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1. Introduction

Surfaces of non–zero constant mean curvature in Euclidean 3–space are stud-
ied from a variety of different view points. These surfaces are critical with
respect to the variation of area with constrained volume and their Euler–
Lagrange equation is an important example of a geometric non–linear ellip-
tic partial differential equation [27, 15, 19, 10]. Constant mean curvature
surfaces also have a deep connection with the theory of integrable systems
since the Gauss–Codazzi equation is a well known soliton equation, namely
the sinh–Gordon equation. This has led to a complete classification of con-
stant mean curvature tori in terms of periodic linear flows on Jacobians of
hyperelliptic algebraic curves [20, 13, 2, 8, 14].
The essential ingredient of the integrable systems approach is that a sur-
face f : M → R3 of constant mean curvature has an associated S1-family of
constant mean curvature surfaces fµ, obtained by rotating the Hopf differ-
ential of f by µ ∈ S1. The surfaces fµ generally develop translational and
rotational periods in R3 if M has non–trivial topology. Extending the circle
parameter, also called the spectral parameter, to µ ∈ CP1 one obtains a ra-
tional family of flat SL(2,C) connections ∇µ over the surface M with simple
poles at µ = 0,∞. This family is unitary along the unit circle µ ∈ S1 where
it describes the associated family of constant mean curvature surfaces fµ.
When M = T 2 is a torus, the holonomy representation Hµ of the family ∇µ
with respect to a chosen base point p on T 2 is abelian and hence has simul-
taneous eigenlines. These eigenlines define a hyperelliptic algebraic curve Σe

over the µ–parameter space CP1, together with a holomorphic line bundle
E(p) over Σe. Changing the base point p ∈ T 2 does not change this eigenline
spectral curve Σe, but the eigenline bundles E(p) sweep out a 2–dimensional
subtorus of the Jacobian of Σe.
Recently a more general notion of a spectral curve has been introduced
[4, 25, 23] for any conformally immersed torus f : T 2 → S4. This multi-
plier spectral curve Σm does not rely upon the existence of a family of flat
connections and it arises rather geometrically as a desingularisation of the
set of all Darboux transforms of f . By a Darboux transform of f we mean
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a conformally immersed torus f̂ : T 2 → S4 for which there is a 2–sphere
congruence along f touching f and half–touching f̂ . Darboux transforms
include the classical Darboux transforms for which f̂ also touches, rather
than merely half–touches, the said sphere congruence. In the classical case
both surfaces f and f̂ are isothermic. Analytically the multiplier spectral
curve of a conformally immersed torus f is given by the possible holonomies,
or “multipliers”, of quaternionic holomorphic sections for the quaternionic
holomorphic structure D induced by f on the quaternionic bundle V/L.
Here L is the pull–back under f of the tautological bundle over S4 = HP1

