"/lf(;) = é_tdm”/lfg\l). The second claim now follows.
Finally, by [13, page 138, Exercise 4.18 and 4.21], the ring A is an integrally

closed domain. Therefore, since fx € A and (f()‘l))l = g2dmn(-1)f, ¢ A by Proposi-

tion 3.4, we deduce that f&l) € A. (Hence, f()f) € A, for 1 <t <m.) This completes
the proof. O

Henceforth, let f(;) be the value of fgf) at (£,¢,Q) = (g,¢,Q), for each integer
1<t<I.

4.27. Corollary. Suppose that Q is (e, q)-separated over R and let X € Pay be a
multipartition such that X = X(m), for some b € €, and 1 < m < p with m | p.
Set 1 =p/m. Then

1 dn _ l
f)\ _ (}})fg) :Eédrm(l l)(f()\l)) .

Combining Corollary 4.27 with Proposition 3.4 and Theorem 3.6 we have proved
Theorem B from the introduction.

4.5. Specht modules for 57 ,,. We can now construct analogue of the Specht
modules for J#.,, , using the shifting homomorphisms 6; ,,. As a consequence we
construct and classify the irreducible /7., ,-modules over a field and show that the
decomposition matrix of J#. , ,, is unitriangular.

4.28. Lemma. Suppose thatb € 6, ,, and that b = b(m), for some 1 < m < p with
m dividing p. Let | = p/m. Then 0, = e™™™/!gtm o] oo™ for0<t<I.

Proof. We first show that 0; ,, = gdmn/lgm o 0i1.m © 0™ whenever 0 <t < [.
It is clear that both maps belong to Hom%’n(Vétm), VimEm)) By Lemma 4.9,
0" (Yig1,m) = £_dm”/lYt,m. Consequently, if v € Vétm) then

(Jm o 9£+17m o a—m) (v)=o™ (YiJerU_m(v)) — €_dm"/lY},mv _ s‘dm””e;ym(v)
Hence, 0, ,, = £4™"/!6™ 06, 00c~™ as claimed. Therefore, if 0 < ¢ < I then

0 m = gdmnt/l ztm o 0}, © o~'™ by induction on t. (]

By Lemma 4.18, we have that 0;,, = o™ o 0;,, € Endy Vém”), for

r,p/m,n (
0 <t < p/m. In particular, 0ym € Endyg, . (Vb).

4.29. Lemma. Suppose that b € 6, ,, and that b = b(m), for some1l < m <p
with m dividing p. Let | = p/m. Then

(Qo,m)l(v) _ E%dmn(lfl)zb -,

for all v € V. That 1is, (907m)l = ﬁdm”(l*l)zb as elements of End . , (Vb).
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Proof. By Lemma 4.28, 6f, ,,, = e?™""/Ig'™ 0 6 oo~ for 1 <t < . Therefore,

(eo)m)l = (Um © eé,m) o (Um © 9(/),m) ©---0 (Um © 96,m>
— ™o gdmn(lfl)/lo(lfl)m o 0[/_1 O U(lfl)m oo™ o €dmn(lf2)/lo,(lf2)m

/ m dmn/l_m / —m
Oel2m "rr00 " 0E o™ ol ,

ooc™o 96 m

O-++-0 067m’

since o™ = oP is the identity map on % ,. By Lemma 2.21 and the definitions,
if v € Vp then (0]_;,,00_5,, 0 00,,)(v) =Y,...Y1v = 2 - v, so the result
follows. O

Recall from the introduction that if a = (a1, as,...,a,) is any sequence then
op(a) =min{l1 <k <pla=a(k)} and of(a) = p/op(a).

In particular, if b € €}, , and A = (AR e P4p then this defines integers
op(b) and o, (). By definition, o,(b) and o0,(A) both divide p, so o”(b) and oP(X)
are both integers. Further, o,(b) divides o,(A).

For convenience, set ox = 0,(A), px = p/ox, onb = 0p(b) and pr, = p/on,.

4.30. Definition. Suppose that b € €., and A € Pyyp. Let 05 be the restriction
of Op.05 to S(A) and set gx = f(l o)) Let gx be the specialization of §x at €,q, Q.

As in Lemma 4.18, the image of 0 is contained in S(A) so we can consider 6y
to be an 4. ,, »,-module endomorphism of S(X).

4.31. Corollary. Suppose thatb € €, , and A € Pqy. Then

(6x)" = g 1s(n),
where 1g(x) is the identity map on S(X).

Proof. Proposition 3.4 and Lemma 4.29 show that (6x)P* = E%d”"*(”*_l)f)\ls()‘).
Now apply Theorem 4.26. O

4.32. Definition. Suppose thatb € €., A € Pgp and 1 <t < px. Define
SP ={xz € SA)|Ox(z) =" gax } =ker (Ox — "> grls(n))-
Set )} = [licocps smt (6x — %2 ga), so that m) € Endy, ,, ., (S(N)).
By definition, S is an 47, ,, ,-submodule of S(A), for 1 <t < px. By restric-

tion, we consider S to be an ., ,-module. Recall that 7 is the automorphism
of A, ,, given by 7(h) = ToflhTo, for h € 2 .
4.33. Theorem. Let A € Py, for b € €ppn, and that 1 <t < px. Suppose that
fa is invertible in R. Then

a) STy = S . Equivalently, (SN,)" = SP.

b) S} =} (S(N));
) SV =St e e 8
)
)

e

Px’
d) dim S} = dimS()\);
¢) S} ~S(A)@S(A)ff@-neaS(A)v‘“*”.

Proof. Suppose that z € S and let m = ox. By definition,
QA(.TTo) = (O’m [¢] 06,m)(ITO) = Um (06701)()\) (I)To),
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since Hé’m is an 77} ,-module homomorphism. Therefore,

Ox(2Tp) = Ox(x)0™ (Tp) = T graTy.

Hence, zTy € Sp,,, proving the first half of (a). That St+1 & (S)‘) is now
immediate because if z € S, then © = /T, for some 2/ € S}. Therefore, if
h € A, then zh = 2'Toh =z T(h)To Hence, we have proved (a).

By Corollary 4.31, the map 65> — g&* kills every element of S(X). Thus, on S(\)
we have

0= Q:DA P>\ _ H (9)\ _ Eso,\g)\) — 7Tt (9}\ _ Eta’\g)\).
1<s<pa
Hence, the image of 7 is contained in S and ker ) = Dt S2. Note that the

assumption fy is invertible in R implies that gy is also invertible in R. If z € S}

then 7} (x) = aux, where oy = ga [Lozi(e"* — &%) is invertible in R. Tt follows

that if we set 72 = -7 then
lsoy =T+ 70 4+ + 7,
and 7 is the projection map from S(X) onto S. Hence, (b) and (c) now follow.

