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Abstract. The paper studies the modular representation theory of the cy-
clotomic Hecke algebras of type G(r, p, n) with (ε, q)-separated parameters.

We show that the decomposition numbers of these algebras are completely

determined by the decomposition matrices of related cyclotomic Hecke alge-
bras of type G(s, 1,m), where 1 ≤ s ≤ r and 1 ≤ m ≤ n. Furthermore, the

proof gives an explicit algorithm for computing these decomposition numbers

meaning that the decomposition matrices of these algebras are now known in
principle.

In proving these results, we develop a Specht module theory for these alge-

bras, explicitly construct their simple modules and introduce and study ana-
logues of the cyclotomic Schur algebras of type G(r, p, n) when the parameters

are (ε, q)-separated.

The main results of the paper rest upon two Morita equivalences: the first
reduces the calculation of all decomposition numbers to the case of the l-

splittable decomposition numbers and the second Morita equivalence allows us
to compute these decomposition numbers using an analogue of the cyclotomic

Schur algebras for the Hecke algebras of type G(r, p, n).
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1. Introduction

The cyclotomic Hecke algebras [5] are an important class of algebras which arise
in the representation theory of finite reductive groups. These algebras can be de-
fined using generators and relations and they are deformations of the group algebras
of the complex reflection groups. The cyclotomic Hecke algebras can also be con-
structed using the monodromy representation of the associated braid groups [6] and,
in characteristic zero, they are closely connected with category O of the rational
Cherednik algebras by the Knizhnik-Zamolodchikov functor [17].

This paper is concerned with the representation theory of the cyclotomic Hecke
algebras Hr,p,n of type G(r, p, n), where r = pd, p > 1 and n ≥ 3. Throughout we
work over a field K which contains a primitive pth root of unity ε. The algebra
Hr,p,n depends upon ε and parameters q ∈ K and Q = (Q1, . . . , Qd) ∈ Kd (see
Definition 2.1). The parameters Q are (ε, q)-separated over K if∏

1≤i,j≤d

∏
−n<k<n

∏
1≤t<p

(
Qi − εtqkQj

)
6= 0

in K. In general, Hr,p,n is not semisimple if Q is (ε, q)-separated over K.
Our main result is the following.

Theorem A. Suppose that K is a field of characteristic zero and that Q is (ε, q)-
separated over K. Then the decomposition matrix of Hr,p,n is determined by the
decomposition matrices of the cyclotomic Hecke algebras of type G(s, 1,m), where
1 ≤ s ≤ r and 1 ≤ m ≤ n.

To prove Theorem A we explicitly compute the l–splittable decomposition num-
bers (Definition 1.2) of Hr,p,n, where l divides p. Theorem D at the end of this
introduction gives our closed formula for the l-splittable decomposition numbers.
This formula depends on the decomposition numbers of the Hecke algebras Hs,m

of type G(s, 1,m), ε and certain scalars gλ which are roots of certain quotients
of the (known) Schur elements of these algebras. This result implies Theorem A
because in earlier work [23, Theorem B and Theorem 5.7] we showed that every
decomposition number of Hr,p,n is a sum of l-splittable decomposition numbers for
certain Hecke algebras Hs,l,m, where 1 ≤ s ≤ r and 1 ≤ m ≤ n. The proof of The-
orem A also gives detailed information about the decomposition numbers of Hr,p,n

in positive characteristic.
Our proof of Theorem A, when combined with the results of [23], gives an

explicit algorithm for computing the decomposition numbers of Hr,p,n when Q
is (ε, q)-separated. Ariki [2] determined the decomposition numbers of the Hecke
algebras Hr,n of type G(r, 1, n) when he, famously, proved and generalised the LLT
conjecture. Hence, combining [2] and Theorem A implies the following.

Corollary. Suppose that K is a field of characteristic zero and that Q is (ε, q)-
separated over K. Then the decomposition matrix of Hr,p,n is, in principle, known.

We note that Theorem A and its corollary have both been obtained by the first
author in the special case of the Hecke algebras of type D, when r = p = 2 [22].

All of the results in this paper are geared towards computing the l-splittable
decomposition numbers of Hr,p,n and this requires a considerable amount of new
representation theory.
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This story begins with the Morita equivalence theorem of Dipper and the second
author [10] which shows, modulo some technical assumptions on the parameters Q,
that there is a Morita equivalence

(1.1) Hr,n
'−−−−−→

Morita

⊕
b∈Cp,n

Hd,b,

where Cp,n is the set of compositions of n into p parts and if b = (b1, . . . , bp) ∈
Cp,n then Hd,b = Hd,b1 ⊗ · · · ⊗Hd,bp . This result is proved by constructing an
explicit (Hd,b,Hr,n)-bimodule Vb = vbHr,n (Definition 2.6), and showing that Vb
is projective as an Hr,n-module and that Hd,b

∼= EndHr,n
(Vb).

For each b ∈ Cp,n, we show in Theorem 2.26 that there exists an invertible central

element zb in the centre of Hd,b such that eb = z−1b · vbTb is the idempotent in
Hr,n which generates Vb, where Tb = Twb

for a certain permutation wb. As a
byproduct we construct a parabolic subalgebra of Hr,n which is isomorphic to Hd,b

and we show that the Morita equivalence (1.1) corresponds to induction from these
subalgebras.

More importantly, however, the element zb allows us to decompose certain Hr,n-
modules when we restrict them to Hr,p,n. To describe this, recall from [9] that Hr,n

is a cellular algebra with cell modules the Specht modules S(λ), which are indexed
by the r-multipartitions λ = (λ(1),λ(2), . . . ,λ(r)) of n. If Hr,n is semisimple then
the Specht modules gives a complete set of pairwise non-isomorphic irreducible
Hr,n-modules. More generally, define D(λ) = S(λ)/ radS(λ), where radS(λ) is
the radical of the bilinear form on S(λ). Then the non-zero D(λ) give a complete
set of pairwise non-isomorphic Hr,n-modules.

For each λ ∈Pr,n, we write λ = (λ[1], · · · ,λ[p]), where

λ[t] = (λ(dt−d+1),λ(dt−d+2), . . . ,λ(dt)), for 1 ≤ t ≤ p.

Let b = (b1, . . . , bp) ∈ Cp,n and set Pd,b = {λ ∈Pr,n | |λ[t]| = bt for 1 ≤ t ≤ p }.
We want to describe the Specht modules of Hd,b for each λ ∈ Pd,b. By [9] the

algebra Hd,b is a cellular algebra with cell modules Sb(λ) ∼= S(λ[1])⊗· · ·⊗S(λ[p]),
for λ ∈ Pd,b, and Db(λ) = Sb(λ)/ radSb(λ) is either absolutely irreducible or
zero.

Let F = Q(ε̇, q̇, Q̇, A(ε̇, q̇, Q̇), where ε̇ ∈ C is a fixed primitive pth root of unity

in C, q̇ and Q̇ are indeterminates and A(ε̇, q̇, Q̇) is a certain polynomial which

ensures that Q̇ is (ε̇, q̇)-separated over F ; see Definition 2.17. Then the cyclotomic
Hecke algebras H F

r,n and H F
d,b over F are semisimple and they come equipped with

non-degenerate trace forms Tr and Trb, respectively. Define the Schur elements
ṡλ and ṡbλ in F by

Tr =
∑

λ∈Pr,n

1

ṡλ
χλ and Trb =

∑
λ∈Pd,b

1

ṡbλ
χλb,

where χλ and χλb are the characters of S(λ) and Sb(λ), respectively. The Schur
elements ṡλ and ṡbλ are explicitly known [27].

Given an integer k ∈ Z and a sequence a = (a1, a2, . . . , am) define a〈k〉 =
(ak+1, ak+2, . . . , ak+m), where we set ai+jm = ai whenever j ∈ Z and 1 ≤ i ≤ m.

Now define om(a) = min { k ≥ 1 | a〈k〉 = a }. In particular, for λ = (λ[1], . . . ,λ[p]) ∈
Pd,b we define

oλ = op(λ) and pλ = p/oλ.

Note that oλ divides p so that pλ is an integer, for all λ ∈Pd,b.

Theorem B. Suppose that Q is (ε, q)-separated over K and that λ ∈Pd,b. Then
there exists a nonzero scalar fλ ∈ K such that zb · v = fλv, for all v ∈ S(λ).
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Moreover,

fλ = (sλ/s
b
λ) Tr(vbTb) = ε

1
2doλn(1−pλ)gpλλ ,

where gλ ∈ K and where (sλ/s
b
λ)(ε, q,Q) = (ṡλ/ṡ

b
λ)(ε, q,Q) is the specialization

of the rational function ṡλ/ṡ
b
λ at (ε̇, q̇, Q̇) = (ε, q,Q) (which is well-defined and

non-zero).

Roughly the first half of this paper is devoted to proving Theorem B, but the
payoff is considerable as the scalars gλ play a role in everything that follows. To
show that ε

1
2doλn(pλ−1)fλ has a pλth root we use seminormals forms for the Specht

modules over F and an integral independence result from commutative algebra.
Further, we explicitly compute Tr(vbTb) in Corollary 2.33. This yields an explicit
closed formula for fλ.

As Hr,n is a cellular algebra, {D(λ) | D(λ 6= 0 } is a complete set of pairwise
non-isomorphic irreducible Hr,n-modules. Let Kr,n = {λ ∈Pr,n|D(λ) 6= 0}. Then
Kr,n is the set of Kleshchev multipartitions (for Q∨ε). Define an equivalence
relation ∼σ on Pr,n by λ ∼σ µ if λ = µ〈k〉, for some k ∈ Z and λ,µ ∈ Pr,n. If
Q is (ε, q)-separated over K, then ∼σ induces an equivalence relation on Kr,n (cf.
Lemma 3.3). Let Pσ

r,n and K σ
r,n be the sets of ∼σ-equivalence classes in Pr,n and

Kr,n, respectively.
As a first application of Theorem B we develop a Specht module theory for Hr,p,n.

More precisely, if λ ∈Pd,b and 1 ≤ t ≤ pλ define

Sλt = {x ∈ S(λ) | θλ(x) = εtoλgλx } ,

where θλ is an Hr,p,n-module endomorphism of S(λ) which depends on the central
element zb ∈ Hd,b; see Definition 4.30. Then Sλt is an Hr,p,n-module. Let Dλt
be the head of Sλt . Then we have the following explicit construction of the simple
Hr,p,n-modules.

Theorem C. Suppose that K is a field and that Q is (ε, q)-separated over K.
Then:

a) If µ ∈ Kr,n then Dµt is an absolutely irreducible Hr,p,n-module, for 1 ≤ i ≤
pµ.

b) {Dµt | µ ∈ K σ
r,n and 1 ≤ i ≤ pµ } is a complete set of pairwise non-isomorphic

absolutely irreducible Hr,p,n-modules. Hence, K is a splitting field for Hr,p,n.
c) The decomposition matrix of Hr,p,n is unitriangular.

We are able to say quite a bit more about the structure of the Specht modules
Sλt and the simple modules Dλt for Hr,p,n; see Theorem 4.33 and Theorem 4.35 for
details.

We are finally able to define the l-splittable decomposition numbers of Hr,p,n.
Suppose that A is a K-algebra and suppose that M is an A-module and D is
an irreducible A-module. Let [M : D] be the composition multiplicity of D as a
composition factor of M .

1.2. Definition. Suppose that l divides p, λ,µ ∈ Pd,b and that 1 ≤ i ≤ pλ and
1 ≤ j ≤ pµ. The decomposition number [Sλi : Dµj ] is l-splittable if pλ = l = pµ.

By the results in section 4, and the general theory developed in [23], the decom-
position number [Sλi : Dµj ] is p-splittable if and only if Sλj and Dµj both have trivial
inertia groups in the usual sense of Clifford theory.
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Now suppose that l divides p and let m = p/l. To describe the l-splittable
decomposition numbers of Hr,p,n let V (l) be the l × l Vandermonde matrix

V (l) =


1 1 . . . 1
εm ε2m . . . εlm

...
...

...
...

ε(l−1)m ε2(l−1)m . . . εl(l−1)m

 .

For 1 ≤ i ≤ p define Vi(l) to be the matrix obtained from V (l) by replacing its ith
column with the column vector

d lλmµm(
gλ
gµ

)1
d l1λmµm
...(

gλ
gµ

)l−1
d
ll−1

λmµm


where dλmµm = [S(λ[1], . . . ,λ[m]) : D(µ[1], . . . ,µ[m])] and lt = gcd(l, t).

Theorem D. Suppose that K is a field, that Q is (ε, q)-separated over K and that
the decomposition number [Sλi : Dµj ] is l-splittable so that pλ = l = pµ, for some l
dividing p. Then

[Sλi : Dµj ] ≡ detVj−i(l)

detV (l)
(mod charK),

for 1 ≤ i, j ≤ l = pλ = pµ.

The main idea underpinning Theorem D is the introduction of a new algebra
Sr,p,n, which is an analogue of the cyclotomic Schur algebra [9] for Hr,p,n. We
introduce Weyl modules and simple modules for Sr,p,n and then compute the l-
splittable decomposition numbers of Sr,p,n using the twining characters of Sr,p,n.
These characters are a generalization of the formal characters of a quasi-hereditary
algebra and they compute the trace of a certain element ϑλ ∈ Sr,p,n on certain
weight spaces of Sr,p,n-modules. The map ϑλ is constructed from the action of zb
upon certain Sr,p,n-modules. Finally, Theorem D is proved using a considerable
amount of Clifford theory and some natural functors

Sr,p,n =
⊕

b∈Cσ
p,n

Sr,p,n(b)
⊕F(p)ωb−−−→ Ed =

⊕
b∈Cσ

p,n

Ed,b
'−−−−−→

Morita
Hr,p,n.

where the first functor is an analogue of the Schur functor and the second functor
lifts the Morita equivalence of (1.1) up to Hr,p,n.

Very briefly, the outline of this paper is as follows. Section 2 studies the right
ideals Vb = vbHr,n in long and technical detail. The main results are Lemma 2.21
which shows the existence of the central element zb, Theorem 2.26 which produces
a subalgebra of Hr,n isomorphic to Hd,b, and Theorem 2.31 which is a comparison
theorem for the natural trace forms on Hd,b and Hr,n. In Section 3 these results
are used to compute the scalars fλ, for λ ∈ Pr,n, which describe the action of
zb on the Specht modules S(λ) of Hr,n and proves the first half of Theorem B.
Section 4 marks the first direct appearance of the algebras Hr,p,n. Using semi-
normal forms we factorize the scalars fλ, completing the proof of Theorem B. We
then use the roots of the scalars fλ to decompose the Specht modules, culminat-
ing in Theorem 4.33 and Theorem 4.35 which describe the Specht modules and
simple modules of Hr,p,n, respectively. Section 4 concludes by lifting the Morita
equivalence (1.1) to a new Morita equivalence between Hr,p,n and a new algebra
Ed in Corollary 4.41. Section 5 begins by introducing analogues of the cyclotomic
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Schur algebras for Hr,p,n. Theorem 5.29 computes the l-splittable decomposition
numbers of these algebras using twining characters, using Schur functors and the
algebras Ed we then prove Theorem D and hence complete the proof of Theorem A.

Index of notation

∼σ Equivalence relation b ∼ b〈t〉
∼b Equivalence relation λ ∼ λ〈ob〉
↑AB , ↓AB Induction/restriction functors
A(ε, q,Q)

∏
i,j,|k|<n,1≤t<p(Qi − ε

tqkQj)

A Z[ε̇, q̇±1, Q̇±1
1 , . . . , Q̇±1

d , 1

A(ε̇,q̇,Q̇)
]

a ∨ b The concatenation of a and b
b〈z〉 The shift of the sequence b by z
Cp,n Compositions of n of length p
chM

∑
µ(dimMµ)eµ

chl
tM

∑
γ Tr(ϑtλ,Mγlt )e

γ

eb The idempotent z−1
b · vbTb

d r/p
D(λ) Simple module for Hr,n

Db(λ) Simple module for Hd,b

Dλi,p Simple module for Ed,b
Dλi Simple module for Hr,p,n

∆(λ) Weyl module for Sr,n

∆b(λ) Weyl module for Sd,b

∆λ
i,p Weyl module for Sr,p,n

ε Primitive pth root of unity in K
ε̇ Primitive pth root of unity in C
Ed,b = EndHr,p,n(Vb)
F The field of fractions of A
fλ The scalar: zb ↓S(λ)= fλ idS(λ)

f
(t)
λ = f

(t:m)
λ , a factor of fλ

gλ fλ = ε
1
2
doλn(1−pλ)g

pλ
λ

Hb A functor Mod-Hd,b → Mod-Hr,n

θ′t The map h 7→ Yth
θ′t,m The map h 7→ Yt,mh
θt,m = σm ◦ θ′t,m
θb = θ0,op(b) restricted to Mλ

b

θλ = θ0,op(λ) restricted to S(λ)

ϑb θb restricted to Mλ
b

ϑλ ϑ
pb/λ
b

Θ̂b,Θb Two maps Hd,b →Hr,n

H R
r,n Hecke algebra of type G(r, 1, n)

H R
r,p,n Hecke algebra of type G(r, p, n)

Hd,b = Hd,b1 ⊗ · · · ⊗Hd,bp

Ĥd,b = Hd,b · eb ∼= Hd,b

Kr,n Kleshchev multipartitions in Pr,n

Kd,b Kleshchev multipartitions in Pd,b

L(λ) Simple module for Sr,n

Lb(λ) Simple module for Sd,b

Lλi,p Simple module for Sr,p,n

Mλ
b Permutation module in Vb

op(b) = min { z > 0 | b〈z〉 = b }
ob = op(b)
oλ = op(λ)
pλ p/op(λ) = p/oλ
pb/λ pb/pλ = oλ/ob
pµ/λ pµ/pλ = oλ/oµ
Pr,n The set of r–partitions of n

Pd,b {λ ∈Pr,n | bi = |λ[i]|, 1 ≤ i ≤ d }
λ[i] (λ(d(i−1)+1), . . . , λ(di))

L(s)
k

∏d
i=1(Lk − εsQi)

L(i,j)
l,m

∏
l≤k≤m

∏
s∈Iij L

(s)
k

Q (Q1, . . . , Qd)
Q∨ε εQ ∨ ε2Q ∨ · · · ∨ εpQ
σ Hr,n →Hr,n;Ti 7→ εδi0Ti
σ̂ An automorphism of Sr,p,n

si (i, i+ 1) ∈ Sn

S(λ) Specht module for Hr,n

Sb(λ) Specht module for Hd,b

Sλi,p Specht module for Ed,b
Sλt Specht module for Hr,p,n

ṡλ Schur element of S(λ)
ṡbλ Schur element of Sb(λ)
Sr,n Cyclotomic Schur algebra for Hr,n

Sd,b Cyclotomic Schur algebra for Hd,b

Sr,p,n Cyclotomic Schur algebra for Hr,p,n

Ta,b Twa,b
T
〈k〉
a,b Tw, where w = w

〈k〉
a,b

τ h 7→ T−1
0 hT0

vb vb(Q) = v+b u
+
b = u−b v

−
b

v
(t)
b vb(εtQ)
Vb The ideal vbHr,n

V
(t)
b = v

(t)
b Hr,n

{v(tm)
s } Seminormal basis of SF (λ)(tm)

w
〈k〉
a,b (sa+b+k−1 . . . sk+1)b

wb w
〈bp−2

1 〉
bp−1,b

p
p
. . . w

〈b1
1〉

b2,b
p
3
wb1,bp2

Yt L(t+1,t+p−1)
1,bt

Tbt,n−bt
Yt,m YtmYtm−1 . . . Yt(m−1)+1

zb Central element of Hd,b

2. Morita equivalences for the Hecke algebras of type G(r, 1, n)

This section introduces and studies some very useful right ideals Vb of the cyclo-
tomic Hecke algebras of type G(r, 1, n). In the next section we use these ideals to
construct ‘shifting homomorphisms’ linking certain Specht modules. These maps,
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which will turn out to be multiplication by a scalar, are the key to the main results
of this paper. We start by recalling the definition of the cyclotomic Hecke algebras.

Throughout this paper we fix positive integers n, r, p and d such that n ≥ 3,
p > 1 and r = pd. Let R be a commutative ring which contains a primitive pth
root of unity ε and suppose that q,Q1, . . . , Qd are invertible elements of R. Let
Q = (Q1, . . . , Qd) and Q∨ε = εQ ∨ ε2Q ∨ · · · ∨ εpQ.

2.1. Cyclotomic Hecke algebras. The Ariki-Koike algebra H R
r,n = H R

r,n(q,Q)
with parameters q and Q∨ε is the unital associative R-algebra with generators
T0, T1, . . . , Tn−1 and relations

(T p0 −Q
p
1) . . . (T p0 −Q

p
d) = 0,

(Ti − q)(Ti + 1) = 0, for 1 ≤ i ≤ n− 1,
T0T1T0T1 = T1T0T1T0,
Ti+1TiTi+1 = TiTi+1Ti, for 1 ≤ i ≤ n− 2,

TiTj = TjTi, for 0 ≤ i < j − 1 ≤ n− 2.

When the ring R and the parameters Q are understood we write Hr,n = H R
r,n(Q).

2.1. Definition. The cyclotomic Hecke algebra of type G(r, p, n) is the subal-
gebra Hr,p,n(Q) of Hr,n(Q) which is generated by the elements T p0 , Tu = T−10 T1T0
and T1, T2, · · · , Tn−1.

In this paper we are interested in understanding the decomposition matrices of
the algebra Hr,p,n. We have chosen the ordering of the parameters εQ∨ε2Q∨· · ·∨
εpQ so that we can extend the Morita equivalences developed in [10,23] to prove
a new Morita reduction theorem for Hr,p,n; see Corollary 4.41.

Let Sn be the symmetric group on n letters and let si = (i, i + 1) ∈ Sn be a
simple transposition, for 1 ≤ i < n. Then {s1, . . . , sn−1} are the standard Coxeter
generators of the symmetric group Sn. Let ` :Sn −→ N be the length function
on Sn, so that `(w) = k if k is minimal such that w = si1 . . . sik , where 1 ≤
i1, . . . , ik < n. As the type A braid relations hold in Hr,n for each w ∈ Sn there is
a well–defined element Tw ∈ Hr,n, where Tw = Ti1 . . . Tik whenever w = si1 . . . sik
and k = `(w).

Inspecting the relations, there is a unique anti-isomorphism ∗ of Hr,n which fixes
T0, T1, . . . , Tn−1. We have T ∗w = Tw−1 .

2.2. Jucys-Murphy elements. For non-negative integers a, b with 0 < a+ b ≤ n
we set wa,b = (sa+b−1 . . . s1)b. (In particular, wa,0 = 1 = w0,b.) If we write
wa,b ∈ Sa+b as a permutation in two-line notation then

wa,b =
(

1 · · · a a+ 1 · · · a+ b
b+ 1 · · · a+ b 1 · · · b

)
.

For simplicity, we write Ta,b = Twa,b . Similarly, if k is a non-negative integer such

that 0 < a+ b+ k ≤ n then we set w
〈k〉
a,b = (sa+b+k−1 . . . sk+1)b. Then wa,b = w

〈0〉
a,b

and, abusing notation slightly, we write T
〈k〉
a,b = T

w
〈k〉
a,b

.

The following result is easily checked.

2.2. Lemma. Suppose that a, b and c are non-negative integers such that a+b+c ≤
n. Then wa,b+c = wa,bw

〈b〉
a,c and wa+b,c = w

〈a〉
b,cwa,c, with the lengths adding. Conse-

quently, Ta,b+c = Ta,bT
〈b〉
a,c and Ta+b,c = T

〈a〉
b,c Ta,c. Moreover, TiT

〈c〉
a,b = T

〈c〉
a,bT(i)w〈c〉a,b

if 1 ≤ i < n and i 6= a+ c.

Set L1 = T0 and Lk+1 = q−1TkLkTk, for k = 1, . . . , n−1. These elements Li are
the Jucys–Murphy elements of Hr,n and they generate a commutative subalgebra
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of Hr,n. We will use the following well-known properties of the Jucys-Murphy
elements without mention.

2.3. Lemma (cf. [3, Lemma 3.3]). Suppose that 1 ≤ i < n and 1 ≤ k ≤ n. Then

a) Ti and Lk commute if i 6= k, k − 1.
b) Tk commutes with LkLk+1 and Lk + Lk+1.
c) TkLk = Lk+1(Tk − q + 1) and TkLk+1 = LkTk + (q − 1)Lk+1.

For integers k and s, with 1 ≤ k ≤ n and 1 ≤ s ≤ p, set

L(s)
k =

d∏
i=1

(Lk − εsQi).

More generally, if 1 ≤ l ≤ m ≤ n and 1 ≤ i, j ≤ p then set

L(i,j)
l,m =

∏
l≤k≤m
s∈Iij

L(s)
k =

∏
l≤k≤m
s∈Iij

d∏
t=1

(Lk − εsQt),

where Iij = {i, i+ 1, . . . , j}, if i ≤ j, and Iij = {1, 2 . . . , j, i, i+ 1, . . . , p} if i > j.
A key property of the Jucys-Murphy elements of Hr,n is that Ti commutes with

any polynomial in L1, . . . , Ln which is symmetric with respect to Li and Li+1. In
particular, any symmetric polynomial in L1, . . . , Ln is central in Hr,n. Hence, we
have the following.