and V is the trivial H2–bundle. Generically there is (up to scale) exactly
one quaternionic holomorphic section for a given multiplier in Σm and one
thereby obtains a T 2-family of holomorphic line bundles, the kernel bundles,
over the multiplier spectral curve. Again, in the case when Σm has finite
genus, this T 2 family of holomorphic line bundles sweeps out a subtorus [5]
of the Jacobian of Σm. The Darboux transform of f corresponding to a
multiplier h ∈ Σm is then given by f̂ = ϕ̂H, where ϕ̂ is the prolongation to
V of the quaternionic holomorphic section ϕ of V/L with holonomy h.
This paper discusses this general approach to spectral curves in the context
of constant mean curvature tori in R3: what are the geometric properties
of the Darboux transforms of a constant mean curvature torus? Are the
two spectral curves the same and how do the eigenline and kernel bundles
relate?
The first question we can answer even locally: given a (simply connected)
constant mean curvature surface f : M → R3 any parallel section of the
flat connection ∇µ is quaternionic holomorphic since the connections ∇µ
all induce the same quaternionic holomorphic structure D on V/L. The
prolongation of any such parallel section is therefore a Darboux transform
of f , which we call a µ-Darboux transform. Note that there is a CP1-worth
of parallel sections to a given µ. We show that all µ–Darboux transforms of
the constant mean curvature surface f : M → R3 are again constant mean
curvature surfaces, albeit in a parallel translated R3 ⊂ R4. Amongst the
classical Darboux transforms of f in R3, those which have constant mean
curvature form a 3-dimensional hyper-surface [12]. We show that this hyper-
surface consists entirely of µ-Darboux transforms with µ ∈ R \ {0, 1}. For
non-real µ the only other µ-Darboux transforms which are classical occur
for unitary µ and give the parallel constant mean curvature surface.
The second question concerns the global existence of Darboux transforms of
a constant mean curvature torus f : T 2 → R3. Away from the points P0, P∞
over µ = 0,∞ a point x on the eigenline spectral curve Σe of f is described
by a parallel section of ∇µ with holonomy. This section therefore gives a
µ-Darboux transform f̂x : T 2 → S4 defined on the same 2–torus and its ho-
lonomy defines a map h into the multiplier spectral curve Σm. This map
does not extend to an isomorphism of the two curves; the eigenline curve is
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algebraic and generically smooth whereas the multiplier curve is always sin-
gular and may have infinite arithmetic genus. This discrepancy is resolved
by desingularising: the lift of the map h to the normalisations extends holo-
morphically, thereby compactifying the normalisation of the multiplier spec-
tral curve and yielding a biholomorphism of the two desingularised curves.
The µ-Darboux transforms limit to the original constant mean curvature
torus at P0 and P∞, yielding a geometric method for recovering the original
surface. A similar result has been proven in the more general context of
conformally immersed tori in the 4-sphere having finite spectral genus [4].
However, we utilise the existence of a family of flat connections in the con-
stant mean curvature case to give a considerably simpler proof. Since the
kernel and eigenline bundles lift to holomorphic line bundles which agree by
construction away from a discrete set of points, they are the same bundle on
the identified normalisations of the two spectral curves. This implies that
any Darboux transform of a constant mean curvature torus f : T 2 → R3

which is parameterised by the multiplier curve is a µ-Darboux transform
and hence also a torus of constant mean curvature in R3. However not all
Darboux transforms or even all classical Darboux transforms of a constant
mean curvature torus must again have constant mean curvature [1, 17]. The
space of all Darboux transforms may, in addition to the multiplier curve,
contain countably many quaternionic and complex projective spaces. There
may similarly be many µ–Darboux transforms which are not parameterised
by the eigenline curve, and in the appendix we study the simple example
of the standard cylinder and show that these correspond to the adding of
bubbletons to the original constant mean curvature surface.

2. Darboux Transformations

We model the conformal geometry of the 4–sphere by the quaternionic pro-
jective line S4 = HP1 on which the group of orientation preserving Möbius
transformations acts by GL(2,H). A map f : M → S4 can be considered as
a line subbundle L ⊂ V of the trivial H2 bundle V = H2, where the fibers
of L are given by Lp = f(p) for p ∈ M . In other words, L = f∗T is the
pullback of the tautological line bundle T over HP1. Identifying the tangent
bundle of HP1 with Hom(T ,H2/T ) the derivative of f is given by

(1) δ = πd|L ∈ Ω1(Hom(L, V/L)) ,

where d is the trivial connection on V and π : V → V/L is the canonical
projection. Throughout the paper we denote by Hom(W1,W2) the real
vector space of quaternionic linear maps between quaternionic (right) vector
spaces W1 and W2. An immersion f : M → S4 is conformal [6] if and only if
there exist complex structures J ∈ Γ(End(V/L)) on V/L and J̃ ∈ Γ(End(L))
on L such that

(2) ∗ δ = Jδ = δJ̃ ,
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where ∗ is the conformal structure on T ∗M .
An oriented round 2–sphere in S4 = HP1 is described by a complex structure
S ∈ End(H2), S2 = −1: points on the sphere are the fixed lines of S. In
particular, the corresponding line subbundle LS ⊂ V of the embedded round
sphere S satisfies SLS = LS . Hence S induces complex structures J on V/LS
and J̃ on LS and the conformality equation of the sphere S is

∗δS = SδS = δSS .