Moreover, since dim Sp = dim S | by (a), we obtain (d) from (c).
It remains then to prove (e). First observe that by part (a),

SAT%;M (SA)T Taﬂpn—( +1T3ﬁpn) +1T9ﬁpn'

Therefore, S T%;:n =i S)‘ Ko Hence, using part (¢), which we have
already proved, and applylng Corollary "1.8 we see that

(S)\T;fr:n )EB;DA

3
L

~Y %‘.n %‘,"L ~Y 0"7
(St @ o) 150 =S 1 =P s™)

T,p,m

N <0@1 S(}\)aj) 6517/\7

where the last isomorphism follows because S(A)?" 22 S(A(—t)) by Proposition 4.14.
Applying the Krull-Schmidt theorem we deduce

1

<
Il
o

(ox—1)

SA 7 22 SN B SN BB SN,
proving (e). This completes the proof of Theorem 4.33. O

As in the introduction, let ~, be the equivalence relation on &, ,, where pt ~, A
whenever A = p(m), for some m € Z. Let &7, be the set of ~,-equivalence
classes in . ,. By Proposition 4.14, the set %, of Kleshchev multipartitions
is closed under ~,-equivalence. Let JZ%, be the set of ~,-equivalence classes of
Kleshchev multipartitions. We will abuse notation and think of the elements of
27, as multipartitions so that when we write p € &7, we will really mean that
 is a representative of an equivalence class in &77,. Similarly, p € 7, means
that p is a representative for an equivalence class in J£7,.

Let R = K be a field. We call the modules { S} | A € 227, and 1 <i <px}
the Specht modules of 7., ,. Using these modules we can now construct the
irreducible 27, ,, ,-modules.

4.34. Definition. Suppose that XA € #;.,, and 1 <t < px. Define D}* = Head(S?).
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Although this is not clear from the definition, the module D2 is irreducible when
A € ;. , and, moreover every irreducible J#. ,, ,-module arises in this way.

This following result establishes of Theorem C from the introduction and, in
fact, proves quite a bit more.

4.35. Theorem. Suppose that Q is (e, q)-separated over the field K. Let X € J, ,,
Then:

a) The module D} = Head(S}) is an irreducible ., ,-module, for 1 <i < py.
Moreover, (Df‘+1)7 =~ D, for 1 <i < pa.
)If1<ij<p)\then[S->" )‘}25”
) The integer px is the smallest positive integer such that D} =2 e
d) The mteger ox is the smallest positive integer such that D(X)
) (DM = D(A) @ DA @ --- @ DA™

DN E" = DXe (DM @ ---a (DY)

Furthermore, the Hecke algebra 2, ,, , is split over K and

o™
= D(3)™.

and

{DF | pe s, and1<i<pu)
is a complete set of pairwise non-isomorphic absolutely irreducible J¢, ;, ,-modules.

Proof. By Proposition 4.14, D(A)? = D(A(—1)), so it is clear that oy is the smallest
positive integer such that D(X) = D(A)*"*. Similarly, once we know that D} =
Head(S}) is irreducible then (D7 ;)™ = D by Theorem 4.33(a) since twisting by 7
induces an exact functor on Mod-J2; , ,,.

For the other statements, we first consider the case where K = K is algebraically
closed so that ﬁf;}; ., splits over K. The algebra ., ,, is cellular over any ring and

so, in particular, it is split over K. For each Kleshchev multipartition p € 27, fix
an irreducible X  _submodule D“ of DK () = D(p) ©x K. By Lemma 4.2, the

T,p,n
integer py is the smallest positive mteger such that D% = (D%)TpA and, further,

DK()\)\L%? gDAEB(D%)T@...@(D%)Tp/\—I;
DAT :z NDK(A)@D?(A)U@@D?(A)UOX

Moreover, { (D;)T | pe 2, and 1 <i<p,}isacomplete set of pairwise non-
isomorphic simple %’é@ n-modules.

Suppose that p € £, ,, and let S%,i =St ek K, for 1 < j < p,. We claim
that D% = Head(S%i), for some i, if and only if A ~, p and in this case 7

is uniquely determined. Using the restriction formula for Df(/\) given above,
Frobenius reciprocity [7, Proposition 11.13(ii)] and Theorem 4.33 we find that

Pp—1 o
@ Hom‘}erp . D)‘ %) = Hom HE (S%(w) \L‘%‘ﬁm , D%)
= Hom ,, % (S?(u), D% Hoin )
ox 1
@ Homﬂry (SK( ) DK()\)JJ)
Jj=0 "

~ K, if g~y A,
~ 10, otherwise,
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where the last line follows because DX () = Head(S% (), by Lemma 3.2, and
because DX(X)?" = DX(X( — j)) by Proposition 4.14. This proves our claim.
Without loss of generality, we can take gt = X. Note that Head SE(X) = DE ()
is simple. The above isomorphisms imply that Head(S%i) = D%i = D% is also
simple. By Lemma 3.2, [SE(A) : DE(A)] = 1 and DE(A) is the simple head
of SE(X). By considering the restriction of the composition series of SK(A) to
M. pm, it is easy to see that [S%z : D%j] = §;;. This proves all the statements in
the Theorem when K = K.

We now return to the general case where K is an arbitrary field. By the last
paragraph, S%i =~ S2 ®k K has a simple head, so that D} = Head(S?) is inde-
composable. Therefore, D is irreducible (since it is also semisimple).

To complete the proof of the Theorem we show that D} ®x K = D%i. Let

! > 1 be the minimal positive integer such that (DM7' =2 DX Then [ > py since
D%i =~ Head(D} ® K). Similarly, dimy D} > dime%i. By [7, Proposition
(11.16)], there exists an integer ¢ > 1 such that
Fl=1\ ©c
DN = (D? (D)) @@ (D)) ) _
Taking dimensions, dimg D(X) = ¢l dimKiDi)‘. Hence, comparing dimensions on
both sides of the restriction formula for D¥(X) above shows that

cldim D} = dimg D(A) = dimg DX (X) = px dimg DX < py dimg D).

Since [ > p this forces ¢ = 1, I = px and dimg D} = dim?D%i. Therefore,
D%i =~ D> ®k K, implying that D is absolutely irreducible and hence that K
is a splitting field for 47, ,. All of the parts in the theorem now follow from the
corresponding statements for D%i using the isomorphism D%i ~Dreg K. O

The algebra . ,,(QV¢) is not necessarily semisimple when d > 1. With a little
more work it is possible to show that if Q is (g, q)-separated over K then the
following are equivalent:

a) ., is (split) semisimple.

b) S pn is (split) semisimple.

c) Sp =D} forall A € &, ,, and 1 <t < pj.
We omit the details. If d = 1 then it is known that 7, ,, ,, is semisimple if and only
if (¢) N (¢) = {1} and e > n [20, Theorem 5.9].

Extend the dominance order to &7, x Z by defining (X, j) > (p,7) if X > p. Let

rn

Dy, ,. = (S} D;-L])(A i.(ug) D€ the decomposition matrix of S, rn, where
Ae P, mwe X7, 1<i<pyand1l<j<p,, and where the rows and columns
of D are ordered in a way that is compatible with dominance.

Tp,n

Suppose that A € Z,. ,, € %% and 1 <i <pyand 1l <i<p,. If X+# pthen

n

[S} : D¥] # 0 only if (X,) > (i, j) because, by Theorem 4.35 and Lemma 3.2,
[S}:D#0 = [S(A): D] #0 = A>p.