2.4. Lemma. Suppose that 1 ≤ l < m ≤ n and 1 ≤ t ≤ p. Then

TiL(t)
l,m = L(t)

l,mTi and LjL(t)
l,m = L(t)

l,mLj ,

for all i, j such that 1 ≤ i < n, 1 ≤ j ≤ n and i 6= l − 1,m.

2.3. The elements vb and v
(t)
b . As remarked after Theorem D in the introduction,

the main results of this paper rely on a Morita equivalence between Hr,p,n and a
direct sum of certain algebras Ed,b. This equivalence builds upon previous work
[8,10,23] which gave similar Morita equivalences for the algebras Hr,n and Hr,p,n.
The starting point for all of this work is a generalization of a fundamental lemma
of Dipper and James [8, Lemma 3.10].

2.5. Lemma ([10, Proposition 3.4]). Suppose that a, b, s and t are positive integers

with 1 ≤ a+ b < n and 1 ≤ s ≤ t ≤ p. Let v
(s,t)
a,b = L(s,t)

1,a Ta,bL(t+1,s−1)
1,b . Then

Tiv
(s,t)
a,b = v

(s,t)
a,b T(i)wa,b and Ljv

(s,t)
a,b = v

(s,t)
a,b L(j)wa,b ,

for all i, j such that 1 ≤ i, j ≤ a+ b and i 6= a, a+ b.

Recall from the introduction that Cp,n is the set of compositions of n into p
parts. Thus, b ∈ Cp,n if and only if b = (b1, . . . , bp), b1 + · · ·+ bp = n and bi ≥ 0,

for all i. Finally, if b ∈ Cp,n and i and j are integers then we set bji = bi + · · ·+ bj
if i ≤ j and bji = 0 if i > j.

The following elements of Hr,n, which generalize the elements v
(s,t)
a,b and were

introduced in [23, Definition 2.4], play an important role throughout this paper.

2.6. Definition. Suppose that b ∈ Cp,n. Let

vb(Q) = L(1,p−1)
1,bp

Tbp,bp−1
1
L(1,p−2)
1,bp−1

Tbp−1,b
p−2
1

. . .L(1,1)
1,b2

Tb2,b1
1
L(2)

1,b1
1
L(3)

1,b2
1
. . .L(p)

1,bp−1
1

We write vb = vb(Q) and for t ∈ Z we set v
(t)
b = vb(εtQ).

Set Vb = vbHr,n and, more generally, let V
(t)
b = v

(t)
b Hr,n.
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We start by showing that vb can be written in many different (and useful) ways.
This requires several long and involved calculations. On the first reading the reader
might prefer to skip these calculations and start reading from Section 3.

Recall from the introduction that if b ∈ Cp,n and k ∈ Z then b〈k〉 = (bk+1, bk+2, . . . , bk+p),
where we set bi+p = bi for 1 ≤ i ≤ p.

2.7. Lemma. Suppose that b ∈ Cp,n. Then

a) vb = L(2,p−1)
1,bp

Tbp,bp−1
2

. . .L(2,2)
1,b3

Tb3,b2
2
L(3)

1,b2
2
. . .L(p)

1,bp−1
2

L(1)

1,bp2
Tbp2 ,b1L

(2,p)
1,b1

.

b) vb ∈ L(1)

1,bp2
Hr,n.

Proof. To prove the Lemma, if 1 ≤ s < p then define

L(s) = L(1,s)
1,bs+1

Tbs+1,bs1
. . .L(1,1)

1,b2
Tb2,b1

1
L(2)

1,b1
1
. . .L(s)

1,bs−1
1

L(s+1,p)
1,bs1

,

R(s) = L(2,s)
1,bs+1

Tbs+1,bs2
. . .L(2,2)

1,b3
Tb3,b2

2
L(3)

1,b2
2
. . .L(s)

1,bs−1
2

L(s+1,p)
1,bs2

L(1)

1,bs+1
2

Tbs+1
2 ,b1

L(2,p)
1,b1

.

Part (a) of the Lemma is the claim that L(p − 1) = R(p − 1). To prove this we
show by induction on s that L(s) = R(s), for 1 ≤ s < p. If s = 1 then

L(1) = L(1)
1,b2

Tb2,b1L
(2,p)
1,b1

= R(1),

and there is nothing to prove. Assume by induction that L(s) = R(s). Then

L(s+ 1) = L(1,s+1)
1,bs+2

Tbs+2,b
s+1
1
· L(s) · L(s+2,p)

bs1+1,bs+1
1

= L(1,s+1)
1,bs+2

Tbs+2,b
s+1
1
·R(s) · L(s+2,p)

bs1+1,bs+1
1

= L(1,s+1)
1,bs+2

Tbs+2,b
s+1
1
· L(2,s)

1,bs+1
Tbs+1,bs2

. . .L(2,2)
1,b3

Tb3,b2
2

× L(3)

1,b2
2
. . .L(s)

1,bs−1
2

L(s+1,p)
1,bs2

L(1)

1,bs+1
2

Tbs+1
2 ,b1

L(2,p)
1,b1
· L(s+2,p)

bs1+1,bs+1
1

= L(1,s+1)
1,bs+2

· Tbs+2,b
s+1
2
T
〈bs+1

2 〉
bs+2,b1

· L(2,s)
1,bs+1

Tbs+1,bs2
. . .L(2,2)

1,b3
Tb3,b2

2

× L(3)

1,b2
2
. . .L(s)

1,bs−1
2

L(s+1,p)
1,bs2

· v(1,1)
bs+1

2 ,b1
· L(s+2,p)

bs1+1,bs+1
1

by Lemma 2.2. Using Lemma 2.5 twice, and Lemma 2.4 many times, we find

L(s+ 1) = L(1)
1,bs+2

· L(2,s+1)
1,bs+2

Tbs+2,b
s+1
2
L(2,s)
1,bs+1

Tbs+1,bs2
. . .L(2,2)

1,b3
Tb3,b2

2

× L(3)

1,b2
2
. . .L(s)

1,bs−1
2

L(s+1,p)
1,bs2

· T 〈b
s+1
2 〉

bs+2,b1
· L(s+2,p)

1,bs+1
2

· v(1,1)
bs+1

2 ,b1

= L(1)
1,bs+2

· v(2,s+1)

bs+2,b
s+1
2

· L(2,s)
1,bs+1

Tbs+1,bs2
. . .L(2,2)

1,b3
Tb3,b2

2

× L(3)

1,b2
2
. . .L(s)

1,bs−1
2

L(s+1)
1,bs2

· T 〈b
s+1
2 〉

bs+2,b1
Tbs+1

2 ,b1
L(2,p)
1,b1

= v
(2,s+1)

bs+2,b
s+1
2

· L(1)

bs+1
2 +1,bs+2

2

· L(2,s)
1,bs+1

Tbs+1,bs2
. . .L(2,2)

1,b3
Tb3,b2

2

× L(3)

1,b2
2
. . .L(s)

1,bs−1
2

L(s+1)
1,bs2

· Tbs+2
2 ,b1

L(2,p)
1,b1

,

which, after some more rearranging using Lemma 2.4, is equal to R(s + 1). This
proves the claim and hence completes the proof of part (a). To prove part (b),
looking at the second last equality we see that there exists an h ∈Hr,n such that

L(s+ 1) = L(1)
1,bs+2

v
(2,s+1)

bs+2,b
s+1
2

h = v
(1,s+1)

bs+2,b
s+1
2

L(1)

1,bs+1
2

h

= L(1)

bs+2+1,bs+2
2

v
(1,s+1)

bs+2,b
s+1
2

h = L(1)

1,bs+2
2

L(2,s+1)
1,bs+2

Tbs+2,b
s+1
2
L(s+2,p)

1,bs+1
2

h,

so that L(s+ 1) ∈ L(1)

1,bs+2
2

Hr,n. Taking s = p− 2 proves (b) and so completes the

proof of the Lemma. �
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2.8. Corollary. Suppose that b ∈ Cp,n and t ∈ Z. Then v
(t)
b ∈ L

(t+1)

1,bp2
Hr,n.

Proof. It is enough to consider the case when t = 0 and this is exactly part (b) of
Lemma 2.7. �

For t = 1, . . . , p, let Yt = L(t+1,t+p−1)
1,bt

Tbt,n−bt .

2.9. Corollary. Suppose that b ∈ Cp,n and 1 ≤ t ≤ p. Then

Ytv
(t−1)
b〈t−1〉 = v

(t)
b〈t〉Y

∗
t .

Proof. It is enough to consider the case t = 1. If t = 1 then by Lemma 2.7(a)

Ytvb = L(2,p)
1,b1

Tb1,bp2 · L
(2,p−1)
1,bp

Tbp,bp−1
2

. . .L(2,2)
1,b3

Tb3,b2
2
L(3)

1,b2
2
. . .L(p)

1,bp−1
2

× L(1)

1,bp2
Tbp2 ,b1L

(2,p)
1,b1

= v
(1)
b〈1〉Tbp2 ,b1L

(2,p)
1,b1

,

as required. �

The point of Corollary 2.9 is that left multiplication by Yt defines an Hr,n-module

homomorphism from V
(t−1)
b〈t−1〉 = v

(t−1)
b〈t−1〉Hr,n to V

(t)
b〈t〉 = v

(t)
b〈t〉Hr,n

2.10. Definition. Suppose that 1 ≤ t ≤ p and b ∈ Cp,n. Then θ′t is the Hr,n-module
homomorphism

θ′t :V
(t−1)
b〈t−1〉−→V

(t)
b〈t〉;x 7→ Ytx,

for all x ∈ V (t−1)
b〈t−1〉.

Since vb = v
(p)
b〈p〉, composing the maps θ′p ◦ · · · ◦ θ′1 gives an Hr,n-module endo-

morphism of vbHr,n. We need to describe this map.

2.11. Lemma. Suppose that b ∈ Cp,n. Then YpYp−1 . . . Y2Y1 = vbTb.

Proof. To prove the Lemma it is enough to show by induction on t that

Yt . . . Y1 = L(1,t−1)
1,bt

Tbt,bt−1
1

. . .L(1,1)
1,b2

Tb2,b1
1
L(2)
1,b1

. . .L(t)

1,bt−1
1

∏
t<s≤p

L(s)

1,bt1
·T 〈b

t−1
1 〉

bt,b
p
t+1

. . . Tb1,bp2 .

When t = 1 the right hand side of this equation is just Y1 so there is nothing to
prove. Now suppose that 1 < t < p− 1. Then, by induction and Lemma 2.4,

Yt+1 . . . Y1 = L(t+2,t+p)
1,bt+1

Tbt+1,n−bt+1 · L
(1,t−1)
1,bt

Tbt,bt−1
1

. . .L(1,1)
1,b2

Tb2,b1
1

× L(2)
1,b1

. . .L(t)

1,bt−1
1

∏
t<s≤p

L(s)

1,bt1
· T 〈b

t−1
1 〉

bt,b
p
t+1

. . . T
〈b1

1〉
b2,b

p
3
Tb1,bp2

= L(t+2,t+p)
1,bt+1

· Tbt+1,bt1
T
〈bt1〉
bt+1,b

p
t+2
· L(1,t−1)

1,bt
Tbt,bt−1

1
. . .L(1,1)

1,b2
Tb2,b1

1

× L(2)
1,b1

. . .L(t)

1,bt−1
1

∏
t<s≤p

L(s)

1,bt1
· T 〈b

t−1
1 〉

bt,b
p
t+1

. . . T
〈b1

1〉
b2,b

p
3
Tb1,bp2

= L(t+2,p)
1,bt+1

· v(1,t)
bt+1,bt1

· L(1,t−1)
1,bt

Tbt,bt−1
1

. . .L(1,1)
1,b2

Tb2,b1
1

× L(2)
1,b1

. . .L(t)

1,bt−1
1

· T 〈b
t
1〉

bt+1,b
p
t+2
· T 〈b

t−1
1 〉

bt,b
p
t+1

. . . T
〈b1

1〉
b2,b

p
3
Tb1,bp2
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Therefore, by Lemma 2.5 we have

Yt+1 . . . Y1 = v
(1,t)

bt+1,bt1
· L(t+2,p)

bt1+1,bt+1
1

· L(1,t−1)
1,bt

Tbt,bt−1
1

. . .L(1,1)
1,b2

Tb2,b1
1

× L(2)
1,b1

. . .L(t)

1,bt−1
1

· T 〈b
t
1〉

bt+1,b
p
t+2
· T 〈b

t−1
1 〉

bt,b
p
t+1

. . . T
〈b1

1〉
b2,b

p
3
Tb1,bp2

= L(1,t)
1,bt+1

Tbt+1,bt1
. . .L(1,1)

1,b2
Tb2,b1

1
L(2)
1,b1

. . .L(t+1)

1,bt1

∏
t+1<s≤p

L(s)

1,bt+1
1 ‘

× T 〈b
t
1〉

bt+1,b
p
t+2

. . . Tb1,bp2 ,

completing the proof of our claim. Taking t = p in the claim proves the Lemma. �

We close this subsection by generalizing Lemma 2.7 to show that vb can be
written in many other forms.

2.12. Lemma. Suppose that b ∈ Cp,n and that 1 ≤ j ≤ s ≤ p. Then

∏
j≤k<s

L(j,k)
1,bk+1

Tbk+1,bkj
·
∏

j<k≤p

L(k)

1,bk−1
j

·
∏

1≤i<j

L(i)

1,bpi+1

=
∏

j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
· L(j)

1,bsj+1
Tbsj+1,bj

∏
1≤i<j

L(i)

1,bpi+1
·
∏

j<k≤p

L(k)

1,bk−1
j

,

where all products are read from left to right with decreasing values of i and k.

Proof. Let L(s) and R(s), respectively, be the left and right hand side of the formula
in the statement of the Lemma. We show that L(s) = R(s) by induction on s. To
start the induction observe that, by our conventions,

L(j) =
∏

j<k≤p

L(k)

1,bk−1
j

·
∏

1≤i<j

L(i)

1,bpi+1
= R(j).

Hence, the Lemma is true when s = j. If j ≤ s < p then, by induction,

L(s+ 1) = L(j,s)
1,bs+1

Tbs+1,bsj
L(s) = L(j,s)

1,bs+1
Tbs+1,bsj

R(s)

= L(j,s)
1,bs+1

Tbs+1,bsj

∏
j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·L(j)

1,bsj+1
Tbsj+1,bj

∏
1≤i<j

L(i)

1,bpi+1
·
∏

j<k≤p

L(k)

1,bk−1
j

= L(j,s)
1,bs+1

Tbs+1,bsj

∏
j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bsj+1+1,bpi+1

× v(1,j)bsj+1,bj

∏
j+1<k≤p

L(k)

bj+1,bk−1
j

,
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since Ta,b commutes with L(i)
1,k by Lemma 2.3 whenever a+b ≤ k and 1 ≤ i ≤ p (we

use this fact several times below). Therefore, using Lemma 2.2 and Lemma 2.5,

L(s+ 1) = L(j,s)
1,bs+1

Tbs+1,bsj+1
T
〈bsj+1〉
bs+1,bj

∏
j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bsj+1+1,bpi+1

× L(s+1,p)
1,bsj+1

v
(1,j)
bsj+1,bj

∏
j+1<k≤s

L(k)

bj+1,bk−1
j

·
∏

s+1<k≤p

L(k)

bsj+1,bk−1
j

= L(j)
1,bs+1

v
(j+1,s)
bs+1,bsj+1

∏
j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bsj+1+1,bpi+1

× T 〈b
s
j+1〉

bs+1,bj
Tbsj+1,bj

L(j+1,p)
1,bj

∏
j+1<k≤s

L(k)

bj+1,bk−1
j

·
∏

s+1<k≤p

L(k)

bsj+1,bk−1
j

= v
(j+1,s)
bs+1,bsj+1

L(j)

bsj+1+1,bs+1
j+1

∏
j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bsj+1+1,bpi+1

× Tbs+1
j+1,bj

L(j+1,p)
1,bj

∏
j+1<k≤s

L(k)

bj+1,bk−1
j

·
∏

s+1<k≤p

L(k)

bsj+1,bk−1
j

=
∏

j+1≤k<s+1

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bs+1
j+1+1,bpi+1

× L(s+1,p)
1,bsj+1

v
(1,j)

bs+1
j+1,bj

∏
j+1<k≤s

L(k)

bj+1,bk−1
j

·
∏

s+1<k≤p

L(k)

bsj+1,bk−1
j

= R(s+ 1),

where the two lines we have, in essence, reversed some of the previous steps. This
completes the proof. �

The following result includes the definition of vb and Lemma 2.7(a) as special
cases (corresponding to j = 1 and j = 2, respectively). We proved Lemma 2.7 first
because its proof is considerably easier than the proof of Proposition 2.13, even
though the underlying argument is very similar.

2.13. Proposition. Suppose that b ∈ Cp,n and 1 ≤ j ≤ p. Then

vb =
∏

j≤k<p

L(j,k)
1,bk+1

Tbk+1,bkj
·
∏

1≤i<j

L(i)

1,bpi+1
·
∏

j<k≤p

L(k)

1,bk−1
j

·
∏

1<i≤j

Tbpi ,bi−1
L(i,p)
1,bi−1

,

where all products are read from left to right with decreasing values of i and k.

Proof. We argue by induction on j. When j = 1 the Lemma is a restatement of
Definition 2.6, so there is nothing to prove. Suppose now that 1 ≤ j < p and that
the formula in the Proposition holds. Then by induction and Lemma 2.12 (with
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s = p), we see that

vb =
∏

j+1≤k<p

L(j,k)
1,bk+1

Tbk+1,bkj
·
∏

1≤i<j

L(i)

1,bpi+1
·
∏

j<k≤p

L(k)

1,bk−1
j

·
∏

1<i≤j

Tbpi ,bi−1
L(i,p)
1,bi−1

=
∏

j+1≤k<s

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
· L(j)

1,bpj+1
Tbpj+1,bj

∏
1≤i<j

L(i)

1,bpi+1
·
∏

j<k≤p

L(k)

1,bk−1
j

×
∏

1<i≤j

Tbpi ,bi−1
L(i,p)
1,bi−1

=
∏

j+1≤k<p

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bpj+1+1,bpi+1
· v(1,j)

bpj+1,bj
·

∏
j+1<k≤p

L(k)

bj+1,bk−1
j

×
∏

1<i≤j

Tbpi ,bi−1
L(i,p)
1,bi−1

=
∏

j+1≤k<p

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j

L(i)

bpj+1+1,bpi+1
·

∏
j+1<k≤p

L(k)

1,bk−1
j+1

× v(1,j)
bpj+1,bj

∏
1<i≤j

Tbpi ,bi−1
L(i,p)
1,bi−1

=
∏

j+1≤k<p

L(j+1,k)
1,bk+1

Tbk+1,bkj+1
·
∏

1≤i<j+1

L(i)

1,bpi+1
·
∏

j+1<k≤p

L(k)

1,bk−1
j+1

·
∏

1<i≤j+1

Tbpi ,bi−1
L(i,p)
1,bi−1

,

which is precisely the statement of the Proposition for j + 1. �

2.4. The central element zb. . We now want to study the modules Ytv
(t−1)
b〈t−1〉Hr,n.

To do this we first need to recall the following important property of vb which was
established in [23]. Before we can state this result, for b ∈ Cp,n set

wb = w
〈bp−2

1 〉
bp−1,b

p
p
w
〈bp−3

1 〉
bp−2,b

p
p−1

. . . w
〈b1

1〉
b2,b

p
3
wb1,bp2 .

In two-line notation, wb is the permutation

(
1 . . . b1

1 b1
1 + 1 . . . b2

1 b2
1 + 1 . . . bp−11 + 1 . . . bp1

bp2 + 1 . . . bp1 bp3 + 1 . . . bp2 bp4 + 1 . . . 1 . . . bpp

)
.

Note that b1 = b1
1, bp = bpp and n = bp1. Also, if b = (a, b) then wb = wa,b.

For convenience we set Tb = Twb
. For example, Ta,b = Twa,b .

For any b = (b1, . . . , bp) ∈ Cp,n we define b′ = (bp, . . . , b1). Since w−1a,b = wb,a it

follows that wb′ = w−1b .
Finally, set Sb = Sb1 ×Sb2 × · · · ×Sbp , which we consider as a subgroup of Sn

in the obvious way. Similarly, Hq(Sb) is a subalgebra of Hq(Sn) via the natural
embedding.

2.14. Lemma ([23, Proposition 2.5]). Suppose that b ∈ Cp,n and 1 ≤ i, j ≤ n, with
i 6= bpt for 1 ≤ t ≤ p. Then

a) Tivb = vbT(i)w−1
b

, and

b) Ljvb = vbL(j)w−1
b

.

Using this fact we can prove the following two results.
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2.15. Lemma. Suppose that 1 ≤ t ≤ p and let i and j be integers such that 1 ≤
i, j ≤ n and i 6= btα for α = t− p+ 1, t− p+ 2, . . . , t. Then

Ti

(
Ytv

(t−1)
b〈t−1〉

)
=


(
Ytv

(t−1)
b〈t−1〉

)
Ti, if 1 ≤ i < bt;(

Ytv
(t−1)
b〈t−1〉

)
T(i)wb〈t−1〉′

, if bt + 1 ≤ i < n,

Lj

(
Ytv

(t−1)
b〈t−1〉) =


(
Ytv

(t−1)
b〈t−1〉

)
Lj , if 1 ≤ j ≤ bt;(

Ytv
(t−1)
b〈t−1〉

)
L(j)wb〈t−1〉′

, if bt + 1 ≤ j ≤ n,

Proof. For the first equality, if i 6= bt then using Lemmas 2.2 and 2.4

TiYtv
(t−1)
b〈t−1〉 = TiL(t+1,t+p−1)

1,bt
Tbt,n−btv

(t−1)
b〈t−1〉

= L(t+1,t+p−1)
1,bt

TiTbt,n−btv
(t−1)
b〈t−1〉

= L(t+1,t+p−1)
1,bt

Tbt,n−btT(i)wbt,n−bt v
(t−1)
b〈t−1〉.

The first claim now follows using Lemma 2.14. For the second claim observe that
by Corollary 2.8(b) there exists an h ∈Hr,n such that

LjYtv
(t−1)
b〈t−1〉 = Ljv

(t+1,t+p−1)
1,bt

h = v
(t+1,t+p−1)
bt,n−bt L(j)wbt,n−bt

h

= L(t+1,t+p−1)
1,bt

Tbt,n−btL(j)wbt,n−bt
v
(t−1)
b〈t−1〉

= YtL(j)wbt,n−bt
v
(t−1)
b〈t−1〉.

So the result again follows using Lemma 2.14. �

2.16. Lemma. Suppose that 1 ≤ t ≤ p and let i and j be integers such that 1 ≤
i, j ≤ n and i 6= btα whenever t− p+ 1 ≤ α ≤ t. Then

Ti(Yt . . . Y2Y1vb) =



(Yt . . . Y2Y1vb)Ti+bt−1
1
, if 1 ≤ i < bt;

(Yt . . . Y2Y1vb)Ti−bt+b1+···+bt−2
, if bt + 1 ≤ i < btt−1;

...

(Yt . . . Y2Y1vb)Ti−bt2 , if bt2 + 1 ≤ i < bt1;

(Yt . . . Y2Y1vb)T(i−bt1)wb′
, if bt1 + 1 ≤ i < n;

Lj(Yt . . . Y2Y1vb) =



(Yt . . . Y2Y1vb)Lj+bt−1
1
, if 1 ≤ j ≤ bt;

(Yt . . . Y2Y1vb)Lj−bt+b1+···+bt−2
, if bt + 1 ≤ j ≤ btt−1;

...

(Yt . . . Y2Y1vb)Lj−bt2 , if bt2 + 1 ≤ j ≤ bt1;

(Yt . . . Y2Y1vb)L(j−bt1)wb′
, if bt1 + 1 ≤ j ≤ n.

Ti(Yt . . . Y2Y1vb) = (Yt . . . Y2Y1vb)T(i)w(bt,...,b1)

Lj(Yt . . . Y2Y1vb) = (Yt . . . Y2Y1vb)T(j)w(bt,...,b1)

In particular, taking t = p, we have

Ti(Yp . . . Y2Y1vb) = (Yp . . . Y2Y1vb)T(i)wb′
,

Lj(Yp . . . Y2Y1vb) = (Yp . . . Y2Y1vb)L(j)wb′
.

Proof. This can be proved in exactly the same way as Lemma 2.15. Note that the
final claim also follows from Lemma 2.11 using Lemma 2.2. �
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All the results we have obtained so far are valid for the cyclotomic Hecke algebra
Hr,n defined over an arbitrary ring.

For the rest of this paper we make the following assumption. This definition is
repeated from the introduction.