A sphere congruence assigns to each point p ∈M an oriented round sphere
S(p) in S4. In other words, a sphere congruence is a complex structure
S ∈ Γ(End(V )) on the trivial H2–bundle V . Given a conformal immersion
f : M → S4 with associated line bundle L = f∗T , a sphere congruence S
envelopes f if for all p ∈ M the sphere S(p) passes through f(p) and the
oriented tangent plane to f and to S(p) at f(p) coincide:

(3) SL = L, and ∗ δ = Sδ = δS .

Note that S induces the complex structures J = SV/L and J̃ = S|L given
by the conformality (2) of f .
Let ω ∈ Ω1(W ) be a 1–form on M with values in a vector bundle W . If
W is equipped with a complex structure J ∈ Γ(End(W )), J2 = −1, we can
decompose ω into its (1, 0) and (0, 1)–parts with respect to J , that is

ω = ω′ + ω′′

where
ω′ =

1
2

(ω − J ∗ ω), ω′′ =
1
2

(ω + J ∗ ω) .

We denote by Γ(KW ) and Γ(K̄W ) the (1, 0) respectively (0, 1)–forms with
values in the complex bundle (W,J). For instance, if f : M → S4 is a
conformal immersion its derivative δ ∈ Γ(K Hom(L, V/L)) is a (1, 0)–form
by (2).
A conformal immersion f : M → S4 induces [4] an elliptic first order differ-
ential operator

D : Γ(V/L)→ Γ(K̄V/L),
a so–called quaternionic holomorphic structure on V/L given by

(4) Dϕ = (πdϕ̃)′′ .

Here ϕ̃ ∈ Γ(V ) is an arbitrary lift of ϕ ∈ Γ(V/L) under π. The holomorphic
structure D is well–defined since πd|L = δ ∈ Γ(K Hom(L, V/L)) and thus
Dψ = (δψ)′′ = 0 for ψ ∈ Γ(L). We denote by

H0(V/L) = kerD

the space of holomorphic sections of V/L.
An important property of the holomorphic structure D is that f is given as
a quotient of holomorphic sections and Darboux transforms of f are given
by prolongations of holomorphic sections. If W →M is a quaternionic line
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bundle over M we write W̃ for its pull–back to the universal cover M̃ . A
section ϕ ∈ Γ(W̃ ) with monodromy is one which satisfies

γ∗ϕ = ϕhγ , hγ ∈ H∗

for a representation h of the fundamental group π1(M) acting by deck trans-
formations on M̃ .

Lemma 2.1 ([4]). Let f : M → S4 be a conformal immersion, L ⊂ V the
associated line subbundle of V and ϕ ∈ H0(Ṽ/L) a non–trivial holomorphic
section. Then ϕ has a unique lift, with respect to the projection π : V → V/L,
to a section ϕ̂ ∈ Γ(Ṽ ) such that

(5) πdϕ̂ = 0 .

Away from its (isolated) zeros the prolongation ϕ̂ of ϕ defines a confor-
mal map f̂ : M̃ → S4, namely f̂(p) = ϕ̂(p)H. If the holomorphic section
ϕ ∈ H0(Ṽ/L) has monodromy then ϕ̂ has the same monodromy and thus f̂
descends to a conformal map f̂ : M → S4.

Definition 2.2. Let f : M → S4 be a conformal immersion and L ⊂ V

be the associated line subbundle of V . Conformal maps f̂ defined (away
from isolated points) by holomorphic sections of Ṽ/L are called Darboux
transforms of f .

Darboux transforms naturally generalise the classical Darboux transforms
since f̂ is a Darboux transform of f if and only if (away from isolated points)
there exists a sphere congruence S enveloping f and left–enveloping f̂ [4].
To say that S left–envelopes f̂ means that

(6) SL̂ = L̂ and ∗ δ̂ = Sδ̂ ,

the latter expressing only half of the enveloping condition (3).

Definition 2.3. Let f : M → S4 be a conformal immersion. A conformal
map f ] : M → S4 is called a classical Darboux transform of f if f(p) 6= f ](p)
for all p ∈M and if there exists a sphere congruence enveloping both f and
f ]. In this case (f, f ]) is called a classical Darboux pair.