On the other hand, [S¥ : D;‘] = d;; by Theorem 4.35. Hence, we have proved the
following.

4.36. Corollary. Suppose that Q is (e, q)-separated over the field K. Then the
decomposition matriz D of 7 pn is unitriangular.

T,p,M
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4.6. Morita equivalences of J7, , ,-modules. In this section we prove an Morita
equivalence theorem for the cyclotomic Hecke algebras 7, ,, , which is an analogue
of the Morita equivalence theorem %, , which was discussed in section 2.5. Our
main result is a generalization of the Morita equivalence theorem given by the first
author for the Hecke algebras of type D [19].

We maintain our assumption that Q is (g, q)-separated. Most of the results in
this section hold over an arbitrary ring, however, for convenience we work over the
field K throughout.

Fix a composition b € %, and set o, = o,(b) and p, = p/on. Mirroring
Definition 4.30 define

b = 00,0, (b)-
Then 0, € Endy, (Vo) by Lemma 4.18 and 0y (v) = 0°°(Yo0,v), for all v € V.
In particular, 0y is an J2;. , ,-endomorphism of W,.

The module V, = vpJ4.,, is an 2, ), ,-module by restriction. For simplicity
we will usually write V4, instead of Vj ij?:‘:n, when we consider V4, as an J%. ;, -

module.
4.37. Definition. Suppose that b € €}, ,,. Define &3 = Endyg, , , (Vb).

Notice that 71, is a subalgebra of &, by Lemma 2.18, and that 6y, is an
element of & by the remarks above.

4.38. Theorem. Suppose that b € €,,. Then, as an algebra, &y, is generated
by o and the endomorphism Oy. Moreover, if {x; | i € I} is a K-basis of b
then {x;0f |i €1 and 0 < k <pp } in a K-basis of Ends, (Vo). In particular,
dim éadwb = Pb dim %,b'

Proof. We first compute the dimension of &; . By Frobenius reciprocity [7, Propo-
sition 11.13(ii)],

Hn Horn ~ Fn ji&r,n
Eab = Homg, . W \l/t%'jp,n’ %S J/L%Vpn) = Homeg, , Vb, Wb i‘ﬁrpn !7?9-,p,n)
p—1 ) p—1
= @Hom%w Vo, Vi7 ) = @Hom%m(Vb,Vb@)),
=0 =0

where the third isomorphism is Corollary 4.8 and the fourth isomorphism follows
because Vgl 2 Vh(—iy by Proposition 4.10. By [23, Proposition 2.13] if b # ¢ then
Hom s, , (Vi, Vo) = 0 because Vi, and V. belong to different blocks. Therefore, as

vector spaces,

Po—1 po—1
Eqp = @ Hom g, , (Vb,Vb(iob>) = @ Hom g, , (Vb,Vb) = Q%pdeif)b
=0 =0

since End ., (W) = 41 by Lemma 2.18. Hence, dim &y p = pp dim 75 b as we
wanted to show.

It remains to show that .77, and 0y, generate &, as a K-algebra. First ob-
serve that 0y is an invertible element of &y because (6p)P> = gin(p=on)/2  hy
Lemma 4.29. Therefore, since End g, ,, (Vi) = H#3p by Lemma 2.18, it suffices to

show that every element of Hom e , (Vb, Vi7 iob) corresponds to 6, iz, for some x

in A3 Let 7; be the projection from &y, to Hom ., , (Vp, Vt‘)’job) under the vector
space isomorphism above. Under Frobenius reciprocity [7, Proposition 11.13(ii)],
the 2., n,-endomorphism

by' € Endorr,,., (Vo3 7))
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corresponds to the J# ,,-homomorphism W, — Vi ®@ .

TP,

., given by
p—1
vph = > 0y (vphTy *) @ Tg,
s=0
for h € 4 ,. Using Proposition 4.2, and the explicit isomorphism given in
Lemma 4.1,

p—1 p—1
ﬂ—j (0];2)(7“)) — Z E]Obsagz(vbTJs)Tg — Z EJObsel;Z(vb)E—zsobTO*sTds
s=0 s=0

p—1
= 3 D () = 8,0 ().
s=0

By assumption p does not divide the characteristic of K, so p is invertible in K. So
we deduce that 7; (6, %) is actually an isomorphism from V4, onto |44 e Essentially
the same argument shows that if x € 75 then

7i(z)(vp) = d0px - Vb = 0PVBLOL(T).
Therefore, 7;(0y, ‘@) (vp) = 6;;6,0p*0y, " (vb)Ob(z). Note that every homomorphism
in Hom g, , (Vi, Vi iob) can be decomposed into a composition of the isomorphism
Wi(ﬁgi) with an endomorphism in Ende , (Vb) & 4. All of the claims in the

n

theorem now follow. O

The algebra &y p is generated by ;1 and 6, by Theorem 4.38. To make this
more explicit, for s =1,2,...,p let Ti(s) and L;S), for1 <i<bsand 1 <j <bg, be
the generators of ¢ . That is,

T =119 T, 1% and L =1%°"1@ L; © 1977,
interpreted as elements of 5, = 54, (€Q) ® --- ® H5p,(ePQ). The elements

TZ.(S) and L;-S), for 1 <s<p,1<i<bsandl<j<b,, generate 5, subject to
the relations implied by the defining relations for .77 ,,.

To determine relations these elements satisfy in &3 we need to determine the
commutation relations for these elements and #y,. Using Lemma 2.16, it is easy to
deduce the following result.

4.39. Lemma. Suppose thatb € €, ,, 1 <s<p, 1 <i<bs and1 <j <bs. Then

7o, - [BTT, if s+o0n <p,
i Ub = 9 T(s+ob—p) .
bl; ) Zf S$+op > D,
Lo — 570b9bL§‘s+ob), if s +op < p,
J b = £ %60 L(S‘Fobfp) ;
WL . ifs+op>p.
This lemma, when combined with the relation that ng = fazp is central in &y p
and the relations coming from %1, gives a complete set of commutator relations

for the generators of & p. It would be interesting to know whether or not this gives
a presentation for the algebra & .

4.40. Remark. Suppose that b € €, , and 1 < s,t <p and s =t (mod op), so that
bs = b;. Let ms be the algebra isomorphism %(,81 ~ e%’;l(?t given by
TZ-(S) — Ti(t) and Tés) = Lgs) — E‘S_tTO(t), forl1<i<n-—1.

Thus, 7s identifies the s*® tensor factor and the ¢ tensor factor in Hyp and
Lemma 4.39 says that conjugation by 6}, coincides with the map 74, where t = s+oy,
if s+op, <p;ort=s+op—pif s+op > p.
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Extend the equivalence relation ~, on &, , to 6, by defining b ~, cif b =
c(k) for some k € Z, for b,c € 6,,. Let €5, = €,n/~, be the set of ~-
equivalence classes in ¢, ,. Once again, we write b € %7, to indicate that b is a
representative for an equivalence class in €7 ,.

Define & = @ &4.b- Note that & depends on the parameters ¢ and QY€ and
beey,
on n. Further, by definition, Mod-& = @y, Mod-&yp.