2.17. Definition. Suppose that R is a commutative ring with 1 and set

A(ε, q,Q) =
∏

1≤i,j≤d

∏
−n<k<n

∏
1≤t<p

(
Qi − εtqkQj

)
.

Then Q is (ε, q)-separated in R if A(ε, q,Q) is invertible in R.

Observe that, even though our notation does not reflect this, whether or not Q
is (ε, q)-separated also depends on n and the ring R.

Fix b ∈ Cp,n and set Vb = vbHr,n and Hd,b = Hd,b1(εQ) ⊗ · · · ⊗Hd,bp(εpQ).
Then an important result from [23] is the following.

2.18. Lemma ( [23, Prop. 2.15]). Suppose that b ∈ Cp,n and that Q is (ε, q)-
separated if d > 1. Then Hd,b acts faithfully on Vb from the left and EndHr,n

(Vb) ∼=
Hd,b.

2.19. Remark. When d = 1, the algebra Hq(Sb) can be naturally embedded into
Hr,n as a subalgebra; see [20]. In that case, the condition of being (ε, q)-separated
means that

∏
|k|<n,1≤t<p

(
1− εtqk

)
is invertible.

To describe the action of Hd,b on Vb given a permutation w = si1 . . . sik ∈ Sn

and an integer c ∈ N such that ij+c < n, for 1 ≤ j ≤ k, define w〈c〉 = si1+c . . . sik+c.

Then w〈c〉 ∈ Sn. Note that this is compatible with our previous definition of w
〈c〉
a,b.

Define Θb to be the ‘natural inclusion map’ Hd,b ↪→ Hr,n. That is, Θb is the
R-linear map determined by

Θb

((
L
a1,1
1 . . . L

a1,b1
b1

Tx1

)
⊗
(
L
a2,1
1 . . . L

a2,b2
b2

Tx2

)
⊗ · · · ⊗

(
L
ap,1
1 . . . L

ap,bp
bp

Txp
))

=
(
L
a1,1
1 . . . L

a1,b1
b1

Tx′1
)(
L
a2,1
b1

1+1
. . . L

a2,b2
b1

1+b2
Tx′2
)
· · ·
(
L
ap,1

bp−1
1 +1

. . . L
ap,bp

bp−1
1 +bp

Tx′p
)

=
(
L
a1,1
1 . . . L

a1,b1
b1

)(
L
a2,1
b1

1+1
. . . L

a2,b2
b1

1+b2

)
· · ·
(
L
ap,1

bp−1
1 +1

. . . L
ap,bp
n

)
Tx′1Tx′2 . . . Tx′p ,

for all xt ∈ Sbt and 0 ≤ aj,t < d, for 1 ≤ t ≤ p and 1 ≤ j ≤ bt, and where

x′t := x
〈bt−1

1 〉
t , for 1 ≤ t ≤ p. The second equality follows because all of the

terms commute. Thus, we have x′1 = x1 and Θb(Tx1 ⊗ · · · ⊗ Txp) = Tw, where

w = x1x
〈b1

1〉
2 . . . x

〈bp−1
1 〉

p ∈ Sb, for xt ∈ Sbt . We emphasize that Θb is an R-module
homomorphism but not a ring homomorphism.

Similarly, define Θ̂b to be the R-linear map Θ̂b : Hd,b−→Hr,n determined by

Θ̂b

((
L
a1,1
1 . . . L

a1,b1
b1

Tx1

)
⊗
(
L
a2,1
1 . . . L

a2,b2
b2

Tx2

)
⊗ · · · ⊗

(
L
ap,1
1 . . . L

ap,bp
bp

Txp
))

=
(
L
ap,1
1 . . . L

ap,bp
bp

Tx′′p
)
· · ·
(
L
a2,1
bp3+1

. . . L
a2,b2
bp2

Tx′′2
)(
L
a1,1
bp2+1

. . . L
a1,b1
bp1

Tx′′1
)

=
(
L
ap,1
1 . . . L

ap,bp
bp

)
. . .
(
L
a2,1
bp3+1

. . . L
a2,b2
bp2

)(
L
a1,1
bp2+1

. . . L
a1,b1
bp1

)
Tx′′1 Tx′′2 . . . Tx′′p ,

where the xt and at,j are as before and x′′t := w−1b x
〈bt−1

1 〉
t wb = w−1b x′twb. In

particular, x′′p = xp and x′′1x
′′
2 . . . x

′′
p = w−1b

(
x1x
〈b1

1〉
2 . . . x

〈bp−1
1 〉

p

)
wb ∈ Sb′ .

Given these definitions, the proof of Lemma 2.18 (that is, of [23, Prop. 2.15]),

shows that h ∈Hd,b acts on Vb as left multiplication by Θ̂b(h). Moreover,

(2.20) Θ̂b(h)vb = vbΘb(h), for all h ∈Hd,b,
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by Lemma 2.14. Typically, if h ∈Hd,b then we will write h · vb = Θ̂b(h)vb in what
follows. Thus, we have

h · vb = vbΘb(h), for all h ∈Hd,b,

for h ∈Hd,b.

2.21. Lemma. Suppose that Q is (ε, q)-separated and let b ∈ Cp,n. Then there
exists a unique element zb in Hd,b such that

zb · vb = YpYp−1 . . . Y2Y1vb = vbΘb(zb).

Moreover, zb belongs to the centre of Hd,b.

Proof. By Lemma 2.11, left multiplication by Yp . . . Y2Y1 defines a homomorphism
in EndHr,n

(
Vb
)
. Therefore, there exists a unique element zb in Hd,b such that

YpYp−1 . . . Y2Y1vb = Θ̂b(zb)vb = vbΘb(zb)

by Lemma 2.18 and (2.20).
It remains to show that zb is central in Hd,b. As Hd,b acts faithfully on Vb, it is

enough to show that Θ̂b(zbh)vb = Θ̂b(hzb)vb, for all h ∈Hd,b. By Lemma 2.14,

Θ̂b(zbh)vb = Θ̂b(zb)Θ̂b(h)vb = Θ̂b(zb)vbΘb(h) = Yp . . . Y2Y1vbΘb(h).

Applying (the last statements in) Lemma 2.16, we see that

Yp . . . Y2Y1vbΘb(h) = Θ̂b(h)Yp . . . Y2Y1vb,= Θ̂b(h)Θ̂b(zb)vb = Θ̂b(hzb)vb,

as required. �

2.5. A Morita equivalence for Hr,n. By [23, Prop. 2.15], Vb is a projective Hr,n-
module. Let Hr,n(b) be the smallest two-sided ideal of Hr,n which contains Vb =
vbHr,n as a direct summand. By [10, Theorem 1.1] there is a Morita equivalence

Hb : Mod-Hd,b
'−−−−−→

Morita
Mod-Hr,n(b)

given by Hb(X) = X ⊗Hd,b
Vb. Hence, by Lemma 2.18 and the general theory of

Morita equivalences (cf. [4, §2.2]), we have the following.

2.22. Lemma (cf. [10, Corollary 4.9]). Suppose that Q is (ε, q)-separated in R and
let X be a right ideal of Hd,b. Then, as right Hr,n-modules,

Hb(X) ∼= Θ̂b(X)Vb.

We next show that Hb can be realised as induction from a subalgebra of Hr,n.
To do this we need to produce a subalgebra of Hr,n which is isomorphic to Hd,b.

Before we state this result, given a sequence b = (b1, . . . , bp) ∈ Cp,n define

(2.23) u+b (Q) = L(2)

1,b1
1
L(3)

1,b2
1
. . .L(p)

1,bp−1
1

and u−b (Q) = L(p−1)
1,bpp

. . .L(2)

1,bp3
L(1)

1,bp2
.

In the notation of [9, Definition 3.1], u+b (Q) = u+ωb
, where ωb = (ωb

(1), · · · ,ωb
(r))

is the multipartition

ωb
(s) =

{
(1bα), if s = dα for some α,

(0), otherwise.

Hereafter, we write u±b = u±b (Q).

By Proposition 2.13, we can write vb = v+b u
+
b = u−b v

−
b , where

v+b = L(1,p−1)
1,bp

Tbp,bp−1
1
L(1,p−2)
1,bp−1

Tbp−1,b
p−2
1

. . .L(1,1)
1,b2

Tb2,b1
1
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and

v−b = Tbpp,bp−1
L(p,p)
1,bp−1

. . . Tbp3 ,b2L
(3,p)
1,b2

Tbp2 ,b1L
(2,p)
1,b1

.

(Take j = 1 and j = p in Proposition 2.13, respectively.)
The following key lemma plays an important role throughout this paper.

2.24. Lemma. Suppose that Q is (ε, q)-separated in R. Let b ∈ Cp,n. Then zb is
invertible in Hd,b.

Proof. The module Vb = vbHr,n is a projective submodule of Hr,n-module by [23,
Prop. 2.15], so Vb = eHr,n for some idempotent e ∈Hr,n. Therefore, Vb = eHr,n =
e2Hr,n ⊆ eHr,neHr,n = V 2

b so that Vb = V 2
b . Therefore, using the formulae for vb

given before the Lemma,

Vb = (Vb)2 = vbHr,nvbHr,n = v+b
(
u+bHr,nu

−
b

)
v−b Hr,n

= v+b
(
u+bTbu

−
b Hq(Sb)

)
v−b Hr,n,

where the last equality follows by Du and Rui [11, Prop. 3.1(a)]. Lemma 2.4 shows
that Hq(Sb)v

−
b = v−b Hq(Sb′). Hence,

Vb = vbTbu
−
b v
−
b Hq(Sb′)Hr,n ⊆ vbTbvbHr,n = zb · Vb,

by Lemma 2.11 and Lemma 2.21. Therefore, the endomorphism of Vb given by left
multiplication by zb has a right inverse in EndHr,n

(Vb). Consequently, zb has a
right inverse in Hd,b by Lemma 2.18. Hence, zb is invertible in Hd,b since it is
central. �

Under the conditions of Lemma 2.24 we can make the following definition.

2.25. Definition. Suppose that b ∈ Cp,n and that Q is (ε, q)-separated in R. Let

eb = z−1b · vbTb ∈ Vb and define

Ĥd,b = {h · eb | h ∈Hd,b } = { ebΘb(h) | h ∈Hd,b } ⊆ Vb.

Quite surprisingly, Ĥd,b is something like a ‘parabolic’ subalgebra of Hr,n.

2.26. Theorem. Suppose that b ∈ Cp,n and that Q is (ε, q)-separated. Then:

a) eb is an idempotent in Hr,n and Vb = ebHr,n.

b) Ĥd,b is a unital subalgebra of Hr,n with identity element eb.

c) The map Hd,b −→ Ĥd,b;h 7→ h · eb is an algebra isomorphism.

Proof. Suppose that x, y ∈Hd,b. Then using the definitions, (2.20) and Lemma 2.21
we have that

(x · eb)(y · eb) = (xz−1b · vbTb)(yz−1b · vbTb) = xz−1b · vbTbvbΘb(yz−1b )Tb

= xz−1b zb · vbΘb(yz−1b )Tb = x · vbΘb(yz−1b )Tb

= xyz−1b · vbTb = (xy) · eb.

Taking x = y = 1Hd,b
shows that eb is an idempotent in Hr,n. As Hd,b acts

faithfully on Vb by Lemma 2.18, all of the claims now follow. �

Theorem 2.26 says that the natural inclusion map Θb : Hd,b ↪→ Hr,n is an
inclusion of algebras when it is composed with left multiplication by eb. Note that
the image of Θb is not a subalgebra of Hr,n.

Combining Theorem 2.26 and Lemma 2.22 gives a second description of the
Morita equivalence Hb. If A is a subalgebra of an algebra B then let ↑BA be the
corresponding induction functor.
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2.27. Corollary. Suppose that Q is (ε, q)-separated and that X is a right Hd,b

module, where b ∈ Cp,n. Then

Hb(X) ∼= (X · eb) ↑Hr,n

Ĥd,b

= X · eb ⊗Ĥd,b
Hr,n.

2.6. Comparing trace forms on Vb. Recall that a trace form on an R-algebra
A is a linear map tr :A−→R such that tr(ab) = tr(ba), for all a, b ∈ A. The form
tr is non-degenerate if whenever 0 6= a ∈ A then tr(ab) 6= 0 for some b ∈ A.

By [26] the Hecke algebras Hd,b and Hr,n are both equipped with ‘canonical’
non-degenerate trace forms Trb and Tr, respectively. The aim of this subsection is
to compare these two trace forms. More precisely, we show that

Tr(h · vbTb) = Trb(h) Tr(vbTb),

for all h ∈ Hd,b. This result will be used in the next section to compute the
scalar fλ from the introduction.

The trace form Tr : Hr,n−→R on Hr,n is the R-linear map determined by

(2.28) Tr(La11 . . . Lann TxTy) =

{
q`(x), if a1 = · · · = an = 0 and x = y−1,

0, otherwise.

The trace form Trb on Hd,b is defined similarly.
Comparing these two trace forms requires some preparation. Before Lemma 2.24

we noted that vb = v+b u
+
b , for some element v+b . We need to understand v+b better

in order to compare Tr and Trb.
Let HLm be the R-submodule of Hr,n spanned by the elements

{TwLa11 . . . L
am−1

m−1 | 0 ≤ a1, . . . , am−1 < r and w ∈ Sm } .

Note that HLm is not, in general, a subalgebra of Hr,n.

2.29. Lemma. Suppose that a, b, k and l are positive integers such that k ≤ l ≤ a
and 1 ≤ s ≤ t ≤ p. Then

L(s,t)
k,l Ta,b = Ta,b

(
L(s,t)
b+k,b+l +

b+l∑
m=b+k

d(t−s+1)∑
e=1

hm,eL
e
m

)
,

for some hm,e ∈ HLm.

Proof. For the duration of this proof let Lk,l(Q) =
∏ l
m=k(Lm−Q), forQ ∈ R. Then

L(s,t)
k,l =

∏d
i=1

∏t
u=s Lk,l(ε

uQi). By the right handed version of [27, Lemma 5.6],

Lk,l(Q)Ta,b = Ta,b

(
Lb+k,b+l(Q) +

b+l∑
m=b+k

hmLm

)
,

for some hm ∈ HLm. Therefore, there exist elements hm,i,t ∈ HLm such that

L(s,t)
k,l Ta,b = Ta,b

d∏
i=1

t∏
u=s

(
Lb+k,b+l(ε

uQi) +

b+l∑
m=b+k

hm,i,uLm

)
.

Collecting the terms in the product, we obtain L(s,t)
b+k,b+l, as the leading term, plus

a linear combination of terms which are products of d(t − s + 1) elements, each
of which is equal to either Lb+k,b+l(ε

uQi) or hm,i,uLm, for some m, i, u as above.
Expand the factors Lb+k,b+l(ε

uQi) into a sum of monomials in Lb+k, . . . , Lb+l and
consider the resulting linear combination of products of these summands with the
terms hm,i,uLm above. Fix one of these products of d(t − s + 1) terms, say X,
and let m be maximal such that Lm appears in X. By assumption the rightmost
Lm which appears in X cannot have both Tm and Tm−1 to its right, so using
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Lemma 2.3 we can rewrite X as a linear combination of terms of the form hX,eL
e
m,

where 1 ≤ e ≤ d(t − s + 1) and hX,e ∈ HLm. Note that when we rewrite X in this
form some of the Lm′ , with m′ < m, are changed into Lm when we move them
to the right. However, Tm never appears to the right of these newly created Lm.
The final exponent of Lm is at most d(t− s+ 1) because no factor can increase the
exponent of Lm by more than one. The result follows. �

2.30. Lemma. Suppose that b ∈ Cp,n. Then

v+b = Tb′
(
L(1)

b1
1+1,n

L(2)

b2
1+1,n

. . .L(p−1)
bp−1

1 +1,n
+

p−1∑
l=1

bl+1
1∑

m=b l1+1

dl∑
e=1

hl,m,eL
e
m

)
for some hl,m,e ∈ HLm.

Proof. Recall that v+b = L(1,p−1)
1,bp

Tbp,bp−1
1
L(1,p−2)
1,bp−1

Tbp−1,b
p−2
1

. . .L(1,1)
1,b2

Tb2,b1
1
. To prove

the lemma let v+b,p = 1 and set v+b,k = v+b,k+1L
(1,k)
1,bk+1

Tbk+1,bk1
, for 1 ≤ k < p. We

claim that if 1 ≤ k ≤ p then

v+b,k = T(bp,...,bk+1,bk1 )

(
L(1,p−1)
bp−1

1 +1,bp1
. . .L(1,k)

bk1+1,bk+1
1

+

p−1∑
l=k

bl+1
1∑

m=b l1+1

dl∑
e=1

h′l,m,eL
e
m

)
,

for some h′l,m,e ∈ HLm. When k = p there is nothing to prove, so we may assume

that 1 ≤ k < p and, by induction, that the claim is true for v+b,k+1. Therefore, by
Lemma 2.29,

v+b,k= T(bp,...,bk+2,b
k+1
1 )

(
L(1,p−1)
bp−1

1 +1,bp1
. . .L(1,k+1)

bk+1
1 +1,bk+2

1

+

p−1∑
l=k+1

bl+1
1∑

m=b l1+1

dl∑
e=1

h′l,m,eL
e
m

)

× Tbk+1,bk1

(
L(1,k)

bk1+1,bk+1
1

+

bk+1
l∑

m=bk1+1

dk∑
e=1

h′′m,eL
e
m

)
,

for some h′l,m,e, h
′′
m,e ∈ HLm. Now, by Lemma 2.3, Tbk+1,bk1

commutes with Lm

whenever m > bk+1
1 . Moreover, if m > bk+1

1 then

h′l,m,eL
e
mTbk+1,bk1

= h′l,m,eTbk+1,bk1
Lem = Tbk+1,bk1

h′′l,m,eL
e
m,

where h′′l,m,e = T−1
bk+1,bk1

h′l,m,eTbk+1,bk1
. It is easy to check that h′′l,m,e ∈ HLm. Next

note that T(bp,...,bk+2,b
k+1
1 )Tbk+1,bk1

= T(bp,...,bk+1,bk1 )
. Therefore, v+b,k is equal to

v+b,k= T(bp,...,bk+1,bk1 )

(
L(1,p−1)
bp−1

1 +1,bp1
. . .L(1,k+1)

bk+1
1 +1,bk+2

1

+

p−1∑
l=k+1

bl+1
1∑

m=b l1+1

dl∑
e=1

h′′l,m,eL
e
m

)

×
(
L(1,k)

bk1+1,bk+1
1

+

bk+1
1∑

m=bk1+1

dk∑
e=1

h′′m,eL
e
m

)
.

To complete the proof of the claim observe that

L(1,p−1)
bp−1

1 +1,bp1
. . .L(1,k+1)

bk+1
1 +1,bk+2

1

= L(1)

bk+1
1 +1,n

. . .L(k+1)

bk+1
1 +1,n

L(k+2)

bk+2
1 +1,n

. . .L(p−1)
bp−1

1 +1,n
.

Therefore, when we write this element as a polynomial in Lbk+1
1 +1, . . . , Ln, the

exponent of Lm is at most dl if b l
1 < m ≤ bl+1

1 for some k + 1 ≤ l ≤ p− 1. Using
this observation it is now a straightforward exercise to expand the formula for v+b,k
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above and show that v+b,k can be written in the required form, thus completing the
proof of the claim.

Returning to the proof of the lemma, observe that v+b = v+b,1 and that the

statement of the lemma is the special case of the claim above when k = 1 (and
setting k = 0 in the last displayed equation). �

We can now prove the promised comparison theorem for Tr and Trb.

2.31. Theorem. Suppose that Q is (ε, q)-separated and that b ∈ Cp,n. Then

Tr(h · vbTb) = Trb(h) Tr(vbTb),

for all h ∈Hd,b.

Proof. By linearity, it is enough to let h run over a basis of Hd,b. Let

Bb = {La1,11 . . . L
a1,b1
b1

Tx1 ⊗ · · · ⊗ L
ap,1
1 . . . L

ap,bp
bp

Txp | 0 ≤ ai,t < d and xt ∈ Sbt }

be the ‘Ariki-Koike basis’ of Hd,b. Then it is enough to show that

Tr(h · vbTb) = Trb(h) Tr(vbTb), for all h ∈ Bb.

If h = 1Hd,b
there is nothing to prove. Therefore, by (2.28) it remains to show

that Tr(h · vbTb) = 0 whenever 1Hd,b
6= h ∈ Bb. For the rest of the proof fix such

an h. Write h = L
a1,1
1 . . . L

a1,b1
b1

Tx1
⊗ · · · ⊗ Lap,11 . . . L

ap,bp
bp

Txp , where 0 ≤ aj,t < d

and xt ∈ Sbt , and set h′ = Θb(h). Then

h′ = L
a1,1
1 . . . L

a1,b1
b1

1
L
a2,1
b1

1+1
. . . L

a2,b2
b2

1
. . . L

ap,1

bp−1
1 +1

. . . L
ap,bp
bp1

Tx,

where x = x1x
〈b1

1〉
2 . . . x

〈bp−1
1 〉

p .
Recall from before Lemma 2.24 that vb = v+b u

+
b . Therefore, using Lemma 2.30

and the fact that Tr is a trace form,

Tr(h · vbTb) = Tr(vbh
′Tb) = Tr(v+b u

+
bh
′Tb)

= Tr(Tb′ û
−
b u

+
bh
′Tb) +

p−1∑
l=1

bl+1
1∑

m=b l1+1

dl∑
e=1

Tr(Tb′hl,m,eL
e
mu

+
bh
′Tb)

= Tr(û−b u
+
bh
′TbTb′) +

p−1∑
l=1

bl+1
1∑

m=b l1+1

dl∑
e=1

Tr(Lemu
+
bh
′TbTb′hl,m,e),

where hl,m,e ∈ HLm and û−b := L(1)

b1
1+1,n

L(2)

b2
1+1,n

. . .L(p−1)
bp−1

1 +1,n
. Fix a triple (l,m, e),

from the sum, with 1 ≤ l < p, b l
1 < m ≤ bl+1

1 and 1 ≤ e ≤ dl. By as-
sumption, Lm appears in h′ with exponent 0 ≤ al+1,m′ < d, where m = b l

1 +
m′. Therefore, Lemu

+
bh
′TbTb′hl,m,e is a linear combination of terms of the form

Lemu
+
b f1(L)Twf2(L), where w ∈ Sn, f1(L) is a a polynomial in L1, . . . , Ln of de-

gree at most al+1,m′ < d as a polynomial in Lm, and where f2(L) is a polynomial
in L1, . . . , Lm−1. As Tr is a trace form,

Tr(Lemu
+
b f1(L)Twf2(L)) = Tr(f2(L)Lemu

+
b f1(L)Tw).

Now, considered as a polynomial in Lm, f2(L)Lemu
+
b f1(L) is a polynomial with zero

constant term (since e > 0) and degree

0 < f := e+ d(p− l − 1) + al+1,m′ < d(p− 1) + d = r.

By the same argument, if m < k ≤ n then Lk appears in f2(L)Lemu
+
b f1(L) with

exponent at most d(p − l′k − 1) + alk+1,k′ < d(p − 1) < r, where k = blk−11 + k′

and 1 ≤ k′ ≤ blk . If k < m then Lk could appear in f2(L)Lemu
+
b f1(L) with



MORITA EQUIVALENCES OF CYCLOTOMIC HECKE ALGEBRAS 21

exponent greater than r − 1, however, by Lemma 2.3 this will not affect the ex-
ponents of Lm, . . . , Ln when rewrite this term as a linear combination of Ariki-
Koike basis elements. Hence, Lfm is a left divisor of f2(L)Lemu

+
b f1(L) when it

is written as a linear combination of Ariki-Koike basis elements. Consequently,
Tr(f2(L)Lemu

+
b f1(L)) = 0 by (2.28). Therefore, Tr(Lemu

+
bh
′TbTb′hl,m,e) = 0 so

that Tr(h · vbh′Tb) = Tr(vbh
′Tb) = Tr(û−b u

+
bh
′TbTb′).

Now consider Tr(û−b u
+
bh
′TbTb′). By definition,

û−b u
+
bh
′ = L(1)

b1
1+1,n

L(2)

b2
1+1,n

. . .L(p−1)
bp−1

1 +1,n
· L(2)

1,b1
1
L(3)

1,b2
1
. . .L(p)

1,bp−1
1

h′

=

p∏
i=1

L(i)

1,bi−1
1

L(i)

bi1+1,n
· h′.

If al,m′ 6= 0, for some l and m′, then L
al,m′
m divides h′, where m = bl−11 + m′ as

above. By the argument above û−b u
+
bh
′, when considered as a polynomial in Lm,

is a polynomial with zero constant term and degree strictly less than r. Therefore,

Tr(h · vbTb) = Tr(û−b u
+
bh
′TbTb′) = 0,

as required. It remains, then, to consider the cases when al,m′ = 0, for 1 ≤ l ≤ p
and 1 ≤ m′ ≤ bl. That is, when h′ = Tx for some 1 6= x ∈ Sb. By (2.28), in this
case we have

(2.32) Tr(h · vbTb) = Tr(û−b u
+
bTxTbTb′) = Tr(û−b u

+
b ) Tr(TxTbTb′)

Recall that wb is a distinguished coset representative for Sb, so that `(xwb) =
`(x) + `(wb). Therefore, Tr(TxTbTb′) = Tr(Txwb

Tb′) = 0 by (2.28) since x 6= 1.
Hence, Tr(h · vbTb) = 0, completing the proof. �

We can improve on Theorem 2.31 by explicitly computing Tr(vbTb). In fact,
in proving the theorem we have essentially already done this. To state the result,
given b ∈ Cp,n set α(b) =

∑p
i=1 ibi ∈ N.