Darboux [7] showed that (f, f ]) form a classical Darboux pair if and only
if f and f ] are both isothermic, that is f and f ] allow conformal curvature
line parametrisations away from umbilic points.
We now express the condition for (f, f ]) to be a classical Darboux pair in
terms of the derivatives δ and δ] of f and f ]. Given two surfaces f, f ] :
M → S4 with f(p) 6= f ](p) for all p ∈M , the trivial H2–bundle V splits as

V = L⊕ L] .
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We write the trivial connection d on V in this splitting as

d =
(
∇L δ]

δ ∇]
)
,

where ∇L and ∇] are connections on L and L] respectively. Moreover,

δ ∈ Ω1(Hom(L,L])) and δ] ∈ Ω1(Hom(L], L)) ,

are the derivatives of f and f ] when we identify V/L = L] and V/L] = L
via the bundle isomorphisms π|L] : L] → V/L and π]|L : L→ V/L].

Lemma 2.4 ([6]). Let f, f ] : M → S4 be conformal immersions. Then
(f, f ]) is a classical Darboux pair if and only if L⊕ L] = V , and

(7) δ] ∧ δ = δ ∧ δ] = 0 .

Proof. Let (f, f ]) be a classical Darboux pair with enveloping sphere con-
gruence S. Then

∗δ = Sδ = δS and ∗ δ] = Sδ] = δ]S

say that δ and δ] have type (1, 0) with respect to the complex structure S
and so

δ ∧ δ] = δ] ∧ δ = 0 .

Conversely, the conformality equations

∗δ = Jδ = δJ̃ and ∗ δ] = J ]δ] = δ]J̃ ]

for f and f ] together with (7) give J̃ = J ] and J̃ ] = J . Hence the complex
structure

S =
(
J ] 0
0 J

)
expressed in the splitting V = L ⊕ L] envelopes f and f ] and therefore
(f, f ]) form a classical Darboux pair. �

So far our considerations have been Möbius invariant. Choosing a point at
infinity ∞ ∈ S4, lying neither on f nor f ], we can consider f, f ] : M → H
as maps into Euclidean 4–space. Then we can write f ] = f + T with
T : M → H∗ provided that for all p ∈ M , we have f(p) 6= f ](p). We may

take ∞ = eH with e =
(

1
0

)
∈ H2 so that

(8) ψ =
(
f
1

)
∈ Γ(L), ψ] =

(
f ]

1

)
∈ Γ(L])

give trivialisations of L and L] respectively. The derivatives of f and f ] in
the splitting V = L⊕ L] then calculate to

(9) δψ = prL]
(
df
0

)
= ψ]T−1df and δ]ψ] = prL

(
df ]

0

)
= −ψT−1df ] .
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If f and f ] are a classical Darboux pair, then (7) yields

(10) T−1df ]T−1 ∧ df = df ∧ T−1df ]T−1 = 0 ,

and thus

d(T−1df ]T−1) = −T−1dTT−1 ∧ df ]T−1 + T−1df ] ∧ T−1dTT−1 = 0 ,

where we used df ] = df + dT . Therefore, locally T−1f ]T−1 = fd for a
conformal immersion fd : M → R4 satifisfying

(11) df ∧ dfd = dfd ∧ df = 0 .

A conformal map fd : M → R4 satisfying (11) is called a dual surface to f . If
a dual surface exists it is unique up to translation and a real scaling [11]. As
we have seen any isothermic surface f : M → R4 admits a dual surface fd.
The converse also holds as can be seen by reversing the above calculations:
we obtain classical Darboux transforms f ] by solving the Riccati equation

(12) dT = −df + TdfdT

and putting f ] = f + T : M → R4. This is a well–known description of
isothermic surfaces via their dual surfaces [12].

3. Constant mean curvature surfaces

We now turn to the case when the immersion f : M → R3 has constant
mean curvature. Then f is isothermic and applying the classical Darboux
transformation we obtain isothermic surfaces. These have constant mean
curvature when the initial condition for the Riccati equation (12) is chosen
appropriately [12]. On the other hand, a surface of constant mean curvature
has an associated C∗–family of flat connections ∇µ. We show that the
parallel sections of these connections give rise to Darboux transforms of f
which we call µ–Darboux transforms. Only for special values of the spectral
parameter µ do they become classical Darboux transforms.
We view R3 = Im H as the imaginary quaternions. Then the Gauss map
N : M → S2 ⊂ R3 of a conformal immersion f : M → R3 satisfies

∗df = Ndf = −dfN
and N is harmonic if and only if f has constant mean curvature [22]. The
harmonicity condition for N : M → S2 ⊂ R3 is given by

(13) d(dN)′′ = 0

where (dN)′′ = 1
2(dN +N ∗ dN) is the (0,1)–part of dN with respect to N .