4.41. Corollary. Suppose that Suppose that Q is (e, q)-separated over K. Then
there is a Morita equivalence

Fg: Mod-& — Mod-J77. , ; M = M ®g, ,, Vb,
for M € Mod-&; b, and b € ¢ ,.

Proof. By [23, Proposition 2.15], @be%,n W is a progenerator for 47 ,. Moreover,
if b € €5, then

Volgr =W = Ve Ll
for any t € Z by Lemma 4.10. Therefore, @be%a W is a progenerator for JZ. p,

and, by well-known arguments [4, §2.2], it induces the Morita equivalence Fg as
described above. g

We now describe the images of the Specht modules and simple modules of the
algebra 77 ,, ,, under this Morita equivalence.

Let A € Z4p. By definition oy, | ox and ox | p. Let py/x := po/px = ox/op € N.
Then py = pp/aPa-

4.42. Definition. Suppose that A € Py, for b € 67 ,,. Define

S* = Sp(N15E and D> = Dy(A) 155" .

Define &y x to be the subalgebra of &gy generated by v and (Op)Pe/>.

By definition &g = &4, whenever A, u € Pyp and px = p,. Further,
dim &y = pxdim .5 by Theorem 4.38. Notice that the maps (6 )Pe/> and 0
agree when they are restricted to S(\).

Now fix generators sp(A) and dp(X) of Sp(X) and Dy, (), respectively, which we
consider as elements of &y . Motivated by Definition 4.32 and Theorem 4.33 define

Shon = soA) T ((B6)7* = gx) i = Eux
1<t<px
tFi
Di):px =dp(}) H ((B)P=/> — gx) Hap — Eux.
1<t<px
tZi
By Lemma 4.39, S}  and Dl—i‘m are & x-submodules of S* and D*, respectively.

,Px
Moreover, it is easy to see that

SN 1560, = B2, De(N 15, = 02,00,
Now define . .
SA = SlAPA ng:i and DA = Dl)\:ﬂx Tcg’;i .

Let ~p, be the equivalence relation on %,y where if A\, u € Py then p ~p A
if A = p(koy), for some k € Z. Let ,@zb be the set of ~p-equivalence classes in
Pap and let *%/dl,)b be the equivalence classes in %3 . Once again, we blur the
distinction between equivalence classes in :@Eb and the multipartitions in these
equivalence classes.
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4.43. Lemma. Suppose that X € Pgp, B € f%/d'f’b, 1<i<prandl <j < p,.
Then FgSl-)"p =~ SX and Fg DY, = DY. In particular,

(DY, | pe A, and1<j<pu}
is a complete set of pairwise non-isomorphic absolutely irreducible &4 n-modules.

Proof. This follows directly from the definitions and standard properties of the
Schur functor Fe. O

5. CYCLOTOMIC SCHUR ALGEBRAS AND DECOMPOSITION NUMBERS

In this section we use the results so far to define analogues of the cyclotomic Schur
algebras for 727 ,, ,,. We then use the formal characters of these algebras to compute
the p-splittable decomposition numbers of .7, ,, extending the arguments of [22],
and hence proving our main results from the introduction.

Many of the early results in this section apply over an integral domain, however,
for convenience we work over a field R = K. We maintain our assumption that Q
is (g, q)-separated over K.

5.1. Lifting to cyclotomic ¢-Schur algebras. For each A € &, , we defined
modules M(X), Mp(A\) = M(A) @ .- @ M(AlP)) and

M = Hy(Mp (X)) = v M(X)
in or after Definition 4.13. Using these modules we introduce analogues of the Schur
algebras for the algebras J%, ., 4 p and J. .

5.1. Definition. a) The cyclotomic g-Schur algebra of A, is the endo-
morphism algebra

T =Endsre, (D MO).
AE2,

b) For b € 6, the cyclotomic q-Schur algebra of 5y, is the endomor-
phism algebra

Zap = Endy, ( @ Mb()\)>.
AEP4 b
c) The cyclotomic q-Schur algebra of 2, ., is the endomorphism algebra
Frpmn = Dpew, . Lrpn(b), where

Frpn(d) =Endse, (P M),
AEPg b
where M is considered as an ., ,-module by restriction.
The algebra .7, ,, , is new, generalizing the Schur algebras of type D introduced

by the first author in [22]. The cyclotomic Schur algebra .%;.,, = .7, ,(QV¢) was
introduced in [9]. By Definition 4.13, Mp(A) = M(AM) @ - @ M(AP!) so that

Fap 2 Endy,, (P Mb(N) = S, (6Q) @ ® Fup, (£7Q).
AEZ b

Moreover, applying the functor Hy shows that

(5.2) S = End g, ( D MQ).
)\Eyd,b
Hence, we can — and do! — consider .#; 1, as a subalgebra of .7 ,, ..

Recall that after Definition 4.37 we defined 6y = 6po, € End%ﬂwbyn(Vb). By
definition, Mg‘ is a submodule of V4,. We next show that 6, maps Mﬁ‘ to Mti‘(ob).
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5.3. Lemma. Suppose thatb € €, ,, and A € Pyy. Then Oy restricts to give an

H,. p.n-homomorphism from M to Ms<°b>.

Proof. Let Yo = Yp0, = Yo, -..Y1. Then 0p(v) = 0°»(Ypv), for all v € V3. By
+

construction, Mﬁ‘ =y Uix)\r%",n and

viufmy = vb@b(u;bxx,b) = @b(xk,bu;b)vba

where these elements are defined before Definition 4.13. Therefore, it is enough
to prove that O (vi uiza) = 0% (Ypvy usza) belongs to Ms<°b>. Using (2.20) we
compute

+,,+ _ +
Yb'Ub Uy T = Yb’l}b@b(u&bl‘)‘,b)

= Op(oy) (“;\r(ob),b<ob>x>\(0b),b<0b>)vabv by Lemma 2.16,
= ®b<ob>(uj\'<ob>7b<ob>:c)\<ob>}b<ob>)Ué?‘;E))Yg, by Corollary 2.9.

Hence, using Lemma 4.9 there exists a ¢ € Z such that

O (U5 UxTA) = €Vb(0,) Ob (U3 0, 1y (o) TAon) blon) )77 (V)

€ Vg oy Un(on) " (Vi)-

Thus, 0y (v uizy) € M];\ on) Moreover, this map is surjective since Y}, and hence

o°0 (YY), is invertible by Lemma 2.24 and Lemma 2.21. As M and Ms<°b> are
both free and of the same rank the proof is complete. O

Recall from Lemma 2.21 that zp, is a central element of J¢, for b € €, .
Consequently, if A € Py, then

zb-vg'u;tx)\ = (zbu;be,b) “Vp = (u:\"’bx)\7bzb) “Up = (ui’bx&b)mb@b(zb) € Mg‘.

Therefore, left multiplication by zp induces a homomorphism in End, , (MD).
5.4. Definition. Suppose that b € 6, ,,. Define maps 9 and Cp in Sy pn(b) by
Up(m) = bp(m) and (p(m) = 2p-m,
form e MR, and X € Pyp.
Using this definition and Lemma 4.29 we obtain:
5.5. Lemma. Suppose that b € 6, ,,. Then (y is central in 7., n and
o = gédobn(pbfl)cb.