2.33. Corollary. Suppose that Q is (ε, q)-separated and that b ∈ Cp,n. Then

Tr(vbTb) = (−1)dn(p−1)q`(wb)ε
1
2 rn(p−1)−dα(b)(Q1 . . . Qd)

n(p−1).

Proof. By (2.32), and (2.28), we have that

Tr(vbTb) = Tr(1Hd,b
· vbTb) = Tr(û−b u

+
b ) Tr(Tb′Tb) = q`(wb) Tr(û−b u

+
b ).

Now, Tr(û−b u
+
b ) is just the constant term of û−b u

+
b by (2.28). Therefore,

Tr(vbTb) = q`(wb)

p∏
t=1

(
(−1)dεtdQ1 . . . Qd

)n−bt
= (−1)dn(p−1)q`(wb)ε

1
2 rn(p−1)−dα(b)(Q1 . . . Qd)

n(p−1),

since b1 + · · ·+ bp = n. �

2.34. Remark. Suppose that b ∈ Cp,n. Then it is not difficult to see that

`(wb) =
∑

1≤i<j≤p

bibj .
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3. Shifting homomorphisms and Specht modules

In this section we begin to apply the results of the last section to the representa-
tion theory of Hr,p,n. First, we recall a construction of the Specht modules for the
algebras Hd,b and Hr,n and use this to define the scalars fλ from the introduction.
Next we explicitly compute these scalars. Building on these results, and using Clif-
ford theory, we then define analogues of the Specht modules for the algebras Hr,p,n.
As a consequence we construct the simple modules of Hr,p,n over a field.

Throughout this section we maintain our assumption that Q is (ε, q)-separated
over R (see Assumption 2.17).

3.1. Specht modules for Hd,b and Hr,n. The algebras Hd,b and Hr,n are both
cellular algebras [9,18] with the cell modules of both algebras being called Specht
modules. In this subsection we quickly recall the construction of these modules and
the relationship between the Specht modules of these algebras.

First, recall that a partition of n is a sequence λ = (λ1, λ2, . . . ) of weakly
decreasing non-negative integers which sum to |λ| = n. The conjugate of λ is the
partition λ′ = (λ′1, λ

′
2, . . . ), where λ′i = # { j ≥ 1 | λj ≥ i }.

A multipartition of n is an ordered r-tuple λ = (λ(1), . . . , λ(r)) of partitions
such that |λ(1)| + · · · + |λ(r)| = n. Let Pr,n be the set of r-partitions of n. The

partitions λ(s) are the components of λ and we call λ a multipartition when r
is understood. If λ = (λ(1), . . . , λ(r)) is a multipartition then its conjugate is the

multipartition λ′ = (λ(r)
′
, . . . , λ(1)

′
). To each multipartition λ we also associate a

Young subgroup Sλ = Sλ(1) × · · · ×Sλ(r) of Sn in the obvious way.

The diagram of λ is the set [λ] = { (i, j, s) | 1 ≤ j ≤ λ(s)i and 1 ≤ s ≤ r }. A
λ-tableau is a map t : [λ]−→{1, 2, . . . , n}, which we think of as a labeling of the
diagram of λ. Thus we write t = (t(1), . . . , t(r)) and we talk of the rows, columns
and components of t.

By [9, Theorem 3.26], Hr,n is a cellular algebra with a cellular basis of the form

{mst | s, t ∈ Std(λ), for λ ∈Pr,n } .
Hence, the cell modules of Hr,n are indexed by Pr,n and if λ ∈ Pr,n then the
corresponding cell module S(λ) has a basis of the form {mt | t ∈ Std(λ) }.

3.1. Definition. a) Suppose that λ ∈ Pr,n. Then the Specht module S(λ)
for Hr,n is the cell module indexed by λ defined in [9, Defn 3.28].

b) Suppose that λ ∈ Pd,b. Then the Specht module for Hd,b is the module

Sb(λ) ∼= S(λ[1])⊗ · · · ⊗ S(λ[p]).

We write SR(λ) when we want to emphasize that S(λ) is an R-module. We will
give a more explicit construction of these modules in Section 4.2.

When Hd,b is semisimple the modules Specht modules {Sb(λ) | λ ∈Pd,b } give
a complete set of pairwise non-isomorphic simple Hd,b-modules. Similarly, the
modules {S(λ) | λ ∈Pn,n } give a complete set of pairwise non-isomorphic simple
Hr,n-modules when Hr,n is semisimple.

More generally, the cellular basis of Hr,n endows each Specht module S(λ) with
an associative bilinear form and the radical radS(λ) of this form is an Hr,n-module.
Define D(λ) = S(λ)/ radS(λ). Let Kr,n(Q∨ε) = {λ ∈Pr,n | D(λ) 6= 0 }. Then a
multipartition λ is Kleshchev if λ ∈ Kr,n(Q∨ε) and

{D(λ) | λ ∈ Kr,n(Q∨ε) }
is a complete set of pairwise non-isomorphic irreducible Hr,n-modules. Typically
we write Kr,n = Kr,n(Q∨ε) in what follows.

If A is an algebra and M is an A-module let Head(M) be the head of M . That
is, M is the largest semisimple quotient of M . For example, if λ ∈ Kr,n then
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D(λ) = Head(S(λ)). If S and D are modules for an algebra, with D irreducible,
let [S : D] be the multiplicity of D as a composition factor of S.

If λ and µ are two multipartitions then λ dominates µ, and we write λ D µ if

t−1∑
s=1

|λ(s)|+
i∑

j=1

λ
(t)
j ≥

t−1∑
s=1

|µ(s)|+
i∑

j=1

µ
(t)
j

for 1 ≤ t ≤ r and i ≥ 0. We write λ B µ if λ D µ and λ 6= µ. The dominance
partial order on Pr,n is useful because of the following fact.

3.2. Lemma ( [9, §3]). Suppose that [S(λ) : D(µ)] 6= 0, for λ,µ ∈ Pr,n. Then
λ D µ. Moreover, if µ ∈ Kr,n then [S(µ) : S(µ)] = 1 and D(µ) = HeadS(µ).

Let Kd,b = {λ ∈Pd,b | λ[t] ∈ Kd,bi(ε
tQ) for 1 ≤ i ≤ p }. If λ ∈ Kd,b let

Db(λ) = Sb(λ)/ radSb(λ) ∼= D(λ[1])⊗ · · · ⊗D(λ[p]).

The remarks above imply that {Db(λ) | λ ∈ Kd,b for 1 ≤ t ≤ p } is a complete set
of pairwise non-isomorphic irreducible Hd,b-modules.

Recall the functor Hb from §2.5. By [10, Prop. 4.11] (see also [23, Prop. 2.13]),
we have the following.

3.3. Lemma. Suppose that λ ∈Pd,b. Then

a) Hb
(
Sb(λ)

) ∼= S(λ) as Hr,n-modules.

b) Hb
(
Db(λ)

) ∼= D(λ) as Hr,n-modules.

c) λ = (λ[1], . . . ,λ[p]) ∈ Kd,b(Q∨ε) is Kleshchev if and only if λ[t] ∈ Kd,bt(ε
tQ),

for 1 ≤ t ≤ p.

In particular, we can consider S(λ) ∼= Hb
(
Sb(λ)

)
= Sb(λ) ·Vb to be a submodule

of Vb.

3.2. The scalar fλ. We are now ready to define and compute the scalars fλ which
play an important part in all of the main results of this paper.

Recall from the introduction that A = Z[ε̇, q̇±1, Q̇±11 , . . . , Q̇±1d , A(ε̇, q̇, Q̇)−1],

where ε̇ is a primitive pth root of unity in C and q̇ and Q̇ = (Q̇1, . . . , Q̇d) are
indeterminates over Z[ε̇]. Let F be the field of fractions of A. If Q is (ε, q)-
separated over R then R can be considered as an A-module by letting ε̇ act on R as
multiplication by ε, q̇ act as multiplication by q and Q̇i act as multiplication by Qi,
for 1 ≤ i ≤ d. Therefore, H R

r,n(q,Q) ∼= H A
r,n(q̇, Q̇)⊗AR are isomorphic R-algebras.

In particular, H F
r,n
∼= H A

r,n(q̇, Q̇)⊗A F . The algebra H F
r,n is semisimple by Ariki’s

semisimplicity criteria [1]. The algebra H F
r,n is split semisimple because H F

r,n is a
cellular algebra (and every field is a splitting field for a cellular algebra).

Abusing notation, we call the elements of A polynomials and if f(ε̇, q̇, Q̇) ∈ A
then we define f(ε, q,Q) = f(ε̇, q̇, Q̇)1R to be the value of f(ε̇, q̇, Q̇) at (ε, q,Q).

The scalar fλ in the next Proposition plays a key role in all of the main results,
Theorems A–D, from the introduction.

3.4. Proposition. Suppose that Q is (ε, q)-separated in R and that b ∈ Cp,n and
λ ∈Pd,b. Then there exists a non-zero scalar fλ ∈ R such that

zb · x = fλx,

for all x ∈ S(λ). Moreover, there exists a non-zero polynomial ḟλ = fλ(ε̇, q̇, Q̇) ∈ A
such that fλ = ḟλ(ε, q,Q) ∈ R.

Proof. The Specht module Sb(λ) is free as an R-module so, by the remarks above,
Sb(λ) ∼= SAb (λ)⊗A R. Therefore, so to show that such a scalar exists it is enough
to consider the case when R = A. Similarly, since SAb (λ) embeds into SFb (λ) ∼=
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SAb (λ)⊗A F we may assume that R = F . By the remarks above, the algebra H F
d,b

is split semisimple and the module SFb (λ) is an irreducible H F
d,b-module, so by

Schur’s Lemma the homomorphism of Sb(λ) given by left multiplication by zb is

equal to multiplication by some scalar ḟλ. Notice that ḟλ is an element of A because
zbzb(λ) · vbTb ∈ H A

r,n. By specialization, the scalar fλ ∈ R in the statement of

the Lemma is given by evaluating the polynomial ḟλ(ε̇, q̇, Q̇) at (ε, q,Q). Finally,
observe that fλ 6= 0 since zb acts invertibly on Vb by Lemma 2.24. �

We will determine the scalar fλ ∈ R by computing the polynomial ḟλ in A. In
fact, we have already done all of the work needed to determine ḟλ. To describe ḟλ
we only need one definition.

Abusing notation slightly, let Tr be the trace form of H F
r,n given by (2.28). Let χλ

be the character of SF (λ), for λ ∈Pr,n. Then {χλ | λ ∈Pr,n } is a complete set
of pairwise inequivalent irreducible characters for H F

r,n, so it is a basis for the

space of trace functions on H F
r,n. In particular, Tr can be written in a unique way

as a linear combination of the irreducible characters. Moreover, it is easy to see
that every character χλ must appear in Tr with non-zero coefficient because Tr is
non-degenerate; see, for example, [14, Example 7.1.3]. Consequently, the following
definition makes sense.

3.5. Definition. The Schur elements of H F
r,n are the scalars ṡλ = ṡλ(ε̇, q̇, Q̇) ∈

F , for λ ∈Pr,n, such that

Tr =
∑

λ∈Pr,n

1

ṡλ
χλ.

For λ ∈Pr,n fix Fλ a primitive idempotent in H F
r,n such that FλH F

r,n
∼= SF (λ).

Using, for example seminormal forms H F
r,n [27, Theorem 2.11], it is easy to see

that χλ(Fµ) = δλµ, for λ,µ ∈Pr,n. Hence, a second characterisation of the Schur
elements is that

ṡλ =
1

Tr(Fλ)
.

Similarly, for each λ ∈ Pd,b the trace form Trb determines Schur elements
ṡbλ ∈ F for H F

d,b, for λ ∈Pd,b. By the remarks above, the Schur elements of H F
d,b

satisfy

ṡbλ =

p∏
t=1

ṡλ[t](ε̇, q̇, ε̇tQ̇) =
1

Trb(Fb(λ))
,

where Fb(λ) is a primitive idempotent in H F
d,b such that SFb (λ) ∼= Fb(λ)H F

d,b.

3.6. Theorem. Suppose that b ∈ Cp,n and that λ ∈Pd,b. Then

ḟλ =
ṡλ
ṡbλ

Tr(vbTb).

Consequently, ḟλ = (−1)n(r−d)q̇`(wb)ε̇
1
2 rn(p−1)−dα(b)(Q̇1 . . . Q̇d)

n(p−1) ṡλ
ṡbλ

.

Proof. To compute ḟλ we may assume that R = F and work in H F
r,n. Let Fb(λ) be

a primitive idempotent in H F
d,b such that SFb (λ) ∼= Fb(λ)H F

d,b. Then Fb(λ) · eb is

a primitive idempotent in H F
r,n such that Fb(λ) ·ebH F

r,n
∼= SF (λ) by Theorem 2.26
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and Lemma 3.3. Therefore, using the remarks above,

1

ṡλ
= Tr(Fb(λ) · eb) = Tr(z−1b Fb(λ) · vbTb), since zb is central in Hd,b,

=
1

ḟλ
Tr(Fb(λ) · vbTb), by Proposition 3.4,

=
1

ḟλ
Trb(Fb(λ)) Tr(vbTb), by Theorem 2.31,

=
1

ḟλṡbλ
Tr(vbTb).

Rearranging this equation gives the first formula for ḟλ. Applying Corollary 2.33
proves the second. �

3.7. Remark. The proof of Theorem 3.6 is deceptively easy: all of the hard work is
done in proving Theorem 2.26 and Theorem 2.31.

We want to make the formula for ḟλ more explicit. To do this we recall one of
the formulas for the Schur elements obtained in [27]. First, given 1 ≤ i ≤ j ≤ p
and 1 ≤ a, b ≤ d such that (i− 1)d+ a < (j − 1)d+ b, define

ṡiajb(λ) = ε̇j|λ
(d(j−1)+b)|+i|λ(d(i−1)+a)|

∏
(x,y)∈[λ(d(j−1)+b)]

(q̇y−xQ̇b − ε̇i−jQ̇a)

×
∏

(u,v)∈[λ(d(i−1)+a)]

(q̇v−uQ̇a − ε̇j−iQ̇b)
λ
(d(j−1)+b)
1 ∏
k=1

q̇v−uQ̇a − q̇k−1−λ
(d(j−1)+b)′
k ε̇j−iQ̇b

q̇v−uQ̇a − q̇k−λ
(d(j−1)+b)′
k ε̇j−iQ̇b

.

Then by [27, Cor. 6.3],

ṡλ = q̇λ
∏
x∈[λ]

[hλx ]q ·
∏

1≤i≤j≤p

∏
1≤a,b≤d

(i−1)d+a<(j−1)d+b

ṡiajb(λ),

where hλx is the hook length of x ∈ [λ] (see, for example, [25, §3.2]), and

q̇λ = (−1)n(r−1)q̇−α(λ
′)

p∏
t=1

d∏
i=1

(ε̇tQ̇i)
|λ(d(t−1)+i)|−n.

with α(µ) =
∑r
s=1

∑
i≥1
(
µ
(s)
i
2

)
, for µ ∈ Pr,n. There is an analogous formula

for ṡbλ =
∏p
t=1 ṡλ[t] involving the scalar q̇bλ =

∏p
t=1 q̇λ[t] , which equals

q̇bλ =

p∏
t=1

(
(−1)bt(d−1)q̇−α(λ

[t]′)
d∏
i=1

(ε̇tQ̇t)
|λ(d(t−1)+i)|−bt

)
.

Miraculously, as the reader may check using Corollary 2.33, q̇`(wb)q̇bλ = q̇λ Tr(vbTb).
Hence, by Theorem 3.6 and the equations above, we have the following.

3.8. Corollary. Suppose that b ∈ Cp,n and that λ ∈Pd,b. Then

ḟλ = q̇`(wb)
∏

1≤i<j≤p

∏
1≤a,b≤d

ṡiajb(λ).

It is evident in the formulae above that ḟλ ∈ F . We remind the reader that,
in fact, ḟλ ∈ A by Proposition 3.4, for λ ∈ Pr,n. Hence, we can evaluate these

expressions for the polynomials ḟλ at (ε, q,Q) whenever Q is (ε, q)-separated over R.

3.9. Corollary. Let b ∈ Cp,n, λ ∈ Pd,b and t ∈ Z. Suppose that Q is (ε, q)-

separated over the field K. Then V
(t)
b〈t〉
∼= V

(t+1)
b〈t+1〉.
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Proof. It is enough to consider the case where t = 0. By Lemma 2.21 left multi-
plication by Y1 induces an Hr,n-module homomorphism. This map is an isomor-
phism because left multiplication by Yp . . . Y1 is invertible by Lemma 2.24 (and
Lemma 2.21). �

4. A Specht module theory for Hr,p,n

We are now ready to start studying the algebras Hr,p,n. In this section we show

that the scalars ḟλ from the last section have p/mth roots in A whenever λ = λ〈m〉.
Using this we then define analogue of the Specht modules for the algebras Hr,p,n.

The relations in Hr,n imply that there is a unique algebra automorphism σ of
Hr,n such that σ(T0) = εT0 and σ(Ti) = Ti, for 1 ≤ i < n. By definition, σ is an
automorphism of order p. Further, applying the definitions

Hr,p,n = H σ
r,n = {h ∈Hr,n | σ(h) = h } .

That is, Hr,p,n is the fixed point subalgebra of Hr,n under σ. As we will see, this
gives Hr,n the structure of a graded Clifford system.

4.1. Graded Clifford systems. Let A be a finitely generated R-algebra. Recall
that a family of R-submodules {As | s ∈ Z/pZ } is a Z/pZ-graded Clifford system
if the following conditions are satisfied:

a) AsAt = Ast for any s, t ∈ Z/pZ;
b) For each s ∈ Z/pZ, there is a unit as ∈ A such that A = asA1 = A1as;
c) A = ⊕s∈Z/pZAs;
d) 1 ∈ A1.

Recall that any automorphism α of an R-algebra A induces an equivalence
Fα : Mod-A −→ Mod-A. Explicitly, if M is an A-module then Fα(M) = Mα is
the A-module which is equal to M as an R-module but with the action twisted
by α so that if m ∈ M and x ∈ A then m · x = mxα = mα(x), where on the right
hand side we have the usual (untwisted) action of A.

The following general result is proved in [15, Prop. 2.2], together with [21,
Appendix] which corrects a gap in the original argument. Recall that we have
assumed that R contains a primitive pth root of unity ε.

4.1. Lemma. Suppose that A and B finitely generated R-free R-algebras such that
A =

⊕p−1
t=0 Bθ

t where θ is a unit in A such that θp ∈ B and θB = Bθ. Then there
is an isomorphism of (A,A)-bimodules

A⊗B A ∼=
p−1⊕
t=0

Aθ
t

; bθi ⊗ θj 7→
p−1∑
t=0

(εjtbθi+j)(t),

for b ∈ B and 0 ≤ i, j < p and where (εjtbθi+j)(t) ∈ Aθ
t

. Here we view
⊕

tA
θt as

an (A,A)-bimodule by making A act from the left as left multiplication and from

the right on Aθ
t

as right multiplication twisted by θt, for 0 ≤ t < p.

The explicit isomorphism in the lemma is constructed in [21, p. 3391].
In the setup of Lemma 4.1 the subspaces {Bθs | s ∈ Z/pZ } form a Z/pZ-graded

Clifford system in A. Now we assume that R = K is a field. Let α be the auto-
morphism of B given by α(b) = θbθ−1, for b ∈ B. Let β be the automorphism of A
given by β(bθj) = εjbθj , for b ∈ B and j ∈ Z/pZ. Let Irr(A) and Irr(B) be the sets
of isomorphism classes of simple A-modules and simple B-modules, respectively.
For each D(λ) ∈ Irr(A) fix a simple B-submodule Dλ of D(λ) ↓AB . It is clear that
D(λ)α ∼= D(λ) and (Dλ)β ∼= Dλ. Let oλ be the smallest positive integer such that
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D(λ)β
oλ ∼= D(λ). Then oλ divides p so we set pλ = p/oλ. Define an equivalence

relation ∼β on Irr(A) by declaring that

D(λ) ∼β D(µ)⇐⇒ D(λ) ∼= D(µ)β
t

, for some t ∈ Z/pZ.

Similarly, let ∼α be the equivalence relation on Irr(B) given by

Dλ ∼α Dµ ⇐⇒ Dλ ∼= (Dµ)α
t

, for some t ∈ Z/pZ.

If D is an A-module let SocA(M) be its socle; that is the maximal semisimple
submodule of A. Similarly, let HeadA(M) be the maximal semisimple quotient
of M .

The following result is similar to [16, Lemma 2.2]. The result in [16] is proved
only in the case R = C. As we now show, the argument applies over any alge-
braically closed field.

4.2. Lemma (cf. [16, Lemma 2.2]). Suppose that R = K is an algebraically closed

field and that A =
⊕p−1

t=0 Bθ
t as in Lemma 4.1.

a) Suppose that D(λ) ∈ Irr(A). Then pλ is the smallest positive integer such

that Dλ ∼=
(
Dλ
)αpλ

.

b) Suppose that Dλ ∈ Irr(B). Then Dλ ↑AB ∼= D(λ)⊕D(λ)β ⊕ · · · ⊕D(λ)β
oλ−1

and D(λ) ↓AB ∼= Dλ ⊕ (Dλ)α ⊕ · · · ⊕
(
Dλ
)α(pλ−1)

.

c) { (Dλ)α
i | D(λ) ∈ Irr(A)/∼β for 1 ≤ i ≤ pλ } is a complete set of pairwise

non-isomorphic absolutely irreducible B-modules.

d) {D(λ)β
i | Dλ ∈ Irr(B)/∼α for 1 ≤ i ≤ oλ } is a complete set of pairwise non-

isomorphic absolutely irreducible A-modules.

Proof. Let D(λ) ∈ Irr(A). Let p′λ be the smallest positive integer such that Dλ ∼=(
Dλ
)αp′λ

. By [7, Proposition 11.16], the module D(λ) ↓AB is semisimple. Now,

HomA

(
Dλ, D(λ) ↓AB

) ∼= HomA

(
(Dλ)α

t

, D(λ) ↓AB
)
, for any t ∈ Z.

Therefore, there exists an integer c > 0 such that

(4.3) D(λ) ↓AB ∼=
(
Dλ ⊕ (Dλ)α ⊕ · · · ⊕ (Dλ)α

p′λ−1)⊕c
.

By Frobenius Reciprocity [7, Proposition (11.13)(ii)], we have that

HomB

(
D(λ) ↓AB , Dλ

) ∼= HomA

(
D(λ), Dλ ↑AB

)
.

Since K is algebraically closed, both A and B are split over K. It follows that

(4.4)
(
D(λ)⊕D(λ)β ⊕ · · · ⊕D(λ)β

oλ−1)⊕c ⊆ SocA
(
Dλ ↑AB

)
.

By (4.3) and (4.4), we have that

(4.5) dimD(λ) = cp′λ dimDλ and p dimDλ ≥ coλ dimD(λ).

Hence

(4.6) p ≥ c2p′λoλ.

On the other hand, since R contains a primitive pth root of unity, the integer p
and all of its divisors must be invertible in R. Let πλ be a linear endomorphism
of D(λ) which induces an A-module isomorphism D(λ) ∼= D(λ)β

oλ . Then (πλ)pλ ∈
EndA

(
D(λ)

)
= K. Renormalising πλ, if necessary, we can assume that (πλ)pλ =

idλ, where idλ is the identity map on D(λ).
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Let X be an indeterminate over K and suppose then o divides p. Differentiating

the identity Xp/o− 1 =
∏p/o
j=1(X − εjo) and setting X = πλ and o = oλ, shows that

pλπ
pλ−1
λ =

pλ∑
j=1

∏
1≤t≤pλ
t 6=j

(πλ − εtoλ).

Thus,

idλ =
1

pλ

pλ∑
j=1

∏
1≤t≤pλ
t6=j

(πλ − εtoλ)π1−pλ
λ .

For each integer 1 ≤ j ≤ pλ, we define

Dj(λ) :=
1

pλ

∏
1≤t≤pλ
t 6=j

(πλ − εtoλ)π1−pλ
λ D(λ).