Note that N is a complex structure since N2 = −1. The splitting of dN

dN = (dN)′ + (dN)′′

into (1, 0) and (0, 1)–parts is [6, p.40] the decomposition of the shape oper-
ator into trace and tracefree parts so that

(14) (dN)′ = −Hdf,
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where H is the mean curvature of f . With this normalisation the mean
curvature of the unit sphere with respect to the inward normal is H = 1.
From now on we assume that we have scaled our constant mean curvature
surfaces so that H = 1. Then the parallel constant mean curvature surface

g = f +N

satisfies dg = (dN)′′ and thus type considerations give dg∧df = df ∧dg = 0 .
In other words, if f : M → R3 has constant mean curvature then the parallel
surface g = f + N is a dual surface of f which shows that f is isothermic.
We consider f : M → R3 as a conformal immersion into S4 via(

f
1

)
H : M → HP1 ,

where the point at infinity is eH with e =
(

1
0

)
∈ H2. The conformality of

f gives complex structures J on V/L and J̃ on L satisfying (2). Identifying
V/L with eH via the splitting V = L ⊕ eH these complex structures are
given by

(15) Je = eN and J̃ψ = −ψN

for the trivialising section ψ =
(
f
1

)
of L. In particular, for a constant mean

curvature surface the complex structure J ∈ Γ(End(V/L)) is harmonic.
Let ∇ denote the trivial connection on V/L = eH induced by the trivial
connection d on V = H2. From (15) and (13) we see that the harmonicity
equation for J is

d∇(∇J)′′ = 0 .

With the notation

(∇J)′ = −2 ∗A and (∇J)′′ = 2 ∗Q

for the (1, 0) and (0, 1) parts, the harmonicity of J becomes

(16) d∇ ∗A = 0 or equivalently d∇ ∗Q = 0 .

Since J2 = −1 we see that ∇J anticommutes with J and therefore

∗A = JA = −AJ and ∗Q = −JQ = QJ .

To reformulate the harmonicity of J as a C∗–family of flat SL(2,C)-con-
nections we introduce the constant complex structure I, which is defined
as right multiplication Iϕ = ϕi by the quaternion i. With this complex
structure V/L = C2 can be viewed as a trivial C2-bundle. The next lemma
is a variant [9] of the well-known formulation of harmonicity in terms of
families of flat connections.
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Lemma 3.1. Let J ∈ Γ(End(V/L)) be a complex structure on V/L with flat
connection ∇. Then J is harmonic if and only if the complex connections

∇µ = ∇+ ∗A(J
µ+ µ−1 − 2

2
+
µ−1 − µ

2
I)

on the complex bundle (V/L, I) are flat for all µ = u+ Iv 6= 0, u, v ∈ R.

Remark 3.2. There are a number of useful ways to rewrite the family of
flat connections ∇µ. If we put

a =
µ+ µ−1

2
, b =

µ−1 − µ
2

I

then a2 + b2 = 1 and

(17) ∇µ = ∇+ ∗A(J(a− 1) + b) = ∇+ (a− 1 + Jb)A ,

where we used ∗A = JA = −AJ and [A, I] = 0. On the other hand, using
the type decomposition

A(1,0) =
1
2

(A− I ∗A), A(0,1) =
1
2

(A+ I ∗A)

of A with respect to the complex structure I, we obtain

(18) ∇µ = ∇+ (µ− 1)A(1,0) + (µ−1 − 1)A(0,1) .

Note that for µ ∈ S1, that is a, b ∈ R, the connection ∇µ is in fact quater-
nionic whereas ∇µ is a complex connection for µ 6∈ S1 since the complex
structure I is not quaternionic linear. Moreover, we see from (18) that

(19) (∇µφ)j = ∇µ̄−1
(φj)

for φ ∈ Γ(V/L).