As remarked in (5.2) above, 4p = Endy, ,, (@acp,, M) so we can view
Fap as a subalgebra of .., ,(b).

5.6. Theorem. As a K-algebra, .7, pn(b) is generated by S4n and the endomor-
phism Uy. Moreover, if {x; | i € I} is a K-basis of Sy then

{z9f |i€T and 0 <k <pp}
is a K-basis of Ly n(b). In particular, dim .7, ,(b) = pp dim Sy .

Proof. This can be proved by repeating the argument of Theorem 4.38. O
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5.2. Weyl modules, simple modules and Schur functors. The cyclotomic
Schur algebra .77 ,, is a quasi-hereditary cellular algebra with basis

{QOST|SE76(>‘7IJ’)7T€7—O(A7V) for A,[J,,I/E ‘@T‘,TL})

where To(A, T) is the set of semistandard X-tableauz of type T for T € P, ,; see
[9, Definition 4.4 and Theorem 6.6]. In this paper we do not need the precise
combinatorial definition of semistandard tableaux. For our purposes it is enough
to know that if x = ufz.h € M(7), and S € To(A, ) and T € To(A,v), then

OsT (ZL’) = 5lITmSTh’7

where msT is a certain element of M ().

For each A € &, there is a Weyl module A(X), which is a cell module for
- Let L(A) = A(X)/rad A(X), where rad A(A) is the Jacobson radical of A(X).
Then { L(A) | A € Z,.,, } is a complete set of pairwise non-isomorphic irreducible
r n-modules. Further, if A, u € &2, ,, then L(p) is the simple head of A(p) and

1, if A=p,

(57) AN : L)) = {0 A

All of these facts are proved in [9, §6].

Similarly, for b € %, let Ap(A) and Lp(A) be the Weyl modules and the
irreducible modules of F 1, for A € Pgp. For 1 <t < p, \,v,u € Pqp, and
SeTo(\ ), TeTo\v),let cpgT) be the corresponding element of ., given by

e(@1® ) =71 ® - @ Ty—1 @ PsT(T1) @ Typ1 ® -+~ D T

5.8. Lemma. Suppose that b € €,,, 1 < s < p and that S € To(\, p), and
T e To(A,v), where A\, p,v € Pqp,. Then

o9y = eyl i s +on < p,
ST 6*°bk*v"z9bgaé‘fr+°b_p), if s+ op > p.

where kx, = Y252y Yoi_y (A0 = ).
(s+ob) (s4ob—p)

Proof. We first note that b(op) = b, so that the notations ¢t and et
make sense. As the map st is given by left multiplication by an element of J¢3 1,,
the result follows from Lemma 4.39. (In what follows we only need to know that
the scalar e~°2Fx» above is equal to ¥, for some k € Z. This is a consequence
of Lemma 4.39. That & = k), can be determined using the definition of mst
from [9].) O
5.9. Remark. Suppose that b € %, and 1 < s,t < p and s = ¢ (mod op), s0
that by = b;. Just as in Remark 4.40, if we let 7/, be the algebra isomorphism
y,u,s(s) = Sab ) given by goé‘?g — swbkkv"cpgzlz, for S and T as above. Then Uy
coincides with 7, where t = s+ op if s+ 0op <p;ort=s+op —pif s +o0p > p.

For each multipartition p € P4 the identity map ¢, : My (p) — Mp(p) be-
longs to #g . Then ¢, is an idempotent in .75 and Zue@d,b ¢y is the identity
element of Sy 1. If M is a 74 p-module then M has a weight space decomposition

M= B M,  where M, =Mg,.
HEPq b

Recall from (2.23) that wp, = (wpY, - -+, wpP) is the unique multipartition in 2,
such that p > wy, for all p € ;. By definition, ¢, is the identity map on 5 1,
so that ¢u, -S4 bPuw, = . Hence, we have a Schur functor

Fo, : Mod--4 p, — Mod-3¢, »; M — M,,,, for M € Mod-“.
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By [9, Corollary 6.14], the Weyl module Ap(\) has a basis
{ws|S € ToAp) for p € Pyp}

such that {ys |S € To(A, ) } is a basis for the p-weight space of Ap(A). This
implies that Fg,, (Ap(A)) = Sp(A), for all A € Pyp; see [24, Proposition 2.17).
Hence, Fo,, (Lb(A)) = Dp(A), for all X € g p, since Fy,, is exact.

There is a unique semistandard A-tableau T* of type A and ¢1a is a “highest
weight vector” in Ap(A). In particular, ota generates Ap(A).

5.10. Lemma. Suppose that A € Pqyp, for b € €, . Then
e1alb = fapra  and  orady® = (ga)Ppra.

Proof. By [24, (2.18)], the Weyl module Ay () can be identified with a set of maps
from @ueﬁ’d,b My () to Sp(A) in such a way that o is the natural projection
map Mp(A) — Sp(X). Hence, p1alp = fapt» by Proposition 3.4 and pradt® =
(gx)Pp o1 by Corollary 4.31 O

By Theorem 5.6, the subspaces {Yd,b, YoTdb, -, (ﬂb)pbflydvb} define a Z/pvZ-
graded Clifford system for .7, , »(b). In particular, conjugation with 9, defines an
algebra automorphism of .#;p. For any .#;p-module M let M?P% be the b~
module obtained by twisting the action of .71, by V.

5.11. Lemma. Suppose that X € Pqy, for b € 6,,,. Then
Ap(N)? = Ap(Alop)) and Lp(X)7" = Ly(A(op))
as Sy n-modules.
Proof. This follows directly from Lemma 5.8 and Remark 5.9. O
The following definitions mirror the constructions for &y, in Definition 4.42.
5.12. Definition. Suppose that A € Pqyp, for b € €, . Define
AN = AW 1™ and LA = Ly(A) 15 ™)

d,b d,b
Let & be the automorphism of .7, ,, ,,(b) which, using Theorem 5.6, is defined on
generators by
(z0F)°x = eroravy, forall z € Sp and 0 < k < pp.
By definition, & restricts to the identity map on /3. By Lemma 4.1 there is an
isomorphism of .7, ,,(b)-7. . (b)-bimodules,

Pb

(5.13) Fropn (D) @ Frpn(6) 2 D) (Frpn (b))

Jj=1

such that the left ., , ,(b)-module structure on (Yrﬁp’n(b))(ﬂ is given by left mul-
tiplication and the right action is twisted by &7.