It is easy to check that each Dj(λ) is a B-submodule of D(λ) ↓AB and Dj(λ)θ =

Dj+1(λ) for each j ∈ Z/pZ. In particular, this implies that D(λ) ↓AB can be de-
composed into a direct sum of pλ nonzero B-submodules. Comparing this with
(4.3), we can deduce that pλ = p/oλ ≤ cp′λ. Combining this with (4.6), we get that
c2p′λoλ ≤ p ≤ cp′λoλ, which forces that c = 1, p = oλp

′
λ, and

Dλ ↑AB = SocA
(
Dλ ↑AB

)
= D(λ)⊕D(λ)β ⊕ · · · ⊕D(λ)β

oλ−1

.

This proves the first two statements of the lemma. The last two statements follow
by Frobenius reciprocity using the first two statements. �

We now apply these results to Hr,p,n. It is straightforward to check that, as a
right Hr,p,n-module,

Hr,n = Hr,p,n ⊕ T0Hr,p,n ⊕ · · · ⊕ T p−1o Hr,p,n.

(For example, use [23, Lemma 3.1].) Hence, Hr,n is a Z/pZ-graded Clifford system

over Hr,p,n. Applying Lemma 4.1 to Hr,n =
⊕p−1

i=0 Hr,p,nT
i
0 we obtain the following

useful result.

4.7. Proposition. There is a natural isomorphism of (Hr,n,Hr,n)-bimodules

Hr,n ⊗Hr,p,n Hr,n
∼=

p−1⊕
m=0

(
Hr,n

)σm
,

where Hr,n acts from the left on
(
Hr,n

)σm
as left multiplication and from the right

with its action twisted by σm.

4.8. Corollary. Suppose that M is an Hr,n-module. Then, as Hr,n-modules,

M ↓Hr,n

Hr,p,n
↑Hr,n

Hr,p,n

∼=
p−1⊕
i=0

Mσi .

Proof. By definition, M ↓Hr,n

Hr,p,n
↑Hr,n

Hr,p,n
= M ⊗Hr,n

Hr,n ⊗Hr,p,n
Hr,n. Now apply

Proposition 4.7. �
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4.2. Twisting modules by σ. It is easy to check that σ(Tw) = Tw and that
σ(Lm) = εLm, for w ∈ Sn and for 1 ≤ m ≤ n. Hence, using the definitions we
obtain the following.

4.9. Lemma. Suppose that 1 ≤ b ≤ n and 1 ≤ s ≤ t ≤ p. Then

σ(L(s,t)
1,b ) = εbd(t−s+1)L(s−1,t−1)

1,b .

Consequently, if b ∈ Cp,n then σ(vb) = ε−ndv
(−1)
b and σ(Yt) = ε−dbtYt−1, for

1 ≤ t ≤ p.

By the remarks in Section 4.1, the automorphism σ induces a functor Fσ on
the category of Hr,n-modules. We want to compare Fσ with the functors Hb, for
b ∈ Cp,n, which appear in the Morita equivalences discussed in Section 2.5.

4.10. Lemma. Let b ∈ Cp,n and t ∈ Z. Suppose that Q is (ε, q)-separated over K.
Then Vb〈t〉 ∼= V σb〈t+1〉.

Proof. It is enough to show that V σ
−1

b
∼= Vb〈1〉 which is equivalent to the statement

in the Lemma when t = 0. By Corollary 3.9, there is an isomorphism Vb
'−→ V

(1)
b〈1〉.

On the other hand, V σ
−1

b
∼= σ(Vb) ∼= V

(−1)
b by Lemma 4.9. Therefore, the map

v 7→ (Y1v)σ
−1

, for v ∈ Vb, gives the required isomorphism V σ
−1

b
'−→ Vb〈1〉. �

Suppose that b ∈ Cp,n and recall that, by definition,

Hd,b = Hd,b(Q∨ε) = Hd,b1(εQ)⊗ · · · ⊗Hd,bp(εpQ).

Suppose that h = h1 ⊗ · · · ⊗ hp ∈Hd,b and set h〈−1〉 = hp ⊗ h1 ⊗ · · · ⊗ hp−1. It is
trivial to see that there is an isomorphism of algebras

(4.11) Hd,b
'−→Hd,b〈−1〉;h1 ⊗ · · · ⊗ hp 7→ h〈−1〉 = hσp ⊗ hσ1 ⊗ · · · ⊗ hσp−1,

where we abuse notation slightly and define σ(T
(t)
0 ) = ε−1T

(t+1)
0 and σ(T

(t)
i ) =

T
(t+1)
i , for 1 ≤ i < bt and where we equate superscripts modulo p. It follows that

there is an equivalence Fσb : Mod-Hd,b−→Mod-Hd,b〈−1〉 given by

Fσb(M1 ⊗ · · · ⊗Mp) = Mp ⊗M1 ⊗ · · · ⊗Mp−1,

for an Hd,b-module M1 ⊗ · · · ⊗Mp and where Hd,b〈−1〉 acts via the isomorphism
above.

4.12. Proposition. Let b ∈ Cp,n. Suppose that Q is (ε, q)-separated over K. Then
the following diagram commutes

Mod-Hd,b
Fσb−−−−→ Mod-Hd,b〈−1〉

Hb

y yHb〈−1〉

Mod-Hr,n −−−−→
Fσ

Mod-Hr,n

Proof. Let M be an Hd,b-module. Then we have to prove that(
M ⊗Hd,b

Vb
)σ ∼= Fσb(M)⊗Hd,b〈−1〉 Vb〈−1〉

as right Hr,n-modules. Mimicking the proof of Lemma 4.10, the required isomor-
phism is the map m⊗ v 7→ m〈−1〉 ⊗ (Y1v)σ, for m⊗ v ∈M ⊗Hd,b

Vb. �
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We want to use this result to determine the σ-twists of various Hr,n-modules.

To this end set aλs,t = |λ(dt−d+1)|+ · · ·+ |λ(dt−d+s−1)|, for 1 ≤ i ≤ d and 1 ≤ t ≤ p
and define

u+
λ[t] = u+

λ[t](ε
tQ) =

d∏
s=2

aλs,t∏
j=1

(Lj − εtQs) and xλ[t] =
∑

w∈S
λ[t]

Tw,

yλ[t] =
∑

w∈S
λ[t]

(−1)`(w)Tw,

which we think of as elements of Hd,bt(ε
tQ) in the natural way. Now set u+λ,b =

u+
λ[1] ⊗ · · · ⊗ u+λ[p] and xλ,b = xλ[1] ⊗ · · · ⊗ xλ[p] . We remark that it is easy to check

that u+λ,b and xλ,b commute using Lemma 2.3.

By [12, Theorem 2.9], there exists an element sb(λ) = s(λ[1]) ⊗ · · · ⊗ s(λ[p]) ∈
Hd,b such that Sb(λ) ∼= sb(λ)Hd,b. Explicitly, s(λ[i]) = u+

µ[i](ε
iQ′)yµ[i]Tw(µ)xλ[i]u+

λ[i]

where µ[i] is the multipartition conjugate to λ[i], for 1 ≤ i ≤ p. By Lemma 3.3, we
have that

S(λ) ∼= Hb(Sb(λ)) ∼= sb(λ) · vbHr,n.

Henceforth, we identify S(λ) with sb(λ) · Vb and Sb(λ) with sb(λ)Hd,b via these
isomorphisms. Observe that Hb(Sb(λ)) = S(λ) with these identifications.

4.13. Definition. Suppose that b ∈ Cp,n and λ ∈Pd,b. Define

Mb(λ) = u+λ,bxλ,bHd,b and Mλ
b = Hb

(
Mb(λ)

)
.

The definitions above apply equally well to Hr,n-modules by taking p = 1. In
particular, we have elements u+λ and xλ in Hr,n and an Hr,n-module M(λ) =

u+λxλHr,n. Using the definitions it is easy to check that xλ = Θb(xλ,b) and that

u+λ = u+b Θb(u+λ,b), where u+b is the element introduced in (2.23). It follows that

Mλ
b = v+bM(λ). Hence, in general, Mλ

b is a proper submodule of Vb.
We can now prove the promised result about σ-twisted modules.

4.14. Proposition. Let b ∈ Cp,n and λ ∈Pd,b. Suppose that Q is (ε, q)-separated
over K. Then (

Mλ
b

)σ ∼= M
λ〈−1〉
b〈−1〉 and S(λ)σ ∼= S(λ〈−1〉).

Moreover, if λ ∈ Kr,n then D(λ)σ ∼= D(λ〈−1〉).

Proof. We have that σ
(
u+
λ[t](ε

tQ)
)

= εktu+
λ[t](ε

t−1Q), for some integer kt, exactly

as in Lemma 4.9. From the definitions, Fσb
(
Mb(λ)

) ∼= Mb〈−1〉(λ〈−1〉). Therefore,
using Proposition 4.12,(

Mλ
b

)σ
= Fσ

(
Hb
(
Mb(λ)

)) ∼= Hb〈−1〉
(
Fσb
(
Mb(λ)

))
∼= Hb〈−1〉

(
Mb〈−1〉(λ〈−1〉)

) ∼= M
λ〈−1〉
b〈−1〉 ,

giving the first isomorphism. A similar argument shows that S(λ)σ ∼= S(λ〈−1〉).
Finally, if λ is Kleshchev then D(λ) 6= 0 and there is a short exact sequence

0 −→ radS(λ) −→ S(λ) −→ D(λ) −→ 0.

The functor Fσ is exact, and D(λ〈−1〉) is the head of S(λ〈−1〉), so D(λ)σ ∼=
D(λ〈−1〉) because S(λ)σ ∼= S(λ〈−1〉) by the last paragraph. (Note that λ is
Kleshchev if and only if λ〈−1〉 is Kleshchev by Lemma 3.3(c).) �

As σ is trivial on Hr,p,n, Lemma 4.10 and Proposition 4.14 imply the following.

4.15. Corollary. Suppose that Q is (ε, q)-separated over K and that b ∈ Cp,n,
λ ∈Pd,b and t ∈ Z. Then:



MORITA EQUIVALENCES OF CYCLOTOMIC HECKE ALGEBRAS 31

a) Vb ↓
Hr,n

Hr,p,n

∼= Vb〈t〉 ↓
Hr,n

Hr,p,n
,

b) Mλ
b ↓

Hr,n

Hr,p,n

∼= M
λ〈t〉
b〈t〉 ↓

Hr,n

Hr,p,n
,

c) S(λ) ↓Hr,n

Hr,p,n

∼= S(λ〈t〉) ↓Hr,n

Hr,p,n
, and,

d) if λ ∈ Kr,n then D(λ) ↓Hr,n

Hr,p,n

∼= D(λ〈t〉) ↓Hr,n

Hr,p,n
.

4.3. Shifting homomorphisms. Extending the notation that we used for the

modules V
(t)
b , for each multipartition λ ∈ Pr,n let S(λ)(t) be the Specht module

for Hr,n which is defined with respect to the ordered parameters εtQ∨ε (rather

than Q∨ε). Then S(λ) ∼= S(λ〈t〉)(t) as Hr,n-modules and S(λ〈t〉)(t) is a submodule

of V
(t)
b〈t〉. The following result makes this more explicit.

4.16. Lemma. Suppose that Q is (ε, q)-separated over K and that λ ∈ Pd,b, for
b ∈ Cp,n, and 1 ≤ t ≤ p. Then

Yt . . . Y1S(λ) = S(λ〈t〉)(t)

as subsets of Hr,n.

Proof. As we have already observed, left multiplication by Yp . . . Y1 is invertible by
Lemma 2.24 and Lemma 2.21. Therefore, Yt . . . Y1S(λ) ∼= S(λ) as a right Hr,n-

modules, so it is enough to show that Yt . . . Y1S(λ) ⊆ S(λ〈t〉)(t). Recall from before
Definition 4.13 that we are identifying Sb(λ) with the ideal Sb(λ) = sb(λ)Hd,b

and S(λ) = sb(λ) · Vb. Using Lemma 2.16 we compute

Yt . . . Y1
(
sb(λ) · vb

)
= Yt . . . Y1vbΘb

(
sb(λ)

)
= Θ̂b〈t〉

(
sb〈t〉(λ〈t〉)

)
Yt . . . Y1vb

= sb〈t〉(λ〈t〉) · v
(t)
b〈t〉Y

∗
t . . . Y

∗
1 ,

the last equality following from Corollary 2.9. Hence, Yt . . . Y1S(λ) ⊆ S(λ〈t〉)(t) as
we needed to show. �

Fix b ∈ Cp,n and λ ∈ Pd,b and suppose that λ = λ〈m〉, for some integer
1 ≤ m ≤ p with m dividing p. Then b = b〈m〉 and σm is an automorphism of Hr,n

of order p
m . Set

Q̌ =
(
Q1, Q1ε, · · · , Q1ε

m−1, Q2, · · · , Q2ε
m−1, · · · , Qd, · · · , Qdεm−1

)
.

Then Hr,n = Hr,n(Q∨ε) = Hr,n(Q̌∨εm). By definition, Hr, pm ,n
= Hr, pm ,n

(Q̌) is

the subalgebra of Hr,n generated by T
p/m
0 , T1, · · · , Tn−1, so that

Hr, pm ,n
∼= {h ∈Hr,n | h = σm(h) } .

This observation will be useful below.
For 0 ≤ t < p

m we now consider the modules V
(tm)
b and S(λ)(tm). Then,

by definition, S(λ)(tm) is a submodule of V
(tm)
b ,

(
V

(tm+m)
b

)σ−m
= V

(tm)
b and(

S(λ)(tm+m)
)σ−m

= S(λ)(tm), by Lemma 4.9 and Proposition 4.14, respectively.
Motivated by Definition 2.10, define

Yt,m = Ytm+m . . . Ytm+2Ytm+1,

for 0 ≤ t < p
m , and let θ′t,m :V

(tm)
b −→ V

(tm+m)
b be the map θ′t,m(v) = Yt,mv, for

v ∈ V (tm)
b .

4.17. Definition (Shifting homomorphisms). Suppose that b ∈ Cp,n and that b =
b〈m〉 for some 1 ≤ m ≤ p with m dividing p. For 0 ≤ t < p

m define θt,m = σm◦θ′t,m.
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4.18. Lemma. Suppose that b ∈ Cp,n, with b = b〈m〉 for some 1 ≤ m ≤ p with m

dividing p, and suppose that 0 ≤ t < p
m . Then θt,m ∈ EndHr,p/m,n

(
V

(tm)
b

)
.

Proof. By Definition 2.10 and the remarks above, θt,m ∈ EndR
(
V

(tm)
b

)
since b =

b〈m〉. Moreover, if v ∈ V (tm)
b and h ∈Hr,n then

θt,m(vh) = σm
(
θ′t,m(vh)

)
= σm

(
θ′t,m(v)

)
σm(h),

since θ′t,m is an Hr,n-module homomorphism by Definition 2.10. Therefore, θt,m(vh)

is an Hr,p/m,n-module homomorphism since Hr, pm ,n
= H σm

r,n . �

4.4. Seminormal forms and roots of fλ. In this section we show that if λ =
λ〈m〉, for some integer m dividing p such that 1 ≤ m ≤ p, then there exists a

scalar f
(1)
λ such that fλ = εmnd(l−1)/2

(
f
(1)
λ

)l
, where l = p/m. We are not able

to prove this directly, however, and instead argue via the semisimple case using
seminormal forms.

Recall that A = Z[ε̇, q̇±1, Q̇±11 , . . . , Q̇±1d , A(ε̇, q̇, Q̇)−1] and that F is the field of
fractions of A. As we noted in Section 3.2, the algebra H F

r,n is semisimple. Note

that Q̇ is (ε̇, q̇)-separated over F so we can apply all of our previous results.
Fix λ ∈ Pr,n and an integer m such that λ = λ〈m〉 and 1 ≤ m ≤ p and

m | p. Let l = p/m. Since H F
r,n is semisimple the Specht module S(λ) = SF (λ)

is irreducible and has, as we recall, a seminormal representation over F . First we
need some notation.

Recall from Section 3.2 that Std(λ) is the set of standard λ-tableaux. Each
tableau s ∈ Std(λ) is an r-tuple s = (s(1), . . . , s(r)) of standard tableaux. Ex-
tending the notation for λ = (λ[1], . . . ,λ[p]) write s = (s[1], . . . , s[p]), where s[j] =
(s[jd−d+1], . . . , s[jd]) is a λ[j]-tableau for 1 ≤ j ≤ p. Similarly, if z ∈ Z define
s〈z〉 = (s[z+1], . . . , s[z+p]) where, as usual, we set s[j+kp] = s[j] for 1 ≤ j ≤ p and
k ∈ Z.

Finally, if 1 ≤ k ≤ n and s ∈ Std(λ) define the content of k in t to be

conts(k) = ε̇j q̇b−aQ̇c ∈ F ,

if k appears in row a and column b of s(c+jd). The following useful fact is easily
proved by induction on n.

4.19. Lemma (cf. [24, Lemma 3.12]). Suppose that s ∈ Std(λ) and t ∈ Std(µ), for
λ,µ ∈Pr,n. Then s = t if and only if conts(k) = contt(k), for 1 ≤ k ≤ n.

If s is a standard λ-tableau and 1 ≤ i < n let s(i, i+ 1) be the tableau obtained
by interchanging the positions of i and i + 1 in s. Then s(i, i + 1) is a standard
λ-tableau unless i and i+ 1 are either in the same row or in the same column.

4.20. Lemma (Ariki-Koike [3, Theorem 3.7]). Let V (λ) be the F-vector space with
basis { vs | s ∈ Std(λ) }. Then V (λ) becomes an H F

r,n-module with H F
r,n-action, for

1 ≤ k ≤ n and 1 ≤ i < n, given by

vsLk = conts(k)vs and vsTi = βs(i)vs +
(
1 + βs(i)

)
vt,

where t = s(i, i+ 1), vt = 0 if t is not standard and

βs(i) =
(q̇ − 1)contt(i)

(contt(i)− conts(i))
.

Moreover, V (λ) ∼= SF (λ) as H F
r,n-modules.

The module V (λ) is a seminormal form for SF (λ).
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Recall that we have fixed integers m and l = p/m such that m | p and λ = λ〈m〉.
Thus, SF (λ)(tm) ∼= SF (λ), for 0 ≤ t < l = p/m. By definition,

SF (λ)(tm) = sb(λ) · v(tm)
b H F

r,n.

For convenience, we set v
(tm)

tλ
= sb(λ) · v(tm)

b ∈H F
r,n.

Recall from Section 3.2 that tλ is the standard λ-tableau which have the numbers
1, 2, . . . , n entered in order from left to right along the rows of its first component,
then its second component and so on.

4.21. Lemma. Suppose that 0 ≤ t < l. Then

v
(tm)

tλ
Lk = conttλ〈−tm〉(k)v

(tm)

tλ
,

for 1 ≤ k ≤ n.

Proof. It suffices to consider the case t = 0 when the result is effectively a re-
statement of [27, Prop. 3.13]. Alternatively, this can be proved using Du and
Rui’s proof [12, Theorem 2.9] that the Specht module S(λ) is isomorphic to the
corresponding cell module from [9] together with the description of the action
of L1, . . . , Ln on the standard basis of the cell modules from [24, Prop. 3.7]. �

4.22. Corollary. Suppose that 0 ≤ t < l. Then there exists a unique H F
r,n-module

isomorphism

ϕ
(tm)
λ :V (λ)

'−→ SF (λ)(tm)

such that ϕ
(tm)
λ (vtλ〈−tm〉) = v

(tm)

tλ
.

Proof. By the Lemma, v
(tm)

tλ
is a simultaneous eigenvector for L1, . . . , Ln with the

eigenvalues being given by the contents conttλ〈tm〉(k), for 1 ≤ k ≤ n. By Propo-
sition 4.20 the corresponding simultaneous eigenspace in V (λ) is Fvtλ〈−tm〉, so

any H F
r,n-module isomorphism from V (λ) to SF (λ)(tm) must send vtλ〈−tm〉 to a

scalar multiple of v
(tm)

tλ
. As V (λ) ∼= SF (λ) ∼= SF (λ〈tm〉)(tm) = SF (λ)(tm) by

renormalizing any isomorphism V (λ) −→ SF (λ)(tm) we get the result. �

Suppose that 0 ≤ t < l. For each standard λ-tableau s set v
(tm)
s = ϕ

(tm)
λ (vs〈−tm〉).

Then { v(tm)
s | s ∈ Std(λ) } is a Young seminormal basis of SF (λ)(tm) and, by con-

struction,

v
(tm)
s Lk = ϕ

(tm)
λ (vs〈tm〉)Lk = conts〈tm〉(k)v

(tm)
s ,

for 1 ≤ k ≤ n. Recall from Lemma 4.16 that Yt,mS(λ)(tm) = S(λ)(tm+m). Finally,
we are able to describe this map more concretely.

4.23. Proposition. Suppose that 0 ≤ t ≤ m and s ∈ Std(λ). Then there exists a

scalar ḟ
(t+1:m)
λ (ε̇, q̇, Q̇) ∈ F such that

Yt,mv
(tm)
s〈m〉 = ḟ

(t+1:m)
λ v

(tm+m)
s ,

for all s ∈ Std(λ).

Proof. By definition, if s ∈ Std(λ) then v
(tm+m)
s Lk = conts〈tm+m〉(k)v

(tm+m)
s , for

1 ≤ k ≤ n. The same statement holds true for Yt,mv
(tm)
s〈m〉, so by construction

Yt,mv
(tm)
s〈m〉 must be a scalar multiple of v

(tm+m)
s . By direct verification, we know

that the map which sends v
(tm)
s〈m〉 to v

(tm+m)
s (for each s ∈ Std(λ)) defines an H F

r,n-

isomorphism. By Schur’s Lemma this scalar is independent of s so the Lemma
follows. �
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We write ḟ
(t)
λ = ḟ

(t:m)
λ (ε̇, q̇, Q̇) if m is clear from context. It is tempting to say

that ḟ
(t)
λ ∈ A since left multiplication by Yt,m is defined over A, however, the

construction of the basis {v(tm)
s } is only valid over F . Nonetheless, we will show

below, using the fact that A is integrally closed in F , that ḟ
(t)
λ ∈ A.

4.24. Lemma. Let ϕ :V (λ)−→V (λ) be the F-linear map such that

ϕ(vs) = vs〈m〉, for all s ∈ Std(λ).

Then ϕ is an H F
q̇ (Sn)-module homomorphism. Moreover, ϕ(vx) = ϕ(v)σm(x),

for all v ∈ V (λ) and x ∈H F
r,n. Hence, ϕ is an H F

r,p/m,n-module homomorphism.

Proof. Suppose that s ∈ Std(λ) and 1 ≤ i < n and let t = s(i, i + 1). Then, by
Lemma 4.20,

ϕ(vsTi) = βs(i)ϕ(vs) + (1 + βs(i))ϕ(vt) = βs(i)vs〈m〉 + (1 + βs(i))vt〈m〉

= vs〈m〉Ti = ϕ(vs)Ti,

where the second last equality follows because βs(i) = βs〈m〉(i). Hence, ϕ is a
Hq(Sn)-homomorphism. To prove the second claim it is enough to show that
ϕ(vsLk) = ε̇mvs〈m〉Lk, for all s ∈ Std(λ) and 1 ≤ k ≤ n. This is immediate

because conts〈m〉(k) = ε̇−mconts(k). �

4.25. Corollary. Suppose that 0 ≤ t < l and that s ∈ Std(λ). Then

σm
(
v
(tm)
s

)
= ε̇−dmnv

(tm−m)
s .

Proof. First note that σm(v
(tm)

tλ
) = ε̇−dmnv

(tm−m)

tλ
because

σm(v
(tm)

tλ
) = σm

(
sb(λ) · v(tm)

b

)
= ε̇−dmnsb(λ) · v(tm−m)

b = ε̇−dmnv
(tm−m)

tλ
,

by Lemma 4.9. Therefore, writing v
(tm)
s = v

(tm)

tλ
h = ϕ

(tm)
λ (vtλ〈−tm〉h) we have

vtλ〈−tm〉h = vs〈−tm〉, and so

σm
(
v
(tm)
s

)
= σm(v

(tm)

tλ
)σm(h) = ε̇−dmnv

(tm−m)

tλ
σm(h)

= ε̇−dmnϕ
(tm−m)
λ

(
vtλ〈m−tm〉σ

m(h)
)

= ε̇−dmnϕ
(tm−m)
λ

(
ϕ(vtλ〈−tm〉h)

)
= ε̇−dmnϕ

(tm−m)
λ

(
ϕ(vs〈−tm〉)

)
= ε̇−dmnϕ

(tm−m)
λ

(
vs〈m−tm〉

)
= ε̇−dmnv

(tm−m)
s ,

as required. �

4.26. Theorem. Suppose that λ ∈ Pd,b be a multipartition such that λ = λ〈m〉,
for some b ∈ Cp,n and 1 ≤ m ≤ p with m | p. Set l = p/m. Then

ḟλ = ḟ
(1)
λ . . . ḟ

(l)
λ = ε̇

1
2dmn(1−l)

(
ḟ
(1)
λ

)l
.

Consequently, ḟ
(t)
λ ∈ A for 1 ≤ t ≤ l.