Proof of Lemma 3.1. We have∇J = 2(∗Q−∗A), and by type considerations
we see that A ∧Q = 0, so

d∇(∗AJ) = (d∇ ∗A)J − ∗A ∧∇J = (d∇ ∗A)J + 2 ∗A ∧ ∗A .

From this the curvature of ∇µ computes to

Rµ = (d∇ ∗A)(J(a− 1) + b)

where we used [A, I] = 0 and a2 + b2 = 1. This shows that ∇µ is a flat
connection for every µ ∈ C∗ precisely when d∇ ∗ A = 0, that is, if and only
if J is harmonic. �

The parallel sections of ∇µ for µ ∈ C∗ can be given a geometric interpre-
tation in terms of Darboux transforms of f . One observes from (4) that
the trivial connection ∇ is compatible with the holomorphic structure D on
V/L, that is ∇′′ = D. Since ∗A = JA, equation (17) then shows that also

(∇µ)′′ = D .
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Hence ∇µ–parallel sections of V/L are in particular holomorphic without
zeros and their prolongations give Darboux transforms f̂ of f defined on all
of M̃ . Since f(p) 6= f̂(p) for all p ∈ M̃ we have the splitting L⊕ L̂ = V .

Definition 3.3. Let f : M → R3 be a constant mean curvature surface. The
Darboux transforms f̂ : M̃ → S4 given by sections of Ṽ/L that are parallel
with respect to ∇µ for µ ∈ C∗ are called µ–Darboux transforms of f .

Figure 1. Closed µ–Darboux transform of a nodoid.

If M has topology it is generally difficult to decide whether a constant mean
curvature surface f has a µ–Darboux transform f̂ defined on M rather than
on its universal covering M̃ . If M is a 2–torus this question leads to the
notion of the spectral curve which we will address in section 4. For now
we are only interested in the local properties of µ–Darboux transforms f̂
and assume that M is simply connected. Then there is a CP1–worth of ∇µ–
parallel sections for each µ ∈ C∗ and thus the space of µ–Darboux transforms
is parameterised by C∗ × CP1.

Figure 2. Non-closed µ–Darboux transform of an unduloid.

To better understand the geometry of µ-Darboux transforms we reinterpret
the prolongation in terms of a bundle homomorphism, the prolongation map.
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Let ϕ ∈ Γ(V/L) be a∇µ–parallel section. The splitting V = L⊕eH identifies
V/L = eH so that the prolongation

(20) ϕ̂ = ϕ+ B̂ϕ

of the nowhere vanishing section ϕ defines an H–linear bundle map

B̂ : eH→ L .

From 0 = π∇ϕ̂ and ∇µϕ = 0 we deduce

(21) δB̂ϕ = ∗A(J(a− 1) + b)ϕ .

Here a = µ+µ−1

2 , b = µ−1−µ
2 I for µ ∈ C∗ with respect to the constant complex

structure I on V/L given by right multiplication by the quaternion i. We
denote by Î the quaternionic linear complex structure on V/L given by the
quaternionic linear extension of I on ϕ, that is, Îϕ = ϕi. Furthermore,
â, b̂ ∈ Γ(End(V/L) denote the quaternionic linear bundle maps obtained
from a, b by replacing I with Î. Then

(22) δB̂ = ∗A(J(â− 1) + b̂) ∈ Γ(End(V/L))

and

(23) ∇̂µ = ∇+ ∗A(J(â− 1) + b̂)

is a family of flat quaternionic connections on V/L with

(24) ∇̂µÎ = 0 .

Note that Î and therefore ∇̂µ depend on the choice of the∇µ–parallel section
ϕ. We indicate this dependence by decorating ϕ dependent quantities by
the “hat” symbol. In what follows we abbreviate

(25) Ĉ = J(â− 1) + b̂

and thus (22) becomes

(26) δB̂ = ∗AĈ .