Recall that if A € P4, then py,/x = Pb/DPa- Let Fy A be the subalgebra of .7,
generated by .71, and 9 = 9p>/>. Let B> be the image of px in Ly(\) and for
1 < i < px define

Ad)y = o H (ﬂk - 9>\5°*t>5ﬂd,b = S,
1<t<px
t2i

Lz?:pk = P12 H (ﬂk - g)\€°*t><7d,b — 5”(“‘.
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Then, by Lemma 5.8 and Lemma 5.10, A® and L} are S, x-submodules of AN

P [3Y2DN

and L, respectively. Next, for 1 < i < py define

A _ AX 2Frpn(b) A _ 71X AZrpn(b)
Ai,P_AiypA BN and LZ}P_LMDA BN :

5.14. Proposition. Suppose that X € Pyy, for b € €, p, and let 65 = (6)Pp/>.
Then:

a) if 1 <i < px then

XA \Ox A AN A\ A
(Aivpx) = Ai-‘rl,p)\’ (ALP) = Ai+171ﬂ’
XA\~ A\Ox AT
(Li,px) = Li+1-,p>\ (Li,p) = Li+1,p'
b) Ap(A) Tijz = @filA%pA, Ly(N\) T;Zi = GBfile?:pw and there is a unique
Z4,b-module isomorphism Ap(X) — Af:pk ij;jz such that
e e [1 (19A - gAE"*t).
1<t<pax
tZi
This latter map also induces an isomorphism Lp(A) — Li):m i;i;‘

) AM=A} - DAY

Px,pP

d) A* =2 AMow) gpgd LA = [Aow) g5 .7, -modules.

andLA:Lf"pEB---@LA

oap @5 Fdap-modules.

Proof. We only prove the results for the Weyl modules. The other cases follow
either using similar arguments or because twisting by & is an exact functor, so we
leave the details to the reader.

By Lemma 5.11, we know that (Ap(X))"* 22 Ap(A(oa)) = Ap(A). Therefore,

AN = (Ao 177 = Ap()* 177

= (AN 17 ) " = (AN = A

This proves (d).

Arguing as in Theorem 4.33, it is easy to see that o1a € Afp + -t Az);xyp‘
Hence, A* = A{\vp 4+ 4 Az))‘x,zr On the other hand, if 1 <i < py and f € Sp
then the isomorphisms in Remark 5.9 and the fact that A{ox) = A imply that

o1 f = 0if and only if p1a (ﬁg\fﬁ;z) = 0. It follows that the map

OTA > PTA ( H (19A - 9,\€°*t))

1<t<px
t#i
extends uniquely to a .4 pb-module surjection p; : Ap(A) — Af:pk ¢§Zi‘ In partic-

ular, dim A < dim Ap(A). By construction, however, dim A* = px dim Ap ().
Therefore, the maps p;, for 1 < i < py, are all isomorphisms. This proves (b),
while (c) follows easily from definitions and (b).

It remains to prove part (a). Suppose that 1 < ¢ < px. The definition of &
implies that if f € .7, (b) then praf = 0 if and only if g f7* = 0. Therefore,
the map

e 1 (ﬁx - gxsw)f = em ] (ﬂx - gxs”t)ff’*
1<t<px 1<t<pax
i1 tZi

is a well-defined .#,. , , (b)-module homomorphism from A, |  onto (Af:p)h. Sim-

Ix v AN O

ilarly, one can prove that (Af:pk) Hpa
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The proof of Proposition 5.14(a) yields the following.

5.15. Corollary. Suppose that A € Pqp, and that 1 <i < px. Then, as a K-vector
space
AN = Ap(A) B AN @ -+ @ Ap(A)IL >
Moreover, the action of Zrpn(b) on Af:p is uniquely determined by
—1 1-p

a) AN, 177 = AL & AN @ Ay

b) (x0])0% = x0T, for all 2 € Ap(A) and j,t € Z;

c) U acts as the scalar gxe*®> on the highest weight vector of Ap(A) — Af:p.

Analogous statements hold for the simple module Lf:p.
Proof. By definition,
AN =AY DAY, DDA

ﬁpb/x—l
(252N (255N ,px b '

As in the proof of Proposition 5.14, we can identify A2 — with Ap(A) using the

;P

isomorphism p;, for 1 < ¢ < px. Then the highest weight vector pa of Ap(A)
corresponds to the vector ¢ra (Hlétém (19)‘ — g}\gom)). This implies that ¥y =
tZi

Ip?/* acts as the scalar gac? on the highest weight vector of Ap(X) < A}, All
of the claims in the Corollary now follow.

5.16. Corollary. Suppose that \,p € Pgp.
a) If 1 <i < py then Lf:p is the simple head of Af:p.
b) If1 <i<pxandl<j<p, then

A8, s 1t = 400 TR
w0, 0, ifAYp

Proof. By (5.7) Lp(A) is the simple head of Ap(A) and

1, ifu=2X
Ap(\) : L =< ’
[A6(A) s Lu(s) {0, g
Hence, the result follows from Proposition 5.14 and Frobenius reciprocity. O

Recall that ~y, is the equivalence relation on &g such that A ~p, p if p =
X(kop) for some k € Z.

5.17. Corollary. The algebra .7, n(b) is split over K and
{Lf:”ke@;b and 1 <i<px}
is a complete set of pairwise non-isomorphic absolutely irreducible .7, ,, ,,(b)-modules.

Proof. Just as in Section 5, this follows from Corollary 5.16, Frobenius reciprocity
and some general arguments in Clifford theory. O

Recall from subsection §5.2 that the Schur functor F,, : Mod-%4 » — Mod-23 1,
is given by F,, (M) = My, , where ¢, is the identity map on ;1. Using the
embedding Sy b — 7 pn(b), and the fact that vp = v}fuIb, it is easy to check
that ¢, corresponds to the natural projection from Gakeﬁ’d,b Mg‘ onto V, = M™.

In particular,

‘PWbyr,p,n(b)ﬁﬂwb = gd,b and @wbyd,b@wb = %,b-

Hence, we have a second Schur functor F‘(,,pg : Mod-., p, »,(b) — Mod-&; 1, which is

given by Fg’z (M) = My, and if ¢ € Homyr,p'n(b)(M7 N) then Fffg (@) (TPuwy,) =



MORITA EQUIVALENCES OF CYCLOTOMIC HECKE ALGEBRAS 49

o(x), for all x € M. Tt is straightforward to check that we have the following
commutative diagram of functors:

o | Frpyn (D)

Mod-%, pn(b) —22 5 Mod-Zup

(5.18) w | [Fen
MOd—gdyb T) MOd—%’b

?l%’é,b
5.19. Lemma. Suppose that A € P and 1 <i < px. Then

D> if A€ Hgp
FOI(AX )= 8N and FO(L}) = { 70w P
o (A5 “P o (L) 0, otherwise.

Proof. This follow directly from (5.18) and Lemma 4.43. O

5.20. Corollary. Suppose thatb € €, A € Pap, 1 € Hgp, 1 < i < px and that
1<j<pu. Then

A, _ A . _ A
[AX,: L 1= [S) DM | =[S} : D],

Proof. This follows directly from Lemma 5.19 and Lemma 4.43 together with the
easily checked fact that the functors FL(.,b and Fge are exact. O

Therefore, in order to compute the decomposition number [S? : Df | it is enough
to determine the decomposition number [A}) : LY )] for Fpn. In [23, §4] we
defined a decomposition number [A>‘ L“ ] to be l spllttable if px =1 =p, for
some integer [ and we showed that all decomp051t10n numbers of algebras like .7} ,
are determined by their [-splittable decomposition numbers. We compute the [-
splittable decomposition numbers of .. ,, ,, in the next section.