Proof. By Lemma 3.4 and Proposition 4.23, if s ∈ Std(λ) then

ḟλv
(0)
s = Yp . . . Y1v

(0)
s = Yl−1,m . . . Y0,mv

(0)
s

= ḟ
(1)
λ Yl−1,m . . . Y1,mv

(m)
s〈−m〉 = · · · = ḟ

(1)
λ . . . ḟ

(l)
λ v

(p)
s .

Therefore, ḟλ = ḟ
(1)
λ . . . ḟ

(l)
λ , since v

(p)
s = v

(0)
s . This proves the first claim.

For the second claim, observe that by Lemma 4.9

σm(Yt,m) = ε̇(p−1)dmbm1 Yt−1,m = ε̇−dmn/lYt−1,m,
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since ε̇p = 1 and lbm1 = bp1 = n. Therefore,

ḟ
(t+1)
λ v

(tm+m)

tλ
= Yt,mv

(tm)

tλ〈m〉 = σ−m
(
σm(Yt,mv

(tm)

tλ〈m〉
)

= ε̇−dmn(1+1/l)σ−m
(
Yt−1,mv

(tm−m)

tλ〈m〉
)

= ε̇−dmn(1+1/l) ḟ
(t)
λ σ−m

(
v
(tm)

tλ

)
= ε̇−dmn/l ḟ

(t)
λ v

(tm+m)

tλ

Therefore, f
(t+1)
λ = ε̇−dmn/lf

(t)
λ = ε̇−tdmn/lf

(1)
λ . The second claim now follows.

Finally, by [13, page 138, Exercise 4.18 and 4.21], the ring A is an integrally

closed domain. Therefore, since ḟλ ∈ A and
(
ḟ
(1)
λ

)l
= ε̇

1
2dmn(l−1) ḟλ ∈ A by Proposi-

tion 3.4, we deduce that ḟ
(1)
λ ∈ A. (Hence, ḟ

(t)
λ ∈ A, for 1 ≤ t ≤ m.) This completes

the proof. �

Henceforth, let f
(t)
λ be the value of ḟ

(t)
λ at (ε̇, q̇, Q̇) = (ε, q,Q), for each integer

1 ≤ t ≤ l.

4.27. Corollary. Suppose that Q is (ε, q)-separated over R and let λ ∈ Pd,b be a
multipartition such that λ = λ〈m〉, for some b ∈ Cp,n and 1 ≤ m ≤ p with m | p.
Set l = p/m. Then

fλ = f
(1)
λ . . . f

(l)
λ = ε

1
2dmn(1−l)

(
f
(1)
λ

)l
.

Combining Corollary 4.27 with Proposition 3.4 and Theorem 3.6 we have proved
Theorem B from the introduction.

4.5. Specht modules for Hr,p,n. We can now construct analogue of the Specht
modules for Hr,p,n using the shifting homomorphisms θt,m. As a consequence we
construct and classify the irreducible Hr,p,n-modules over a field and show that the
decomposition matrix of Hr,p,n is unitriangular.

4.28. Lemma. Suppose that b ∈ Cp,n and that b = b〈m〉, for some 1 ≤ m ≤ p with

m dividing p. Let l = p/m. Then θ′0,m = εdmnt/lσtm ◦ θ′t,m ◦ σ−tm, for 0 ≤ t < l.

Proof. We first show that θ′t,m = εdmn/lσm ◦ θ′t+1,m ◦ σ−m whenever 0 ≤ t < l.

It is clear that both maps belong to HomHr,n
(V

(tm)
b , V

(tm+m)
b ). By Lemma 4.9,

σm(Yt+1,m) = ε−dmn/lYt,m. Consequently, if v ∈ V (tm)
b then(

σm ◦ θ′t+1,m ◦ σ−m
)
(v) = σm

(
Yt+1,mσ

−m(v)
)

= ε−dmn/lYt,mv = ε−dmn/lθ′t,m(v)

Hence, θ′t,m = εdmn/lσm ◦ θ′t+1,m ◦ σ−m as claimed. Therefore, if 0 ≤ t < l then

θ′0,m = εdmnt/lσtm ◦ θ′t,m ◦ σ−tm by induction on t. �

By Lemma 4.18, we have that θt,m = σm ◦ θ′t,m ∈ EndHr,p/m,n

(
V

(mt)
b

)
, for

0 ≤ t < p/m. In particular, θ0,m ∈ EndHr,p/m,n

(
Vb
)
.

4.29. Lemma. Suppose that b ∈ Cp,n and that b = b〈m〉, for some 1 ≤ m ≤ p
with m dividing p. Let l = p/m. Then

(θ0,m)l(v) = ε
1
2dmn(l−1)zb · v,

for all v ∈ Vb. That is,
(
θ0,m

)l
= ε

1
2dmn(l−1)zb as elements of EndHr,n

(
Vb
)
.
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Proof. By Lemma 4.28, θ′0,m = εdmnt/lσtm ◦ θ′t,m ◦ σ−tm for 1 ≤ t < l. Therefore,(
θ0,m

)l
=
(
σm ◦ θ′0,m

)
◦
(
σm ◦ θ′0,m

)
◦ · · · ◦

(
σm ◦ θ′0,m

)
= σm ◦ εdmn(l−1)/lσ(l−1)m ◦ θ′l−1,m ◦ σ(1−l)m ◦ σm ◦ εdmn(l−2)/lσ(l−2)m

◦ θ′l−2,m ◦ · · · ◦ σm ◦ εdmn/lσm ◦ θ′1,m ◦ σ−m ◦ σm ◦ θ′0,m
= ε

1
2dmn(l−1)θ′l,mθ

′
l−1,m ◦ · · · ◦ θ′0,m,

since σlm = σp is the identity map on Hr,n. By Lemma 2.21 and the definitions,
if v ∈ Vb then

(
θ′l−1,m ◦ θ′l−2,m ◦ · · · ◦ θ′0,m

)
(v) = Yp . . . Y1v = zb · v, so the result

follows. �

Recall from the introduction that if a = (a1, a2, . . . , ap) is any sequence then

op(a) = min { 1 ≤ k ≤ p | a = a〈k〉 } and op(a) = p/op(a).

In particular, if b ∈ Cp,n and λ = (λ[1], . . . , λ[p]) ∈Pd,b then this defines integers
op(b) and op(λ). By definition, op(b) and op(λ) both divide p, so op(b) and op(λ)
are both integers. Further, op(b) divides op(λ).

For convenience, set oλ = op(λ), pλ = p/oλ, ob = op(b) and pb = p/ob.

4.30. Definition. Suppose that b ∈ Cp,n and λ ∈ Pd,b. Let θλ be the restriction

of θ0,oλ to S(λ) and set ġλ = ḟ
(1:oλ)
λ . Let gλ be the specialization of ġλ at ε, q,Q.

As in Lemma 4.18, the image of θλ is contained in S(λ) so we can consider θλ
to be an Hr,pλ,n-module endomorphism of S(λ).

4.31. Corollary. Suppose that b ∈ Cp,n and λ ∈Pd,b. Then(
θλ
)pλ = gpλλ 1S(λ),

where 1S(λ) is the identity map on S(λ).

Proof. Proposition 3.4 and Lemma 4.29 show that (θλ)pλ = ε
1
2dnoλ(pλ−1)fλ1S(λ).

Now apply Theorem 4.26. �

4.32. Definition. Suppose that b ∈ Cp,n, λ ∈Pd,b and 1 ≤ t ≤ pλ. Define

Sλt = {x ∈ S(λ) | θλ(x) = εtoλgλx } = ker
(
θλ − εtoλgλ1S(λ)

)
.

Set πλt =
∏

1≤s≤pλ,s6=t
(
θλ − εsoλgλ

)
, so that πλt ∈ EndHr,pλ,n

(
S(λ)

)
.

By definition, Sλt is an Hr,pλ,n-submodule of S(λ), for 1 ≤ t ≤ pλ. By restric-
tion, we consider Sλt to be an Hr,p,n-module. Recall that τ is the automorphism

of Hr,n given by τ(h) = T−10 hT0, for h ∈Hr,n.

4.33. Theorem. Let λ ∈ Pd,b, for b ∈ Cp,n, and that 1 ≤ t ≤ pλ. Suppose that
fλ is invertible in R. Then

a) Sλt T0 = Sλt+1. Equivalently,
(
Sλt+1

)τ ∼= Sλt .

b) Sλt = πλt
(
S(λ)

)
;

c) S(λ) ↓Hr,n

Hr,p,n

∼= Sλ1 ⊕ · · · ⊕ Sλpλ ;

d) dimSλt = 1
pλ

dimS(λ);

e) Sλt ↑
Hr,n

Hr,p,n

∼= S(λ)⊕ S(λ)σ ⊕ · · · ⊕ S(λ)σ
(oλ−1)

.

Proof. Suppose that x ∈ Sλt and let m = oλ. By definition,

θλ(xT0) =
(
σm ◦ θ′0,m

)
(xT0) = σm

(
θ′0,op(λ)(x)T0

)
,
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since θ′0,m is an Hr,n-module homomorphism. Therefore,

θλ(xT0) = θλ(x)σm(T0) = ε(t+1)mgλxT0.

Hence, xT0 ∈ Sλt+1, proving the first half of (a). That Sλt+1
∼= (Sλt

)τ
is now

immediate because if x ∈ Sλt+1 then x = x′T0 for some x′ ∈ Sλt . Therefore, if
h ∈Hr,n then xh = x′T0h = x′τ(h)T0. Hence, we have proved (a).

By Corollary 4.31, the map θpλλ −gpλλ kills every element of S(λ). Thus, on S(λ)
we have

0 = θpλλ − gpλλ =
∏

1≤s≤pλ

(
θλ − εsoλgλ

)
= πλt ◦

(
θλ − εtoλgλ

)
.

Hence, the image of πλt is contained in Sλt and kerπλt =
∑
s 6=t S

λ
s . Note that the

assumption fλ is invertible in R implies that gλ is also invertible in R. If x ∈ Sλt
then πλt (x) = αtx, where αt = gλ

∏
s6=t(ε

toλ − εsoλ) is invertible in R. It follows

that if we set π̂λs = 1
αs
πλs then

1S(λ) = π̂λ1 + π̂λ2 + · · ·+ π̂λpλ ,

and π̂λt is the projection map from S(λ) onto Sλt . Hence, (b) and (c) now follow.
Moreover, since dimSλt = dimSλt+1 by (a), we obtain (d) from (c).

It remains then to prove (e). First observe that by part (a),

Sλt ↑
Hr,n

Hr,p,n

∼= (Sλt+1)τ ↑Hr,n

Hr,p,n

∼=
(
Sλt+1 ↑

Hr,n

Hr,p,n

)τ ∼= Sλt+1 ↑
Hr,n

Hr,p,n
.

Therefore, Sλ1 ↑
Hr,n

Hr,p,n

∼= . . . ∼= Sλpλ ↑
Hr,n

Hr,p,n
. Hence, using part (c), which we have

already proved, and applying Corollary 4.8 we see that(
Sλt ↑

Hr,n

Hr,p,n

)⊕pλ ∼= (Sλ1 ⊕ · · · ⊕ Sλpλ) ↑Hr,n

Hr,p,n

∼= S(λ) ↓Hr,n

Hr,p,n
↑Hr,n

Hr,p,n

∼=
p−1⊕
j=0

S(λ)σ
j

∼=
( oλ−1⊕

j=0

S(λ)σ
j

)⊕pλ
,

where the last isomorphism follows because S(λ)σ
t ∼= S(λ〈−t〉) by Proposition 4.14.

Applying the Krull–Schmidt theorem we deduce

Sλt ↑
Hr,n ∼= S(λ)⊕ S(λ)σ ⊕ · · · ⊕ S(λ)σ

(oλ−1)

,

proving (e). This completes the proof of Theorem 4.33. �

As in the introduction, let ∼σ be the equivalence relation on Pr,n where µ ∼σ λ
whenever λ = µ〈m〉, for some m ∈ Z. Let Pσ

r,n be the set of ∼σ-equivalence
classes in Pr,n. By Proposition 4.14, the set Kr,n of Kleshchev multipartitions
is closed under ∼σ-equivalence. Let K σ

r,n be the set of ∼σ-equivalence classes of
Kleshchev multipartitions. We will abuse notation and think of the elements of
Pσ
r,n as multipartitions so that when we write µ ∈ Pσ

r,n we will really mean that
µ is a representative of an equivalence class in Pσ

r,n. Similarly, µ ∈ K σ
r,n means

that µ is a representative for an equivalence class in K σ
r,n.

Let R = K be a field. We call the modules {Sλi | λ ∈Pσ
r,n and 1 ≤ i ≤ pλ }

the Specht modules of Hr,p,n. Using these modules we can now construct the
irreducible Hr,p,n-modules.

4.34. Definition. Suppose that λ ∈ Kr,n and 1 ≤ t ≤ pλ. Define Dλt = Head(Sλt ).
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Although this is not clear from the definition, the module Dλi is irreducible when
λ ∈ Kr,n and, moreover every irreducible Hr,p,n-module arises in this way.

This following result establishes of Theorem C from the introduction and, in
fact, proves quite a bit more.

4.35. Theorem. Suppose that Q is (ε, q)-separated over the field K. Let λ ∈ Kr,n.
Then:

a) The module Dλi = Head(Sλi ) is an irreducible Hr,p,n-module, for 1 ≤ i ≤ pλ.
Moreover, (Dλi+1)τ ∼= Dλi , for 1 ≤ i ≤ pλ.

b) If 1 ≤ i, j ≤ pλ then [Sλi : Dλj ] = δij.

c) The integer pλ is the smallest positive integer such that Dλi
∼=
(
Dλi
)τpλ

.

d) The integer oλ is the smallest positive integer such that D(λ) ∼= D(λ)σ
oλ .

e) (Dλi ) ↑Hr,n ∼= D(λ)⊕D(λ)σ ⊕ · · · ⊕D(λ)σ
oλ−1

and

D(λ) ↓Hr,n

Hr,p,n

∼= Dλi ⊕ (Dλi )τ ⊕ · · · ⊕
(
Dλi
)τpλ−1

.

Furthermore, the Hecke algebra Hr,p,n is split over K and

{Dµi | µ ∈ K σ
r,n and 1 ≤ i ≤ pµ }

is a complete set of pairwise non-isomorphic absolutely irreducible Hr,p,n-modules.

Proof. By Proposition 4.14, D(λ)σ ∼= D(λ〈−1〉), so it is clear that oλ is the smallest
positive integer such that D(λ) ∼= D(λ)σ

oλ . Similarly, once we know that Dλi =
Head(Sλi ) is irreducible then (Dλi+1)τ ∼= Dλi by Theorem 4.33(a) since twisting by τ
induces an exact functor on Mod-Hr,p,n.

For the other statements, we first consider the case where K = K is algebraically

closed so that H K
r,p,n splits over K. The algebra Hr,n is cellular over any ring and

so, in particular, it is split over K. For each Kleshchev multipartition µ ∈ K σ
r,n fix

an irreducible H K
r,p,n-submodule Dµ

K
of DK(µ) = D(µ)⊗K K. By Lemma 4.2, the

integer pλ is the smallest positive integer such that Dλ
K
∼= (Dλ

K
)τ
pλ and, further,

DK(λ) ↓H K
r,p,n

∼= Dλ
K
⊕ (Dλ

K
)τ ⊕ · · · ⊕ (Dλ

K
)τ
pλ−1

;

Dλ
K
↑H

K
r,n ∼= DK(λ)⊕DK(λ)σ ⊕ · · · ⊕DK(λ)σ

oλ−1

.

Moreover, {
(
Dµ
K

)τ i | µ ∈ K σ
r,n and 1 ≤ i ≤ pµ } is a complete set of pairwise non-

isomorphic simple H K
r,p,n-modules.

Suppose that µ ∈ Pr,n and let Sµ
K,i

= Sµi ⊗K K, for 1 ≤ j ≤ pµ. We claim

that Dλ
K
∼= Head(Sµ

K,i
), for some i, if and only if λ ∼σ µ and in this case i

is uniquely determined. Using the restriction formula for DK(λ) given above,
Frobenius reciprocity [7, Proposition 11.13(ii)] and Theorem 4.33 we find that

pµ−1⊕
i=0

HomH K
r,p,n

(
Sµ
K,i
, Dλ

K

) ∼= HomH K
r,p,n

(
SK(µ) ↓H K

r,p,n
, Dλ

K

)
∼= HomH K

r,n

(
SK(µ), Dλ

K
↑H

K
r,n
)

∼=
oλ−1⊕
j=0

HomH K
r,n

(
SK(µ), DK(λ)σ

j)
∼=

{
K, if µ ∼σ λ,
0, otherwise,
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where the last line follows because DK(µ) = Head(SK(µ)), by Lemma 3.2, and

because DK(λ)σ
j ∼= DK(λ〈 − j〉) by Proposition 4.14. This proves our claim.

Without loss of generality, we can take µ = λ. Note that HeadSK(λ) = DK(λ)
is simple. The above isomorphisms imply that Head(Sλ

K,i
) = Dλ

K,i
= Dλ

K
is also

simple. By Lemma 3.2, [SK(λ) : DK(λ)] = 1 and DK(λ) is the simple head

of SK(λ). By considering the restriction of the composition series of SK(λ) to
Hr,p,n, it is easy to see that [Sλ

K,i
: Dλ

K,j
] = δij . This proves all the statements in

the Theorem when K = K.
We now return to the general case where K is an arbitrary field. By the last

paragraph, Sλ
K,i
∼= Sλi ⊗K K has a simple head, so that Dλi = Head(Sλi ) is inde-

composable. Therefore, Dλi is irreducible (since it is also semisimple).
To complete the proof of the Theorem we show that Dλi ⊗K K ∼= Dλ

K,i
. Let

l ≥ 1 be the minimal positive integer such that (Dλi )τ
l ∼= Dλi . Then l ≥ pλ since

Dλ
K,i
∼= Head(Dλi ⊗K K). Similarly, dimK D

λ
i ≥ dimK D

λ
K,i

. By [7, Proposition

(11.16)], there exists an integer c ≥ 1 such that

D(λ) ↓Hr,n

Hr,p,n

∼=
(
Dλi ⊕ (Dλi )τ ⊕ · · · ⊕

(
Dλi
)τ l−1)⊕c

.

Taking dimensions, dimK D(λ) = cl dimK D
λ
i . Hence, comparing dimensions on

both sides of the restriction formula for DK(λ) above shows that

cl dimDλi = dimK D(λ) = dimK D
K(λ) = pλ dimK D

λ
K
≤ pλ dimK D

λ
i .

Since l ≥ pλ this forces c = 1, l = pλ and dimK D
λ
i = dimK D

λ
K,i

. Therefore,

Dλ
K,i
∼= Dλi ⊗K K, implying that Dλi is absolutely irreducible and hence that K

is a splitting field for Hr,p,n. All of the parts in the theorem now follow from the

corresponding statements for Dλ
K,i

using the isomorphism Dλ
K,i
∼= Dλi ⊗K K. �

The algebra Hr,n(Q∨ε) is not necessarily semisimple when d > 1. With a little
more work it is possible to show that if Q is (ε, q)-separated over K then the
following are equivalent:

a) Hr,n is (split) semisimple.
b) Hr,p,n is (split) semisimple.
c) Sλt = Dλt , for all λ ∈Pr,n and 1 ≤ t ≤ pλ.

We omit the details. If d = 1 then it is known that Hp,p,n is semisimple if and only
if 〈ε〉 ∩ 〈q〉 = {1} and e > n [20, Theorem 5.9].

Extend the dominance order to Pσ
r,n×Z by defining (λ, j) B (µ, i) if λ B µ. Let

DHr,p,n
=
(
[Sλi : Dµj ]

)
(λ,i),(µ,j)

be the decomposition matrix of Hr,p,n, where

λ ∈Pσ
r,n, µ ∈ K σ

r,n, 1 ≤ i ≤ pλ and 1 ≤ j ≤ pµ, and where the rows and columns
of DHr,p,n

are ordered in a way that is compatible with dominance.
Suppose that λ ∈Pr,n, µ ∈ K σ

r,n and 1 ≤ i ≤ pλ and 1 ≤ i ≤ pµ. If λ 6= µ then

[Sλi : Dµj ] 6= 0 only if (λ, i) B (µ, j) because, by Theorem 4.35 and Lemma 3.2,

[Sλi : Dµj ] 6= 0 =⇒ [S(λ) : D(µ)] 6= 0 =⇒ λ B µ.

On the other hand, [Sµi : Dµj ] = δij by Theorem 4.35. Hence, we have proved the
following.

4.36. Corollary. Suppose that Q is (ε, q)-separated over the field K. Then the
decomposition matrix DHr,p,n

of Hr,p,n is unitriangular.
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4.6. Morita equivalences of Hr,p,n-modules. In this section we prove an Morita
equivalence theorem for the cyclotomic Hecke algebras Hr,p,n which is an analogue
of the Morita equivalence theorem Hr,n which was discussed in section 2.5. Our
main result is a generalization of the Morita equivalence theorem given by the first
author for the Hecke algebras of type D [19].

We maintain our assumption that Q is (ε, q)-separated. Most of the results in
this section hold over an arbitrary ring, however, for convenience we work over the
field K throughout.

Fix a composition b ∈ Cp,n and set ob = op(b) and pb = p/ob. Mirroring
Definition 4.30 define

θb = θ0,op(b).

Then θb ∈ EndHr,pb,n
(Vb) by Lemma 4.18 and θb(v) = σob(Y0,obv), for all v ∈ Vb.

In particular, θb is an Hr,p,n-endomorphism of Vb.
The module Vb = vbHr,n is an Hr,p,n-module by restriction. For simplicity

we will usually write Vb, instead of Vb ↓
Hr,n

Hr,p,n
, when we consider Vb as an Hr,p,n-

module.

4.37. Definition. Suppose that b ∈ Cp,n. Define Ed,b = EndHr,p,n

(
Vb
)
.

Notice that Hd,b is a subalgebra of Ed,b, by Lemma 2.18, and that θb is an
element of Ed,b by the remarks above.

4.38. Theorem. Suppose that b ∈ Cp,n. Then, as an algebra, Ed,b is generated
by Hd,b and the endomorphism θb. Moreover, if {xi | i ∈ I } is a K-basis of Hd,b

then {xiθkb | i ∈ I and 0 ≤ k < pb } in a K-basis of EndHr,p,n
(Vb). In particular,

dim Ed,b = pb dim Hd,b.

Proof. We first compute the dimension of Ed,b. By Frobenius reciprocity [7, Propo-
sition 11.13(ii)],

Ed,b = HomHr,p,n
(Vb ↓

Hr,n

Hr,p,n
, Vb ↓

Hr,n

Hr,p,n
) ∼= HomHr,n

(Vb, Vb ↓
Hr,n

Hr,p,n
↑Hr,n

Hr,p,n
)

∼=
p−1⊕
i=0

HomHr,n(Vb, V
σi

b ) ∼=
p−1⊕
i=0

HomHr,n(Vb, Vb〈i〉),

where the third isomorphism is Corollary 4.8 and the fourth isomorphism follows

because V σ
i

b
∼= Vb〈−i〉 by Proposition 4.10. By [23, Proposition 2.13] if b 6= c then

HomHr,n(Vb, Vc) = 0 because Vb and Vc belong to different blocks. Therefore, as
vector spaces,

Ed,b ∼=
pb−1⊕
i=0

HomHr,n

(
Vb, Vb〈iob〉

) ∼= pb−1⊕
i=0

HomHr,n

(
Vb, Vb

) ∼= H ⊕pb
d,b

since EndHr,n
(Vb) ∼= Hd,b by Lemma 2.18. Hence, dim Ed,b = pb dim Hd,b as we

wanted to show.
It remains to show that Hd,b and θb generate Ed,b as a K-algebra. First ob-

serve that θb is an invertible element of Ed,b because (θb)pb = εdn(p−ob)/2zb by
Lemma 4.29. Therefore, since EndHr,n

(Vb) ∼= Hd,b by Lemma 2.18, it suffices to

show that every element of HomHr,n
(Vb, V

σiob
b ) corresponds to θ−ib x, for some x

in Hd,b. Let πj be the projection from Ed,b to HomHr,n(Vb, V
σjob
b ) under the vector

space isomorphism above. Under Frobenius reciprocity [7, Proposition 11.13(ii)],
the Hr,p,n-endomorphism

θ−ib ∈ EndHr,p,n

(
Vb ↓

Hr,n

Hr,p,n

)
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corresponds to the Hr,n-homomorphism Vb −→ Vb ⊗Hr,p,n
Hr,n given by

vbh 7→
p−1∑
s=0

θ−ib (vbhT
−s
0 )⊗ T s0 ,

for h ∈ Hr,n. Using Proposition 4.2, and the explicit isomorphism given in
Lemma 4.1,

πj(θ
−i
b )(vb) =

p−1∑
s=0

εjobsθ−ib (vbT
−s
0 )T s0 =

p−1∑
s=0

εjobsθ−ib (vb)ε−isobT−s0 T s0

=

p−1∑
s=0

ε(j−i)sobθ−ib (vb) = δijpθ
−i
b (vb).