In order to see that a µ–Darboux transform f̂ of a constant mean curvature
surface f is up to translation in R4 a constant mean curvature surface in
R3, we need to compare geometric data of f and f̂ with respect to the same
choice of point at infinity ∞ = eH. For that we need to see that f̂ does not
pass through ∞. Since f is an immersion its derivative δ has no zeros, so as
δ and ∗A have the same type,

(27) ∗A = δR

for R ∈ Γ(Hom(V/L,L)). Evaluating both sides of (27) on the constant
section e we obtain Re = 1

2ψ where we recall (14), (15) and the trivialising
section ψ ∈ Γ(L) from (8). This shows that R is nowhere vanishing and
parallel with respect to the connection induced by ∇ on V/L and ∇L on
L. Now f̂ passes through ∞ if and only if the prolongation ϕ̂ = ϕ + B̂ϕ
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of the ∇µ parallel section ϕ ∈ Γ(V/L) giving rise to f̂ has ϕ̂(p) ∈ eH and
thus B̂(p) = 0 for some p ∈ M . But δ and thus by (27) also ∗A have
no zeros by the assumption that f is immersed. Therefore (26) shows that
Ĉ = J(â−1)+b̂ has to vanish at p which implies µ = 1. In this case ∇̂µ = ∇,
the prolongation ϕ̂ is constant and f̂ is the point ∞. In the considerations
to follow, we always assume µ 6= 1, and in particular, both B̂ and Ĉ are
nowhere vanishing.

Lemma 3.4. Let f : M → R3 be a conformal immersion of constant mean
curvature with ∗δ = Jδ = δJ̃ and f̂ : M → S4 a non–constant µ–Darboux
transform of f . Then the derivative of f̂ , expressed in the splitting in V =
L̂⊕ eH, is given by

(28) δ̂R̂ = ∗Â .

Here R̂ = Ĉ−1 + R and −2Â = 1
2(∇Ĵ − Ĵ ∗ ∇Ĵ) is the (1, 0)–part of the

derivative of the complex structure

Ĵ = −Ĉ−1JĈ .

Moreover, Ĵ is harmonic and f̂ is conformal with ∗δ̂ = Ĵ δ̂ = δ̂
˜̂
J where˜̂

J = −R̂ĴR̂−1 .

Proof. Let ϕ be a ∇µ parallel section, ϕ̂ = ϕ + B̂ϕ its prolongation, and
L̂ = ϕ̂H the corresponding µ–Darboux transform. Using (26) and the de-
composition

d =
(
∇L 0
δ ∇

)
of d in the splitting V = L⊕ eH we get

dϕ̂ = ∇ϕ+∇L(B̂ϕ) + δ(B̂ϕ) = (∇B̂)ϕ− B̂δB̂ϕ .

For φ ∈ L we have

φ = (φ+ B̂−1φ)− B̂−1φ ∈ L̂⊕ eH ,

which shows that −B̂−1 ∈ Hom(L, eH) is the projection of L onto eH.
Calculating δ̂ϕ̂ = πbLdϕ̂ we obtain with dϕ̂ ∈ Ω1(L) that

(29) δ̂ = (−B̂−1(∇B̂) + δB̂)(1 + B̂)−1 ,

where we also used ϕ̂ = (1 + B̂)ϕ. Recalling (26) and (27) and the fact that
R is parallel, we get

(30) − B̂−1(∇B̂) + δB̂ = −Ĉ−1∇Ĉ + ∗AĈ .

Furthermore, since ∇̂µÎ = 0 we have ∇Î = −[∗AĈ, Î] and

∇Ĉ = 2 ∗Q(â− 1) + Ĉ ∗AĈ + ∗A(−2(â− 1) + JĈ(â− 1)− Ĉb̂) .
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But since â2+b̂2 = 1 and Ĉ = J(â−1)+b̂ we have−2(â−1)+JĈ(â−1)−Ĉb̂ =
0, or equivalently

(31) Ĵ =
b̂

1− â
− 2Ĉ−1 .

Thus we conclude that

(32) ∇Ĉ = 2 ∗Q(â− 1) + Ĉ ∗AĈ .
This Riccati type equation together with (29) and (30) yields

(33) δ̂ = −2Ĉ−1 ∗Q(â− 1)(1 + B̂)−1 ,

and, since ∗Q = −J ∗Q, we also have ∗δ̂ = Ĵ δ̂ with Ĵ = −Ĉ−1JĈ.