5.3. Splittable decomposition numbers. In this section we derive explicit for-
mulae for the I-splittable decomposition numbers of the algebras ., ,, ,(b) in char-
acteristic zero. By Corollary 5.20 this will determine all of the [-splittable decom-
position numbers of the cyclotomic Hecke algebras .7 ,, in characteristic zero.
By the main results of [23], this will determine all of the decomposition numbers
of ] pn. We show that the splittable decomposition numbers depend, in an ex-
plicit way, on the decomposition numbers of certain Ariki-Koike algebras and on
the scalars gy introduced in Lemma 4.30.

Suppose that A and p are multipartitions in #y . We want to compute the de-
composition numbers [Af:p : Lﬁp} for1 <i<pxyand1l <j <p,. By Corollary 5.15
and the exactness of ¥y, if px = p, then

(5.21) (A Ll = (AN, - L),

where we read i+ 1 and j + 1 modulo py. Therefore, these decomposition numbers
are determined by the decomposition numbers

d(]) [A)\ LIL ]

J2,P

for 1 < j < p,. In fact, as noted above, it is enough to compute the splittable
()

decomposition numbers. That is, the dxu such that px = p,, for A\, p € Py p.

Before we start to compute the decomposition numbers dgf; we introduce some
new notation. If A is any finite dimensional algebra let R(A) be the Grothendieck
group of finitely generated A-modules. If M is an A-module let [M] be the image
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of M in R(A). In particular, note that the Grothendieck group of R(.#. ,) is
equipped with two distinguished bases:

{[AN)] | Ae P} and {[LA) | A€ Pt

Similar remarks apply to the Grothendieck groups of the cyclotomic Schur alge-
bras .y p and 7, n(b), for b € €, ,,.

Fix integers [ and m such that p = Im and suppose that p € Py, for some
b € €,,. Then a multipartition p is I-symmetric if

p=vi=(,. . . v,

| times

for some multipartition v € £, ,, ;. Note that if dgfli is an [l-splittable decompo-
sition number then A and p are both [-symmetric multipartitions.

Let ‘@é,b be the set of l-symmetric multipartitions in g . It is easy to see that
Pin={m|pe Pypandoym}.

If f@(ib is non-empty then op|m and we define b, = (by,...,bn). I p € @dl,b
define p,, = (u!Y, ..., ul™). Then p,, € P fibm S Prjimg- 1t is easy to check
that the map v +— v! defines a bijection from 2 /b, tO le’b, with the inverse
map being given by @ — i,

We now return to our main task of computing splittable decomposition numbers.
We will do this by deriving a system of equations which uniquely determine the

m

decomposition numbers dg\J;)u for 1 <j<Il=pax.

For the rest of this subsection fix A € Z4p and set m = oy and [ = px. Then
by, = (b1,...,bm) € Crpiny and Ay € Py 1p,,- By (5.2) the cyclotomic Schur
algebras .. 1, and Z4 1, are related by

!
S flom =L @@ Lyp,, and Sgp = (yr/l,bm)@) :

For p € Pay let da,, u,, = [Ab,, (Am) : Lb,, (1tm)] be the corresponding decompo-
sition number for the cyclotomic Schur algebra ../ 1, . Since

Ab,(Am) 2 AN @ @ A and Ly, (km) = L(pl) @ - @ L(p™)

we have that

m

(5.22) iy = H[A(AM) s L(p)] = i - dm i,
=1
uin = [AAE) : L(plh)] for 1 <i <m = ox.
Recall that if p € Pgp then py/, = po/pu = op/op. If € @ib is I-
symmetric then o, divides m, so we define p,,/» = Pp/pa. Then Pu/x € N and
Pu/x = ox/oy = pb/)\/pb/u-

where dy

5.23. Lemma. Suppose that A € Pqp, | = px and m = ox. Then:

a) [Ap,, (Am)] = Z Axpvn [Lb,,, (V)]
veP,,,
by A%l = D0 > dILy,)
veEPgp 1<j<pu

c) If pe P, then d(” T d(2) _ d(jl = Dusndi, -

Proof. Part (a) is just a rephrasing of the definition of decomposition numbers
combined with the bijection ﬂé,b = 2, /L i b+ M. Part (b) follows similarly.
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Suppose that p € Py . We prove (c¢) by computing the decomposition multiplic-
ity of Ly () on both sides of part (b) upon restriction to %4 . By Corollary 5.15,

1=pp/x
AT = A () @ AN @@ Ap ()
Now, every composition factor of Ap(A) is isomorphic to Ly (v), for some v €
Pap, and Ly, (V)" = Lb<0b>( v) by Lemma 5.11. Therefore, the decomposition
multiplicity of Ly () in A, 157" i
Po/x
Po/p

[Ab(X) : Lo ()] = pp/ada, p,.»

where the second equality follows from (5.22).
Now consider the multiplicity of Ly, () on the right hand side of (b). If v € Py,
and 1 < j < p, then, using Corollary 5.15 again,

1=rp/0

LA™ 2 LN & Ly(N) & Ly(A)™

Therefore, [ iy;i"(b Ly(p)] = 1 by Lemma 5.11. Equating the multiplicity
of Lp(p) on both sides of (b) now gives (c). O

Lemma 5.23 gives our first relation satisfied by the decomposition numbers dgf;
We now use formal characters to find more relations. Let K[, ,] be the K-vector
space with basis { e | p € &, ,, }. The (K-valued) formal character of the .7 -
module M is

chM= > (dimM,)e*
HEPq b

an element of K[, ,]. The coefficients appearing in the formal characters are the
traces of the identity maps on the weight spaces. We need a more general version
of the formal character which records the traces of powers of ¥4, for 1 <t < [ = pj,
on certain weight spaces.

Fix an integer ¢t with 1 < ¢ < px. Let I; = gcd(t,1) be the greatest common
divisor of ¢t and [ and set ¢; = [/l;. By convention, we set lo = [. Then r/{; = dml;
so that K[ydmlt,n/ét} = K[yr/ét,n/&]-

Now suppose that M is an .%; ,, ,(b)-module and that v = v** is an ¢;-symmetric
multipartition. Since p/¢; = ml; divides tm, it is possible to show that the map 9%
stabilizes the {;-symmetric weight space M. ¢, using Lemma 5.8 and Remark 5.9;
see the proof of Lemma 5.24 below. Define the twining character of M to be

ChLM: Z Tr (ﬂ&,Mvzt)G’y S K[‘@T/Zt,n/ft]'
’YE‘@r/lt,n/Zt

It is easy to see that, just like the usual character, the twining character lifts to
a well-defined map chy : R(.7;,.n(b)) — K[Z, 4, n/e,) on the Grothendieck group
of 7 pn(b).

The following Lemma will allow us to compute the twining character chi on both
sides of Lemma 5.23(b).