By assumption p does not divide the characteristic of K, so p is invertible in K. So

we deduce that πi(θ
−i
b ) is actually an isomorphism from Vb onto V σ

iob

b . Essentially
the same argument shows that if x ∈Hd,b then

πj(x)(vb) = δj0px · vb = δj0pvbΘb(x).

Therefore, πj(θ
−i
b x)(vb) = δijδj0p

2θ−ib (vb)Θb(x). Note that every homomorphism

in HomHr,n
(Vb, V

σiob
b ) can be decomposed into a composition of the isomorphism

πi(θ
−i
b ) with an endomorphism in EndHr,n

(Vb) ∼= Hd,b. All of the claims in the
theorem now follow. �

The algebra Ed,b is generated by Hd,b and θb by Theorem 4.38. To make this

more explicit, for s = 1, 2, . . . , p let T
(s)
i and L

(s)
j , for 1 ≤ i < bs and 1 ≤ j ≤ bs, be

the generators of Hd,b. That is,

T
(s)
i = 1⊗s−1 ⊗ Ti ⊗ 1⊗p−s and L

(s)
j = 1⊗s−1 ⊗ Lj ⊗ 1⊗p−s,

interpreted as elements of Hd,b = Hd,b1(εQ) ⊗ · · · ⊗Hd,bp(εpQ). The elements

T
(s)
i and L

(s)
j , for 1 ≤ s ≤ p, 1 ≤ i < bs and 1 ≤ j ≤ bs, generate Hd,b subject to

the relations implied by the defining relations for Hr,n.
To determine relations these elements satisfy in Ed,b we need to determine the

commutation relations for these elements and θb. Using Lemma 2.16, it is easy to
deduce the following result.

4.39. Lemma. Suppose that b ∈ Cp,n, 1 ≤ s ≤ p, 1 ≤ i < bs and 1 ≤ j ≤ bs. Then

T
(s)
i θb =

{
θbT

(s+ob)
i , if s+ ob ≤ p,

θbT
(s+ob−p)
i , if s+ ob > p,

L
(s)
j θb =

{
ε−obθbL

(s+ob)
j , if s+ ob ≤ p,

ε−obθbL
(s+ob−p)
j , if s+ ob > p.

This lemma, when combined with the relation that θobb = fλzb is central in Ed,b
and the relations coming from Hd,b gives a complete set of commutator relations
for the generators of Ed,b. It would be interesting to know whether or not this gives
a presentation for the algebra Ed,b.

4.40. Remark. Suppose that b ∈ Cp,n and 1 ≤ s, t ≤ p and s ≡ t (mod ob), so that

bs = bt. Let πst be the algebra isomorphism H
(s)
d,bs
∼= H

(t)
d,bt

given by

T
(s)
i 7→ T

(t)
i and T

(s)
0 = L

(s)
1 7→ εs−tT

(t)
0 , for 1 ≤ i ≤ n− 1.

Thus, πst identifies the sth tensor factor and the tth tensor factor in Hd,b and
Lemma 4.39 says that conjugation by θb coincides with the map πst, where t = s+ob
if s+ ob ≤ p; or t = s+ ob − p if s+ ob > p.
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Extend the equivalence relation ∼σ on Pr,n to Cp,n by defining b ∼σ c if b =
c〈k〉 for some k ∈ Z, for b, c ∈ Cp,n. Let C σ

p,n = Cp,n/∼σ be the set of ∼σ-
equivalence classes in Cp,n. Once again, we write b ∈ C σ

p,n to indicate that b is a
representative for an equivalence class in C σ

p,n.

Define E =
⊕

b∈Cσ
p,n

Ed,b. Note that E depends on the parameters q and Q∨ε and

on n. Further, by definition, Mod-E =
⊕

b∈Cσ
p,n

Mod-Ed,b.

4.41. Corollary. Suppose that Suppose that Q is (ε, q)-separated over K. Then
there is a Morita equivalence

FE : Mod-E −→Mod-Hr,p,n;M 7→M ⊗Ed,b Vb,

for M ∈ Mod-Ed,b, and b ∈ C σ
p,n.

Proof. By [23, Proposition 2.15],
⊕

b∈Cp,n
Vb is a progenerator for Hr,n. Moreover,

if b ∈ Cp,n then

Vb ↓
Hr,n

Hr,p,n

∼= V σ
t

b ↓
Hr,n

Hr,p,n

∼= Vb〈−t〉 ↓
Hr,n

Hr,p,n
,

for any t ∈ Z by Lemma 4.10. Therefore,
⊕

b∈Cσ
p,n

Vb is a progenerator for Hr,p,n

and, by well-known arguments [4, §2.2], it induces the Morita equivalence FE as
described above. �

We now describe the images of the Specht modules and simple modules of the
algebra Hr,p,n under this Morita equivalence.

Let λ ∈Pd,b. By definition ob | oλ and oλ | p. Let pb/λ := pb/pλ = oλ/ob ∈ N.
Then pb = pb/λpλ.

4.42. Definition. Suppose that λ ∈Pd,b, for b ∈ C σ
p,n. Define

Sλ = Sb(λ) ↑Ed,bHd,b
and Dλ = Db(λ) ↑Ed,bHd,b

.

Define Ed,λ to be the subalgebra of Ed,b generated by Hd,b and (θb)pb/λ .

By definition Ed,λ ∼= Ed,µ whenever λ,µ ∈ Pd,b and pλ = pµ. Further,
dim Ed,λ = pλ dim Hd,b by Theorem 4.38. Notice that the maps (θb)pb/λ and θλ
agree when they are restricted to S(λ).

Now fix generators sb(λ) and db(λ) of Sb(λ) and Db(λ), respectively, which we
consider as elements of Ed,b. Motivated by Definition 4.32 and Theorem 4.33 define

Sλi,pλ = sb(λ)
∏

1≤t≤pλ
t6=i

(
(θb)pb/λ − gλ

)
Hd,b ↪→ Ed,λ

Dλi,pλ = db(λ)
∏

1≤t≤pλ
t 6=i

(
(θb)pb/λ − gλ

)
Hd,b ↪→ Ed,λ.

By Lemma 4.39, Sλi,pλ and Dλi,pλ are Ed,λ-submodules of Sλ and Dλ, respectively.
Moreover, it is easy to see that

Sb(λ) ↑Ed,λHd,b

∼= ⊕pλi=1S
λ
i,pλ

, Db(λ) ↑Ed,λHd,b

∼= ⊕pλi=1D
λ
i,pλ

.

Now define
Sλi,p = Sλi,pλ ↑

Ed,b
Ed,λ

and Dλi,p = Dλi,pλ ↑
Ed,b
Ed,λ

.

Let ∼b be the equivalence relation on Pd,b where if λ,µ ∈ Pd,b then µ ∼b λ
if λ = µ〈kob〉, for some k ∈ Z. Let Pb

d,b be the set of ∼b-equivalence classes in

Pd,b and let K b
d,b be the equivalence classes in Kd,b. Once again, we blur the

distinction between equivalence classes in Pb
d,b and the multipartitions in these

equivalence classes.
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4.43. Lemma. Suppose that λ ∈ Pd,b, µ ∈ K b
d,b, 1 ≤ i ≤ pλ and 1 ≤ j ≤ pµ.

Then FES
λ
i,p
∼= Sλi and FED

µ
j,p
∼= Dµj . In particular,

{Dµj,p | µ ∈ K b
d,b and 1 ≤ j ≤ pµ }

is a complete set of pairwise non-isomorphic absolutely irreducible Ed,b-modules.

Proof. This follows directly from the definitions and standard properties of the
Schur functor FE . �

5. Cyclotomic Schur algebras and decomposition numbers

In this section we use the results so far to define analogues of the cyclotomic Schur
algebras for Hr,p,n. We then use the formal characters of these algebras to compute
the p-splittable decomposition numbers of Hr,p,n, extending the arguments of [22],
and hence proving our main results from the introduction.

Many of the early results in this section apply over an integral domain, however,
for convenience we work over a field R = K. We maintain our assumption that Q
is (ε, q)-separated over K.

5.1. Lifting to cyclotomic q-Schur algebras. For each λ ∈ Pr,n we defined

modules M(λ), Mb(λ) = M(λ[1])⊗ · · · ⊗M(λ[p]) and

Mλ
b = Hb(Mb(λ)) ∼= v+bM(λ)

in or after Definition 4.13. Using these modules we introduce analogues of the Schur
algebras for the algebras Hr,n, Hd,b and Hr,p,n.

5.1. Definition. a) The cyclotomic q-Schur algebra of Hr,n is the endo-
morphism algebra

Sr,n = EndHr,n

( ⊕
λ∈Pr,n

M(λ)
)
.

b) For b ∈ Cp,n the cyclotomic q-Schur algebra of Hd,b is the endomor-
phism algebra

Sd,b = EndHd,b

( ⊕
λ∈Pd,b

Mb(λ)
)
.

c) The cyclotomic q-Schur algebra of Hr,p,n is the endomorphism algebra
Sr,p,n =

⊕
b∈Cp,n

Sr,p,n(b), where

Sr,p,n(b) = EndHr,p,n

( ⊕
λ∈Pd,b

Mλ
b

)
,

where Mλ
b is considered as an Hr,p,n-module by restriction.

The algebra Sr,p,n is new, generalizing the Schur algebras of type D introduced
by the first author in [22]. The cyclotomic Schur algebra Sr,n = Sr,n(Q∨ε) was

introduced in [9]. By Definition 4.13, Mb(λ) = M(λ[1])⊗ · · · ⊗M(λ[p]) so that

Sd,b
∼= EndHd,b

( ⊕
λ∈Pd,b

Mb(λ)
) ∼= Sd,b1

(εQ)⊗ · · · ⊗Sd,bp(εpQ).

Moreover, applying the functor Hb shows that

(5.2) Sd,b
∼= EndHr,n

( ⊕
λ∈Pd,b

Mλ
b

)
.

Hence, we can — and do! — consider Sd,b as a subalgebra of Sr,p,n.
Recall that after Definition 4.37 we defined θb = θ0,ob ∈ EndHr,pb,n

(Vb). By

definition, Mλ
b is a submodule of Vb. We next show that θb maps Mλ

b to M
λ〈ob〉
b .
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5.3. Lemma. Suppose that b ∈ Cp,n and λ ∈ Pd,b. Then θb restricts to give an

Hr,p,n-homomorphism from Mλ
b to M

λ〈ob〉
b .

Proof. Let Yb = Y0,ob = Yob . . . Y1. Then θb(v) = σob(Ybv), for all v ∈ Vb. By
construction, Mλ

b = v+b u
+
λxλHr,n and

v+b u
+
λxλ = vbΘb(u+λ,bxλ,b) = Θ̂b(xλ,bu

+
λ,b)vb,

where these elements are defined before Definition 4.13. Therefore, it is enough

to prove that θb(v+b u
+
λxλ) = σob(Ybv

+
b u

+
λxλ) belongs to M

λ〈ob〉
b . Using (2.20) we

compute

Ybv
+
b u

+
λxλ = YbvbΘb(u+λ,bxλ,b)

= Θ̂b〈ob〉(u
+
λ〈ob〉,b〈ob〉xλ〈ob〉,b〈ob〉)Ybvb, by Lemma 2.16,

= Θ̂b〈ob〉(u
+
λ〈ob〉,b〈ob〉xλ〈ob〉,b〈ob〉)v

(ob)
b〈ob〉Y

∗
b , by Corollary 2.9.

Hence, using Lemma 4.9 there exists a c ∈ Z such that

θb(v+b u
+
λxλ) = εcvb〈ob〉Θb(u+λ〈ob〉,b〈ob〉xλ〈ob〉,b〈ob〉)σ

ob(Y ∗b )

∈ v+b〈ob〉u
+
λ〈ob〉σ

ob(Y ∗b ).

Thus, θb(v+b u
+
λxλ) ∈Mλ〈ob〉

b . Moreover, this map is surjective since Yb, and hence

σob(Y ∗b ), is invertible by Lemma 2.24 and Lemma 2.21. As Mλ
b and M

λ〈ob〉
b are

both free and of the same rank the proof is complete. �

Recall from Lemma 2.21 that zb is a central element of Hd,b, for b ∈ Cp,n.
Consequently, if λ ∈Pd,b then

zb ·v+b u
+
λxλ = (zbu

+
λ,bxλ,b) ·vb = (u+λ,bxλ,bzb) ·vb = (u+λ,bxλ,b) ·vbΘb(zb) ∈Mλ

b .

Therefore, left multiplication by zb induces a homomorphism in EndHr,n
(Mλ

b ).

5.4. Definition. Suppose that b ∈ Cp,n. Define maps ϑb and ζb in Sr,p,n(b) by

ϑb(m) = θb(m) and ζb(m) = zb ·m,

for m ∈Mλ
b , and λ ∈Pd,b.

Using this definition and Lemma 4.29 we obtain:

5.5. Lemma. Suppose that b ∈ Cp,n. Then ζb is central in Sr,p,n and

ϑpbb = ε
1
2dobn(pb−1)ζb.

As remarked in (5.2) above, Sd,b
∼= EndHr,n

(⊕
λ∈Pd,b

Mλ
b

)
so we can view

Sd,b as a subalgebra of Sr,p,n(b).

5.6. Theorem. As a K-algebra, Sr,p,n(b) is generated by Sd,b and the endomor-
phism ϑb. Moreover, if {xi | i ∈ I } is a K-basis of Sd,b then

{xiϑkb | i ∈ I and 0 ≤ k < pb }

is a K-basis of Sr,p,n(b). In particular, dim Sr,p,n(b) = pb dim Sd,b.

Proof. This can be proved by repeating the argument of Theorem 4.38. �
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5.2. Weyl modules, simple modules and Schur functors. The cyclotomic
Schur algebra Sr,n is a quasi-hereditary cellular algebra with basis

{ϕST | S ∈ T0(λ,µ),T ∈ T0(λ,ν) for λ,µ,ν ∈Pr,n } ,
where T0(λ, τ ) is the set of semistandard λ-tableaux of type τ for τ ∈ Pr,n; see
[9, Definition 4.4 and Theorem 6.6]. In this paper we do not need the precise
combinatorial definition of semistandard tableaux. For our purposes it is enough
to know that if x = u+τ xτh ∈M(τ ), and S ∈ T0(λ,µ) and T ∈ T0(λ,ν), then

ϕST(x) = δντmSTh,

where mST is a certain element of M(µ).
For each λ ∈ Pr,n there is a Weyl module ∆(λ), which is a cell module for

Sr,n. Let L(λ) = ∆(λ)/ rad ∆(λ), where rad ∆(λ) is the Jacobson radical of ∆(λ).
Then {L(λ) | λ ∈Pr,n } is a complete set of pairwise non-isomorphic irreducible
Sr,n-modules. Further, if λ,µ ∈Pr,n then L(µ) is the simple head of ∆(µ) and

(5.7) [∆(λ) : L(µ)] =

{
1, if λ = µ,

0, if λ 6D µ.

All of these facts are proved in [9, §6].
Similarly, for b ∈ Cp,n let ∆b(λ) and Lb(λ) be the Weyl modules and the

irreducible modules of Sd,b, for λ ∈ Pd,b. For 1 ≤ t ≤ p, λ, ν, µ ∈ Pd,bt and

S ∈ T0(λ, µ), T ∈ T0(λ, ν), let ϕ
(t)
ST be the corresponding element of Sd,b given by

ϕ
(t)
ST(x1 ⊗ · · · ⊗ xp) = x1 ⊗ · · · ⊗ xt−1 ⊗ ϕST(xt)⊗ xt+1 ⊗ · · · ⊗ xp.

5.8. Lemma. Suppose that b ∈ Cp,n, 1 ≤ s ≤ p and that S ∈ T0(λ, µ), and
T ∈ T0(λ, ν), where λ, µ, ν ∈Pd,bs . Then

ϕ
(s)
STϑb =

{
ε−obkλ,νϑbϕ

(s+ob)
ST , if s+ ob ≤ p,

ε−obkλ,νϑbϕ
(s+ob−p)
ST , if s+ ob > p.

where kλ,ν =
∑d−1
s=1

∑s
t=1(|λ(t)| − |ν(t)|).

Proof. We first note that b〈ob〉 = b, so that the notations ϕ
(s+ob)
ST and ϕ

(s+ob−p)
ST

make sense. As the map ϕST is given by left multiplication by an element of Hd,b,
the result follows from Lemma 4.39. (In what follows we only need to know that
the scalar ε−obkλ,ν above is equal to εobk, for some k ∈ Z. This is a consequence
of Lemma 4.39. That k = kλ,ν can be determined using the definition of mST

from [9].) �

5.9. Remark. Suppose that b ∈ Cp,n and 1 ≤ s, t ≤ p and s ≡ t (mod ob), so
that bs = bt. Just as in Remark 4.40, if we let π′st be the algebra isomorphism

Sd,bs
(s) ∼= Sd,bt

(t) given by ϕ
(s)
ST 7→ ε−obkλ,νϕ

(t)
ST, for S and T as above. Then ϑb

coincides with π′st, where t = s+ ob if s+ ob ≤ p; or t = s+ ob − p if s+ ob > p.

For each multipartition µ ∈ Pd,b the identity map ϕµ :Mb(µ)−→Mb(µ) be-
longs to Sd,b. Then ϕµ is an idempotent in Sd,b and

∑
µ∈Pd,b

ϕµ is the identity

element of Sd,b. If M is a Sd,b-module then M has a weight space decomposition

M =
⊕

µ∈Pd,b

Mµ, where Mµ = Mϕµ.

Recall from (2.23) that ωb = (ωb
[1], · · · ,ωb

[p]) is the unique multipartition in Pd,b

such that µ D ωb for all µ ∈Pd,b. By definition, ϕωb
is the identity map on Hd,b

so that ϕωb
Sd,bϕωb

∼= Hd,b. Hence, we have a Schur functor

Fωb
: Mod-Sd,b−→Mod-Hd,b;M 7→Mωb

, for M ∈ Mod-Sd,b.
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By [9, Corollary 6.14], the Weyl module ∆b(λ) has a basis

{ϕS | S ∈ T0(λ,µ) for µ ∈Pd,b }
such that {ϕS | S ∈ T0(λ,µ) } is a basis for the µ-weight space of ∆b(λ). This
implies that Fωb

(∆b(λ)) ∼= Sb(λ), for all λ ∈ Pd,b; see [24, Proposition 2.17].
Hence, Fωb

(Lb(λ)) ∼= Db(λ), for all λ ∈ Kd,b, since Fωb
is exact.

There is a unique semistandard λ-tableau Tλ of type λ and ϕTλ is a “highest
weight vector” in ∆b(λ). In particular, ϕTλ generates ∆b(λ).

5.10. Lemma. Suppose that λ ∈Pd,b, for b ∈ Cp,n. Then

ϕTλζb = fλϕTλ and ϕTλϑ
pb
b = (gλ)pbϕTλ .

Proof. By [24, (2.18)], the Weyl module ∆b(λ) can be identified with a set of maps
from

⊕
µ∈Pd,b

Mb(µ) to Sb(λ) in such a way that ϕTλ is the natural projection

map Mb(λ) −→ Sb(λ). Hence, ϕTλζb = fλϕTλ by Proposition 3.4 and ϕTλϑ
pb
b =

(gλ)pbϕTλ by Corollary 4.31 �

By Theorem 5.6, the subspaces
{
Sd,b, ϑbSd,b, . . . , (ϑb)pb−1Sd,b

}
define a Z/pbZ-

graded Clifford system for Sr,p,n(b). In particular, conjugation with ϑb defines an
algebra automorphism of Sd,b. For any Sd,b-module M let Mϑb be the Sd,b-
module obtained by twisting the action of Sd,b by ϑb.

5.11. Lemma. Suppose that λ ∈Pd,b, for b ∈ Cp,n. Then

∆b(λ)ϑb ∼= ∆b(λ〈ob〉) and Lb(λ)ϑb ∼= Lb(λ〈ob〉)
as Sd,b-modules.

Proof. This follows directly from Lemma 5.8 and Remark 5.9. �

The following definitions mirror the constructions for Ed,b in Definition 4.42.

5.12. Definition. Suppose that λ ∈Pd,b, for b ∈ Cp,n. Define

∆λ = ∆b(λ) ↑Sr,p,n(b)
Sd,b

and Lλ = Lb(λ) ↑Sr,p,n(b)
Sd,b

.

Let σ̂ be the automorphism of Sr,p,n(b) which, using Theorem 5.6, is defined on
generators by

(xϑkb)σ̂x = εkobxϑkb, for all x ∈ Sd,b and 0 ≤ k < pb.

By definition, σ̂ restricts to the identity map on Sd,b. By Lemma 4.1 there is an
isomorphism of Sr,p,n(b)-Sr,p,n(b)-bimodules,

(5.13) Sr,p,n(b)⊗Sd,b
Sr,p,n(b) ∼=

pb⊕
j=1

(
Sr,p,n(b)

)σ̂j
,

such that the left Sr,p,n(b)-module structure on
(
Sr,p,n(b)

)σ̂j
is given by left mul-

tiplication and the right action is twisted by σ̂j .
Recall that if λ ∈Pd,b then pb/λ = pb/pλ. Let Sd,λ be the subalgebra of Sr,p,n

generated by Sd,b and ϑλ = ϑ
pb/λ
b . Let ϕTλ be the image of ϕTλ in Lb(λ) and for

1 ≤ i ≤ pλ define

∆λ
i,pλ

= ϕTλ

∏
1≤t≤pλ
t 6=i

(
ϑλ − gλε

oλt
)
Sd,b ↪→ Sd,λ,

Lλi,pλ = ϕTλ

∏
1≤t≤pλ
t 6=i

(
ϑλ − gλε

oλt
)
Sd,b ↪→ Sd,λ.
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Then, by Lemma 5.8 and Lemma 5.10, ∆λ
i,pλ

and Lλi,pλ are Sd,λ-submodules of ∆λ

and Lλ, respectively. Next, for 1 ≤ i ≤ pλ define

∆λ
i,p = ∆λ

i,pλ
↑Sr,p,n(b)

Sd,λ
and Lλi,p = Lλi,pλ ↑

Sr,p,n(b)
Sd,λ

.

5.14. Proposition. Suppose that λ ∈ Pd,b, for b ∈ Cp,n, and let σ̂λ = (σ̂)pb/λ .
Then:

a) if 1 ≤ i ≤ pλ then(
∆λ
i,pλ

)σ̂λ ∼= ∆λ
i+1,pλ

,
(
∆λ
i,p

)σ̂λ ∼= ∆λ
i+1,p,(

Lλi,pλ
)σ̂λ ∼= Lλi+1,pλ

(
Lλi,p

)σ̂λ ∼= Lλi+1,p.

b) ∆b(λ) ↑Sd,λ

Sd,b

∼= ⊕pλi=1∆λ
i,pλ

, Lb(λ) ↑Sd,λ

Sd,b

∼= ⊕pλi=1L
λ
i,pλ

, and there is a unique

Sd,b-module isomorphism ∆b(λ) −→ ∆λ
i,pλ
↓Sd,λ

Sd,b
such that

ϕTλ 7→ ϕTλ

∏
1≤t≤pλ
t 6=i

(
ϑλ − gλε

oλt
)
.

This latter map also induces an isomorphism Lb(λ) −→ Lλi,pλ ↓
Sd,λ

Sd,b
.

c) ∆λ = ∆λ
1,p ⊕ · · · ⊕∆λ

pλ,p
and Lλ = Lλ1,p ⊕ · · · ⊕ Lλpλ,p as Sd,b-modules.

d) ∆λ ∼= ∆λ〈ob〉 and Lλ ∼= Lλ〈ob〉 as Sr,p,n-modules.

Proof. We only prove the results for the Weyl modules. The other cases follow
either using similar arguments or because twisting by σ̂ is an exact functor, so we
leave the details to the reader.

By Lemma 5.11, we know that (∆b(λ))ϑλ ∼= ∆b(λ〈oλ〉) = ∆b(λ). Therefore,

∆λ〈ob〉 = ∆b(λ〈ob〉) ↑
Sr,p,n(b)
Sd,b

∼= ∆b(λ)ϑb ↑Sr,p,n(b)
Sd,b

∼=
(
∆b(λ) ↑Sr,p,n(b)

Sd,b

)ϑb =
(
∆λ
)ϑb ∼= ∆λ.

This proves (d).
Arguing as in Theorem 4.33, it is easy to see that ϕTλ ∈ ∆λ

1,p + · · · + ∆λ
pλ,p

.

Hence, ∆λ = ∆λ
1,p + · · · + ∆λ

pλ,p
. On the other hand, if 1 ≤ i ≤ pλ and f ∈ Sd,b

then the isomorphisms in Remark 5.9 and the fact that λ〈oλ〉 = λ imply that
ϕTλf = 0 if and only if ϕTλ(ϑiλfϑ

−i
λ ) = 0. It follows that the map

ϕTλ 7→ ϕTλ

( ∏
1≤t≤pλ
t6=i

(
ϑλ − gλε

oλt
))

extends uniquely to a Sd,b-module surjection ρi : ∆b(λ)� ∆λ
i,pλ
↓Sd,λ

Sd,b
. In partic-

ular, dim ∆λ
i,pλ
≤ dim ∆b(λ). By construction, however, dim ∆λ = pλ dim ∆b(λ).