5.24. Lemma. Suppose that A € Pqp and 1 <t <l =px. Then
Chi Ai‘)p = Eitmpb/)‘g& Ch Abltm (Altm);
for 1 <i < px. Moreover, if p € ,@dlb and 1 < j <p, then

chy L¥, = & pp, g/ ch L, (1,m)-
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Proof. We only prove the formula for chi L;f , and leave the almost identical cal-
culation of chlt AO)"p to the reader. To ease the notation let m’ = o, so that
b, = (bl ... ,b[m/]) and o, = (p, .. .,u[m/]) € Pripubo,-

To determine ChL L;-f » for each v € &,/4, /0, We need to compute

t
Tr (9%, (L4 )40 ) = Tr (9 /2 (LK) e ) = Tr (95°%)Prrx (LY).er)
t
=Tr (19 Pr/x (L;fp)“/i)'
By Corollary 5.15 we can identify L;f » with the K-vector space

-1
Lp(p) ® Lp(pu)dp ® -+ ® Lb(,llu)ﬁib/” ,
where the action of .., ,(b) on L;f p 1s determined by

1=Ph/p

a) L A7) = Ly () & Ly(u) & - L) ",

b) (;m?“)t?ﬁ = 29y, for all z € Ly(p) and a,c € Z,

c) ¥, acts as the scalar £7°+g,, on the highest weight vector of Ly (u).

ﬁpb/u — Qgpk/u
b A

Note that p,/x = m/m’ € N, since p € '@dl,b’ and 0, = . Therefore,

Tr (05, (L% )ye) = To (0, (L, )e) = Dosu Tr (90>, Lo () ).

1P

To compute this trace first observe that if 3. is the highest weight vector of Ly, (p)
then, by (c) above (which comes from Corollary 5.15),

(5.25) @t#ﬁ — Z:‘]tmg pu/)\@w

Now, p = {dym = Lilipy/am’ so we can identify the two modules Ly, (u) and
Ly, (p1,m)®%. Using Lemma 5.8, if 1 < j < p/¢; then

(5.26) Qpéj'lgﬁt :E_Mtkﬁt (tm+j)

for some k € Z, where we identity <p(T and ¢g¢ j = 7' (mod p). Therefore,
since Py generates Ly (p), it follows from (5. 25) nd (5.26) that each simple p-
tensor

J)f

=Moo 0@ e 0zl

in Lp(p).¢. is mapped by 9% = 1923“”‘ to a scalar multiple of

@™ @ gz g...@ @™ @ ... @ zfimth),

lym lym
where we identity ac( = x(]) whenever j = j/ (mod ¢;) for 1 < ¢ < I;m. Thus,
to calculate Tr (94, Lp(p)) we only need to consider the case when x( ) = mEtm'H)

for all 1 <i <Ilym and all 1 < s < {;. By construction, (tm)/(lym) ;‘é 0 (mod £),
so this can only happen if

(5) x( ), whenever 1 <i<[lmand 1 <s,s <.

Consequently, B contributes to the twining character only if 8 = f® --- ® 8
(¢ times), for some 3 € Ly,,,, (#1,m). Notice that if 8 € Ly, , (t1,m)~, for some
Y € Pty mye, then B € Ly(p),e,. In particular, this shows that 9% stabilizes
Ly,,,, (#1,m)~ as we claimed when introducing the twining character.

In (5.25) we have already shown that ¥} acts as multiplication by Ejtmgff“/ .

on the highest weight vector of Lbltm/(ultm)@’ef. On the other hand, by (5.26) and
abusing the notation of Lemma 5.8 slightly, if 1 < j < ¢; then

)

()" 05 = k0 ) = (D)
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where the last equality follows because mtl; = p(t/l;) is divisible by p. Therefore,
writing S%% = B.p®", for some ¢ € ., m by,,., We have that
ﬂ®etﬂt =P s0® tﬂ)\ =3, 19>‘<p®ft _ Ejtmglfu/k(pt (p®5t — Ejtmgffu/z\5®€t’

where the third equality uses (5.25). Consequently,
T )
Tr (19 ( jp)'y ) :pb/ﬂgﬁ glf”“ dlmeztm (P’lzm)'y'

Summing over gch)b gives the desired formula for Chi (Lf p) and completes the
proof. O
5.27. Corollary. Suppose that A, pu € @ib, and 0 <t <l =px, I' =p,. Then
in K .
g>\ t m m ! m !
pu/*(g%u) dim,um =¢' d(Al;l “ d(>\2;)t+"'+5lt dgf)'
"

Proof. If t = 0 then the result is just Lemma 5.23(c). If ¢ # 1 then combining
Lemma 5.24 and Lemma 5.23(b) shows that

hAp, An)® = S % eﬂmtd(J“pib/“g” ch L, (ptm)®".
pepl 1<i<pu Pb/)\g

On the other hand, by Lemma 5.23(a),
chAp, Am)® = > df |, chLp, ()"
HED ],
As the characters {ch Ly, (v,)} are linearly independent, comparing the coefficient

of ch Ly, (fm) on both sides gives the result. O

5.28. Corollary. Suppose that | divides p, A\, u € 3%%, 0 <t <l and that py =
pu =1. Then in K

t
(?) di\tynl—"m = 5tmd()\1‘1 + €2tmdg\2& + .o+ sltmdgL,
m

We can now complete the proof of the main results of this paper. Recall from
just before Theorem D in the introduction that we defined matrices V(1) and V;(1),
whenever [ divides p and 1 < i < [. Let char K be the characteristic of the field K.

5.29. Theorem. Suppose that A\, € P4y, and py =1 = px, for some b € €, .
Then, fO’I" 1 < J < Px;

] det V;(1)
3P det V(1)

[Aé‘m (mod char K).

In particular, [Aé‘,p : Lé‘p] = iztt“//((ll) if K is a field of characteristic zero.

1

Proof. By Corollary 5.28 the decomposition numbers dA”, e ,dE\lL satisfy the ma-

trix equation

1 0,1
d()\[i ( giz ) d)\onl Hm
140 : = :
0 =1 la-y
At () dx. ..,
Hence, the theorem follows by Cramer’s rule. O

Recall that the decomposition number [A, : L¥ ] is I-splittable if px =1 = py,
for 1 < 4,7 < px. Combining Corollary 5.20, (5.21) and Theorem 5.29 we can now
compute the I-splittable decomposition numbers of ., ,, ,(b) and 2., .
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5.30. Corollary. Suppose that \,p € Pqy, for some b € 6, ,, and that px = p,.
Then, for 1 <i,5 < pa,
det V(1)

In particular, this establishes Theorem D from the introduction. Finally, we are
able to prove Theorem A, our Main Theorem from the introduction.

[S? - DY = [Af:p CLE = (mod char K).

Proof of Theorem A. By [23, Theorem B] the decomposition numbers of 2 ,,,
are completely determined by the [-splittable decomposition numbers of the Hecke
algebras J% ; ,,,, where [ divides p, 1 < s <r and 1 < m < n. Hence, Theorem A
follows from Corollary 5.30. O

We remind the reader that the polynomials f)‘ = é%dmnﬂ—w)(gA)m are com-
pletely determined by Theorem 3.6. Hence, this result explicitly determines the
l-splittable decomposition numbers of .%,. ,, ,, (and of 7 ;).

When K is a field of positive characteristic the results above only determine the
l-splittable decomposition numbers of .., ,, and 7. ,, ,, modulo the characteristic
of K.
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