Therefore, the maps ρi, for 1 ≤ i ≤ pλ, are all isomorphisms. This proves (b),
while (c) follows easily from definitions and (b).

It remains to prove part (a). Suppose that 1 ≤ i ≤ pλ. The definition of σ̂
implies that if f ∈ Sr,p,n(b) then ϕTλf = 0 if and only if ϕTλf

σ̂λ = 0. Therefore,
the map

ϕTλ

∏
1≤t≤pλ
t 6=i+1

(
ϑλ − gλε

oλt
)
f 7→ ϕTλ

∏
1≤t≤pλ
t6=i

(
ϑλ − gλε

oλt
)
f σ̂λ

is a well-defined Sr,p,n(b)-module homomorphism from ∆λ
i+1,p onto

(
∆λ
i,p

)σ̂λ . Sim-

ilarly, one can prove that
(
∆λ
i,pλ

)σ̂λ ∼= ∆λ
i+1,pλ

. �
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The proof of Proposition 5.14(a) yields the following.

5.15. Corollary. Suppose that λ ∈Pd,b and that 1 ≤ i ≤ pλ. Then, as a K-vector
space

∆λ
i,p
∼= ∆b(λ)⊕∆b(λ)ϑb ⊕ · · · ⊕∆b(λ)ϑ

pb/λ−1
b ,

Moreover, the action of Sr,p,n(b) on ∆λ
i,p is uniquely determined by

a) ∆λ
i,p ↓

Sr,p,n(b)
Sd,b

∼= ∆b(λ)⊕∆b(λ)ϑ
−1
b ⊕ · · · ⊕∆b(λ)ϑ

1−pb/λ
b ;

b) (xϑjb)ϑtb = xϑj+tb , for all x ∈ ∆b(λ) and j, t ∈ Z;

c) ϑλ acts as the scalar gλε
ioλ on the highest weight vector of ∆b(λ) ↪→ ∆λ

i,p.

Analogous statements hold for the simple module Lλi,p.

Proof. By definition,

∆λ
i,p
∼= ∆λ

i,pλ
⊕∆λ

i,pλ
ϑb ⊕ · · · ⊕∆λ

i,pλ
ϑ
pb/λ−1
b .

As in the proof of Proposition 5.14, we can identify ∆λ
i,pλ

with ∆b(λ) using the
isomorphism ρi, for 1 ≤ i ≤ pλ. Then the highest weight vector ϕTλ of ∆b(λ)

corresponds to the vector ϕTλ

(∏
1≤t≤pλ
t 6=i

(
ϑλ − gλε

oλt
))

. This implies that ϑλ =

ϑ
pb/λ
b acts as the scalar gλε

ioλ on the highest weight vector of ∆b(λ) ↪→ ∆λ
i,p. All

of the claims in the Corollary now follow. �

5.16. Corollary. Suppose that λ,µ ∈Pd,b.

a) If 1 ≤ i ≤ pλ then Lλi,p is the simple head of ∆λ
i,p.

b) If 1 ≤ i ≤ pλ and 1 ≤ j ≤ pµ then

[∆λ
i,p : Lµj,p] =

{
δij , if λ = µ,

0, if λ 6D µ.

Proof. By (5.7) Lb(λ) is the simple head of ∆b(λ) and

[∆b(λ) : Lb(µ)] =

{
1, if µ = λ,

0, if λ 6D µ.

Hence, the result follows from Proposition 5.14 and Frobenius reciprocity. �

Recall that ∼b is the equivalence relation on Pd,b such that λ ∼b µ if µ =
λ〈kob〉 for some k ∈ Z.

5.17. Corollary. The algebra Sr,p,n(b) is split over K and

{Lλi,p | λ ∈Pb
d,b and 1 ≤ i ≤ pλ }

is a complete set of pairwise non-isomorphic absolutely irreducible Sr,p,n(b)-modules.

Proof. Just as in Section 5, this follows from Corollary 5.16, Frobenius reciprocity
and some general arguments in Clifford theory. �

Recall from subsection §5.2 that the Schur functor Fωb
: Mod-Sd,b−→Mod-Hd,b

is given by Fωb
(M) = Mϕωb

, where ϕωb
is the identity map on Hd,b. Using the

embedding Sd,b ↪→ Sr,p,n(b), and the fact that vb = v+b u
+
ωb

, it is easy to check

that ϕωb
corresponds to the natural projection from

⊕
λ∈Pd,b

Mλ
b onto Vb = Mωb

b .

In particular,

ϕωb
Sr,p,n(b)ϕωb

= Ed,b and ϕωb
Sd,bϕωb

= Hd,b.

Hence, we have a second Schur functor F
(p)
ωb : Mod-Sr,p,n(b)−→Mod-Ed,b which is

given by F
(p)
ωb(M) = Mϕωb

and if ϕ ∈ HomSr,p,n(b)(M,N) then F
(p)
ωb(ϕ)(xϕωb

) =
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ϕ(x), for all x ∈ M . It is straightforward to check that we have the following
commutative diagram of functors:

(5.18)

Mod-Sr,p,n(b)
? ↓Sr,p,n(b)

Sd,b−−−−−−−→ Mod-Sd,b

F(p)ωb

y yFωb

Mod-Ed,b −−−−−→
? ↓

Ed,b
Hd,b

Mod-Hd,b

5.19. Lemma. Suppose that λ ∈Pd,b and 1 ≤ i ≤ pλ. Then

F(p)ωb
(∆λ

i,p)
∼= Sλi,p and F(p)ωb

(Lλi,p)
∼=

{
Dλi,p, if λ ∈ Kd,b,

0, otherwise.

Proof. This follow directly from (5.18) and Lemma 4.43. �

5.20. Corollary. Suppose that b ∈ Cp,n, λ ∈Pd,b, µ ∈ Kd,b, 1 ≤ i ≤ pλ and that
1 ≤ j ≤ pµ. Then

[∆λ
i,p : Lµj,p] = [Sλi,p : Dµj,p] = [Sλi : Dµj ].

Proof. This follows directly from Lemma 5.19 and Lemma 4.43 together with the

easily checked fact that the functors F
(p)
ωb and FE are exact. �

Therefore, in order to compute the decomposition number [Sλi : Dµj ] it is enough

to determine the decomposition number [∆λ
i,p : Lµj,p] for Sr,p,n. In [23, §4] we

defined a decomposition number [∆λ
i,p : Lµj,p] to be l-splittable if pλ = l = pµ for

some integer l and we showed that all decomposition numbers of algebras like Sr,p,n

are determined by their l-splittable decomposition numbers. We compute the l-
splittable decomposition numbers of Sr,p,n in the next section.

5.3. Splittable decomposition numbers. In this section we derive explicit for-
mulae for the l-splittable decomposition numbers of the algebras Sr,p,n(b) in char-
acteristic zero. By Corollary 5.20 this will determine all of the l-splittable decom-
position numbers of the cyclotomic Hecke algebras Hr,p,n in characteristic zero.
By the main results of [23], this will determine all of the decomposition numbers
of Hr,p,n. We show that the splittable decomposition numbers depend, in an ex-
plicit way, on the decomposition numbers of certain Ariki–Koike algebras and on
the scalars gλ introduced in Lemma 4.30.

Suppose that λ and µ are multipartitions in Pd,b. We want to compute the de-
composition numbers [∆λ

i,p : Lµj,p] for 1 ≤ i ≤ pλ and 1 ≤ j ≤ pµ. By Corollary 5.15
and the exactness of ϑb, if pλ = pµ then

(5.21) [∆λ
i,p : Lµj,p] = [∆λ

i+1,p : Lµj+1,p],

where we read i+ 1 and j+ 1 modulo pλ. Therefore, these decomposition numbers
are determined by the decomposition numbers

d
(j)
λµ = [∆λ

0,p : Lµj,p],

for 1 ≤ j ≤ pµ. In fact, as noted above, it is enough to compute the splittable

decomposition numbers. That is, the d
(j)
λµ such that pλ = pµ, for λ,µ ∈Pd,b.

Before we start to compute the decomposition numbers d
(j)
λµ we introduce some

new notation. If A is any finite dimensional algebra let R(A) be the Grothendieck
group of finitely generated A-modules. If M is an A-module let [M ] be the image
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of M in R(A). In particular, note that the Grothendieck group of R(Sr,n) is
equipped with two distinguished bases:

{ [∆(λ)] | λ ∈Pr,n } and { [L(λ) | λ ∈Pr,n } .

Similar remarks apply to the Grothendieck groups of the cyclotomic Schur alge-
bras Sd,b and Sr,p,n(b), for b ∈ Cp,n.

Fix integers l and m such that p = lm and suppose that µ ∈ Pd,b, for some
b ∈ Cp,n. Then a multipartition µ is l-symmetric if

µ = ν l := (ν, . . . ,ν︸ ︷︷ ︸
l times

),

for some multipartition ν ∈Pr/l,n/l. Note that if d
(j)
λµ is an l-splittable decompo-

sition number then λ and µ are both l-symmetric multipartitions.
Let P l

d,b be the set of l-symmetric multipartitions in Pd,b. It is easy to see that

P l
d,b = {µ | µ ∈Pd,b and oµ|m } .

If P l
d,b is non-empty then ob|m and we define bm = (b1, . . . , bm). If µ ∈ P l

d,b

define µm = (µ[1], . . . ,µ[m]). Then µm ∈ Pr/l,bm ⊆ Pr/l,n/l. It is easy to check

that the map ν 7→ ν l defines a bijection from Pr/l,bm to P l
d,b, with the inverse

map being given by µ 7→ µm.
We now return to our main task of computing splittable decomposition numbers.

We will do this by deriving a system of equations which uniquely determine the

decomposition numbers d
(j)
λµ, for 1 ≤ j ≤ l = pλ.

For the rest of this subsection fix λ ∈ Pd,b and set m = oλ and l = pλ. Then
bm = (b1, . . . , bm) ∈ Cr/l,n/l and λm ∈ Pr/l,bm . By (5.2) the cyclotomic Schur
algebras Sr/l,bm and Sd,b are related by

Sr/l,bm
∼= Sd,b1 ⊗ · · · ⊗Sd,bm and Sd,b

∼=
(
Sr/l,bm

)⊗l
.

For µ ∈Pd,b let dλmµm = [∆bm(λm) : Lbm(µm)] be the corresponding decompo-
sition number for the cyclotomic Schur algebra Sr/l,bm . Since

∆bm(λm) ∼= ∆(λ[1])⊗ · · · ⊗∆(λ[m]) and Lbm(µm) ∼= L(µ[1])⊗ · · · ⊗ L(µ[m])

we have that

(5.22) dλmµm =

m∏
i=1

[∆(λ[i]) : L(µ[i])] = dλ[1]µ[1] . . . dλ[m]µ[m] ,

where dλ[i]µ[i] = [∆(λ[i]) : L(µ[i])], for 1 ≤ i ≤ m = oλ.

Recall that if µ ∈ Pd,b then pb/µ = pb/pµ = oµ/ob. If µ ∈ P l
d,b is l-

symmetric then oµ divides m, so we define pµ/λ = pµ/pλ. Then pµ/λ ∈ N and
pµ/λ = oλ/oµ = pb/λ/pb/µ.

5.23. Lemma. Suppose that λ ∈Pd,b, l = pλ and m = oλ. Then:

a) [∆bm(λm)] =
∑

ν∈P l
d,b

dλmνm [Lbm(νm)].

b) [∆λ
0,p] =

∑
ν∈Pd,b

∑
1≤j≤pν

d
(j)
λν [Lνj,p].

c) If µ ∈P l
d,b then d

(1)
λµ + d

(2)
λµ + · · ·+ d

(l)
λµ = pµ/λd

l
λmµm

.

Proof. Part (a) is just a rephrasing of the definition of decomposition numbers

combined with the bijection P l
d,b

'−→Pr/l,bm ;µ 7→ µm. Part (b) follows similarly.
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Suppose that µ ∈Pd,b. We prove (c) by computing the decomposition multiplic-
ity of Lb(µ) on both sides of part (b) upon restriction to Sd,b. By Corollary 5.15,

∆λ
0,p ↓

Sr,p,n(b)
Sd,b

∼= ∆b(λ)⊕∆b(λ)ϑ
−1
b ⊕ · · · ⊕∆b(λ)ϑ

1−pb/λ
b .

Now, every composition factor of ∆b(λ) is isomorphic to Lb(ν), for some ν ∈
Pd,b, and Lb(ν)ϑb ∼= Lb〈ob〉(ν) by Lemma 5.11. Therefore, the decomposition

multiplicity of Lb(µ) in ∆λ
0,p ↓

Sr,p,n(b)
Sd,b

is

pb/λ

pb/µ
[∆b(λ) : Lb(µ)] = pµ/λd

l
λm,µm ,

where the second equality follows from (5.22).
Now consider the multiplicity of Lb(µ) on the right hand side of (b). If ν ∈Pd,b

and 1 ≤ j ≤ pν then, using Corollary 5.15 again,

Lλj,p ↓
Sr,p,n(b)
Sd,b

∼= Lb(λ)⊕ Lb(λ)ϑ
−1
b ⊕ · · · ⊕ Lb(λ)ϑ

1−pb/ν
b .

Therefore, [Lλj,p ↓
Sr,p,n(b)
Sd,b

: Lb(µ)] = 1 by Lemma 5.11. Equating the multiplicity

of Lb(µ) on both sides of (b) now gives (c). �

Lemma 5.23 gives our first relation satisfied by the decomposition numbers d
(j)
λµ.

We now use formal characters to find more relations. Let K[Pr,n] be the K-vector
space with basis { eµ | µ ∈Pr,n }. The (K-valued) formal character of the Sd,b-
module M is

chM =
∑

µ∈Pd,b

(dimMµ)eµ,

an element of K[Pr,n]. The coefficients appearing in the formal characters are the
traces of the identity maps on the weight spaces. We need a more general version
of the formal character which records the traces of powers of ϑtλ, for 1 ≤ t < l = pλ,
on certain weight spaces.

Fix an integer t with 1 ≤ t < pλ. Let lt = gcd(t, l) be the greatest common
divisor of t and l and set `t = l/lt. By convention, we set l0 = l. Then r/`t = dmlt
so that K[Pdmlt,n/`t ] = K[Pr/`t,n/`t ].

Now suppose that M is an Sr,p,n(b)-module and that γ = γ`t is an `t-symmetric
multipartition. Since p/`t = mlt divides tm, it is possible to show that the map ϑtλ
stabilizes the `t-symmetric weight space Mγ`t using Lemma 5.8 and Remark 5.9;
see the proof of Lemma 5.24 below. Define the twining character of M to be

chl
tM =

∑
γ∈Pr/`t,n/`t

Tr
(
ϑtλ,Mγ`t

)
eγ ∈ K[Pr/`t,n/`t ].

It is easy to see that, just like the usual character, the twining character lifts to
a well-defined map chl

t :R(Sr,p,n(b))−→K[Pr/`t,n/`t ] on the Grothendieck group
of Sr,p,n(b).

The following Lemma will allow us to compute the twining character chl
t on both

sides of Lemma 5.23(b).

5.24. Lemma. Suppose that λ ∈Pd,b and 1 ≤ t < l = pλ. Then

chl
t ∆λ

i,p = εitmpb/λg
t
λ ch ∆bltm

(λltm),

for 1 ≤ i ≤ pλ. Moreover, if µ ∈P l
d,b and 1 ≤ j ≤ pµ then

chl
t L

µ
j,p = εjtmpb/µg

tpµ/λ
µ chLbltm

(µltm).
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Proof. We only prove the formula for chl
t L

µ
j,p and leave the almost identical cal-

culation of chl
t ∆λ

0,p to the reader. To ease the notation let m′ = oµ so that

bm′ = (b[1], . . . ,b[m′]) and µm′ = (µ[1], . . . ,µ[m′]) ∈Pr/pµ,bm′
.

To determine chl
t L

µ
j,p for each γ ∈Pr/`t,n/`t we need to compute

Tr
(
ϑtλ, (L

µ
j,p)γ`t

)
= Tr

(
ϑ
tpb/λ
b , (Lµj,p)γ`t

)
= Tr

(
(ϑ
pb/µ
b )tpµ/λ , (Lµj,p)γ`t

)
= Tr

(
ϑ
tpµ/λ
µ , (Lµj,p)γ`t

)
.

By Corollary 5.15 we can identify Lµj,p with the K-vector space

Lb(µ)⊕ Lb(µ)ϑb ⊕ · · · ⊕ Lb(µ)ϑ
pb/µ−1
b ,

where the action of Sr,p,n(b) on Lµj,p is determined by

a) Lµj,p ↓
Sr,p,n(b)
Sd,b

∼= Lb(µ)⊕ Lb(µ)ϑ
−1
b ⊕ · · · ⊕ Lb(µ)ϑ

1−pb/µ
b ,

b) (xϑab)ϑcb = xϑa+cb , for all x ∈ Lb(µ) and a, c ∈ Z,
c) ϑµ acts as the scalar εjoµgµ on the highest weight vector of Lb(µ).

Note that pµ/λ = m/m′ ∈ N, since µ ∈P l
d,b, and ϑµ = ϑ

pb/µ
b = ϑ

pλ/µ
λ . Therefore,

Tr
(
ϑtλ, (L

µ
j,p)γ`t

)
= Tr

(
ϑ
tpµ/λ
µ , (Lµj,pµ)γ`t

)
= pb/µTr

(
ϑ
tpµ/λ
µ , Lb(µ)γ`t

)
.

To compute this trace first observe that if ϕtµ is the highest weight vector of Lb(µ)
then, by (c) above (which comes from Corollary 5.15),

(5.25) ϕtµϑ
t
λ = εjtmg

tpµ/λ
µ ϕtµ .

Now, p = `tltm = `tltpµ/λm
′ so we can identify the two modules Lb(µ) and

Lbltm
(µltm)⊗`t . Using Lemma 5.8, if 1 ≤ j ≤ p/`t then

(5.26) ϕ
(j)
STϑ

t
λ = ε−mtkϑtλϕ

(tm+j)
ST

for some k ∈ Z, where we identity ϕ
(j)
ST and ϕ

(j′)
ST if j ≡ j′ (mod p). Therefore,

since ϕtµ generates Lb(µ), it follows from (5.25) and (5.26) that each simple p-
tensor

β = (x
(1)
1 ⊗ · · · ⊗ x

(1)
ltm

)⊗ · · · ⊗ (x
(`t)
1 ⊗ · · · ⊗ x(`t)ltm

)

in Lb(µ)γ`t is mapped by ϑtλ = ϑ
tpµ/λ
µ to a scalar multiple of

(x
(tm+1)
1 ⊗ · · · ⊗ x(tm+1)

ltm
)⊗ · · · ⊗ (x

(tm+`t)
1 ⊗ · · · ⊗ x(tm+`t)

ltm
),

where we identity x
(j)
i = x

(j′)
i whenever j ≡ j′ (mod `t) for 1 ≤ i ≤ ltm. Thus,

to calculate Tr
(
ϑtλ, Lb(µ)

)
we only need to consider the case when x

(s)
i = x

(tm+s)
i ,

for all 1 ≤ i ≤ ltm and all 1 ≤ s ≤ `t. By construction, (tm)/(ltm) 6≡ 0 (mod `t),
so this can only happen if

x
(s)
i = x

(s′)
i , whenever 1 ≤ i ≤ ltm and 1 ≤ s, s′ ≤ `t.

Consequently, β contributes to the twining character only if β = β ⊗ · · · ⊗ β
(`t times), for some β ∈ Lbltm

(µltm). Notice that if β ∈ Lbltm
(µltm)γ , for some

γ ∈ Pr/`t,n/`t then β ∈ Lb(µ)γ`t . In particular, this shows that ϑtλ stabilizes
Lbltm

(µltm)γ as we claimed when introducing the twining character.

In (5.25) we have already shown that ϑtλ acts as multiplication by εjtmg
tpµ/λ
µ

on the highest weight vector of Lbltm
(µltm)⊗`t . On the other hand, by (5.26) and

abusing the notation of Lemma 5.8 slightly, if 1 ≤ j ≤ `t then(
ϕ
(j)
ST

)⊗`t
ϑtλ = ε−mt`tkϑtλ

(
ϕ
(j)
ST

)⊗`t
= ϑtλ

(
ϕ
(j)
ST

)⊗`t
,
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where the last equality follows because mt`t = p(t/lt) is divisible by p. Therefore,
writing β⊗`t = ϕtµϕ

⊗`t , for some ϕ ∈ Sltm,bltm
, we have that

β⊗`tϑtλ = ϕtµϕ
⊗`tϑtλ = ϕtµϑ

t
λϕ
⊗`t = εjtmg

tpµ/λ
µ ϕtµϕ

⊗`t = εjtmg
tpµ/λ
µ β⊗`t ,

where the third equality uses (5.25). Consequently,

Tr
(
ϑtλ,

(
Lµj,p

)
γ`t

)
= pb/µε

jtmg
tpµ/λ
µ dimLbltm

(µltm)γ .

Summing over P l
d,b gives the desired formula for chl

t

(
Lµj,p

)
and completes the

proof. �

5.27. Corollary. Suppose that λ,µ ∈ P l
d,b, and 0 ≤ t < l = pλ, l′ = pµ. Then

in K

pµ/λ

( gλ

g
pµ/λ
µ

)t
d ltλm,µm = εtmd

(1)
λµ + ε2tmd

(2)
λµ + · · ·+ εl

′tmd
(l′)
λµ .

Proof. If t = 0 then the result is just Lemma 5.23(c). If t 6= 1 then combining
Lemma 5.24 and Lemma 5.23(b) shows that

ch ∆bm(λm)⊗lt =
∑

µ∈P l
d,b

∑
1≤j≤pµ

εjmtd
(j)
λµ

pb/µg
tpµ/λ
µ

pb/λg
t
λ

chLbm(µm)⊗lt .

On the other hand, by Lemma 5.23(a),

ch ∆bm(λm)⊗lt =
∑

µ∈P l
d,b

d ltλmµm chLbm(µm)⊗lt .

As the characters {chLbm(νm)} are linearly independent, comparing the coefficient
of chLbm(µm) on both sides gives the result. �

5.28. Corollary. Suppose that l divides p, λ,µ ∈ P l
d,b, 0 ≤ t < l and that pλ =

pµ = l. Then in K(gλ
gµ

)t
d ltλmµm = εtmd

(1)
λµ + ε2tmd

(2)
λµ + · · ·+ εltmd

(l)
λµ.

We can now complete the proof of the main results of this paper. Recall from
just before Theorem D in the introduction that we defined matrices V (l) and Vi(l),
whenever l divides p and 1 ≤ i ≤ l. Let charK be the characteristic of the field K.

5.29. Theorem. Suppose that λ,µ ∈ Pd,b and pλ = l = pλ, for some b ∈ Cp,n.
Then, for 1 ≤ j ≤ pλ,

[∆λ
0,p : Lµj,p] ≡

detVj(l)

detV (l)
(mod charK).

In particular, [∆λ
0,p : Lµj,p] =

detVj(l)
detV (l) if K is a field of characteristic zero.

Proof. By Corollary 5.28 the decomposition numbers d
(1)
λµ, . . . , d

(l)
λµ satisfy the ma-

trix equation

V (l)


d
(1)
λµ
...

d
(l)
λmµm

 =


(
gλ
gµ

)0
d l0λmµm
...(

gλ
gµ

)l−1
d
l(l−1)

λm,µm


Hence, the theorem follows by Cramer’s rule. �

Recall that the decomposition number [∆λ
i,p : Lµj,p] is l-splittable if pλ = l = pµ,

for 1 ≤ i, j ≤ pλ. Combining Corollary 5.20, (5.21) and Theorem 5.29 we can now
compute the l-splittable decomposition numbers of Sr,p,n(b) and Hr,p,n.
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5.30. Corollary. Suppose that λ,µ ∈Pd,b, for some b ∈ Cp,n, and that pλ = pµ.
Then, for 1 ≤ i, j ≤ pλ,

[Sλi : Dµj ] = [∆λ
i,p : Lµj,p] ≡

detVj−i(l)

detV (l)
(mod charK).

In particular, this establishes Theorem D from the introduction. Finally, we are
able to prove Theorem A, our Main Theorem from the introduction.

Proof of Theorem A. By [23, Theorem B] the decomposition numbers of Hr,p,n

are completely determined by the l-splittable decomposition numbers of the Hecke
algebras Hs,l,m, where l divides p, 1 ≤ s ≤ r and 1 ≤ m ≤ n. Hence, Theorem A
follows from Corollary 5.30. �

We remind the reader that the polynomials ḟλ = ε̇
1
2dmn(1−pλ)(ġλ)pλ are com-

pletely determined by Theorem 3.6. Hence, this result explicitly determines the
l-splittable decomposition numbers of Sr,p,n (and of Hr,p,n).

When K is a field of positive characteristic the results above only determine the
l-splittable decomposition numbers of Sr,p,n and Hr,p,n modulo the characteristic
of K.
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