On the other hand, the derivative of Ĵ computes to

∇Ĵ = Ĉ−1
(

2 ∗Q
(
J(â− 1)− (â− 1)Ĵ

)
−
(
ĈJ + JĈ) ∗AĈ − (∇J)Ĉ

)
,

so that its (1, 0)–part with respect to Ĵ is given by

(∇Ĵ)′ = −2Ĉ−1 ∗Q
(

(â− 1)Ĵ + b̂
)
.

Using (31) we thus obtain

(34) ∗ Â = −1
2

(∇Ĵ)′ = −2Ĉ−1 ∗Q(â− 1)Ĉ−1 .

Comparison with (33) gives together with (26) and (27)

δ̂R̂ = ∗Â

where R̂ = Ĉ−1 +R, and from ∗Â = ĴÂ = −ÂĴ we also see ∗δ̂ = Ĵ δ̂ = δ̂
˜̂
J .

Finally, by (34) and the Riccati type equation (32) we see that

∗Â = ∗A+∇Ĉ−1

is d∇-closed since d∇ ∗A = 0 by the harmonicity of J .
�

Notice that equation (33) shows that a µ–Darboux transform is constant if
and only if Q = 0 or â = 1. The first condition means that the Gauss map
N is holomorphic and thus f(M) is contained in a round sphere whilst the
second is equivalent to µ = 1.

Corollary 3.5. If f(M) is not contained in a round sphere, then a µ-
Darboux transform f̂ of f is constant if and only if µ = 1. In this case,
f̂ =∞.

Using Lemma 3.4 we arrive at our first main result that every µ-Darboux
transform of a constant mean curvature surface has constant mean curva-
ture.
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Theorem 3.6. Let f : M → R3 be a surface of constant mean curvature
H = 1. Then every µ-Darboux transform f̂ of f has constant real part and
when f̂ is not a point, Im (f̂) is a constant mean curvature surface in R3

with Ĥ = 1. In particular, for each µ = eiθ ∈ S1 \ {1} there is a unique
µ-Darboux transform of f , given by f̂ = g + cot θ2 , where g = f + N is the
parallel constant mean curvature surface of f .

Proof. Let ϕ be a∇µ–parallel section and f̂ the associated µ–Darboux trans-
form for µ 6= 1. Writing Ĉ−1e = 1

2eT̂ with T̂ : M → H∗ we have

(35) R̂e = (R+ Ĉ−1)e =
1
2

(
f + T̂

1

)
∈ Γ(L̂)

so that f̂ = f + T̂ . Moreover, the complex structures Ĵ = −Ĉ−1JĈ and˜̂
J = −R̂ĴR̂−1 satisfy

(36) Ĵe = eN̂ and ˜̂
Jψ̂ = −ψ̂N̂

with N̂ = −T̂NT̂−1 and ψ̂ = 2R̂e. In particular, ∗δ̂ψ̂ = Ĵ δ̂ψ̂ = δ̂
˜̂
Jψ̂ reads

in coordinates as
∗df̂ = N̂df̂ = −df̂N̂

so that df̂ takes values in R3, and f̂ has constant real part. Therefore, N̂
is the Gauss map of Im (f̂). From Lemma 3.4 we know that Ĵ is harmonic
and thus Im (f̂) has constant mean curvature. In fact, (28) shows that the
derivative of f̂ , and thus of Im (f̂), is e df̂ = −e(dN̂)′ so that the mean
curvature of Im (f̂) is Ĥ = 1. Writing ϕ = eα, then evaluating Ĉ on e gives

(37) eT̂−1 =
1
2
Ĉe =

1
2
e(Nα(a− 1)α−1 + αbα−1)

where µ, a = µ+µ−1

2 and b = µ−µ−1

2i are viewed as complex numbers. This
shows for µ ∈ S1, that is a, b ∈ R, that the µ-Darboux transform is given by

f̂ = f +N +
b

1− a
= g + cot θ2

and hence is a translate of the parallel constant mean curvature surface
g = f +N and is independent of the parallel section ϕ. �

Remark 3.7. Observe that (37) also shows that a µ–Darboux transform f̂
of f has vanishing real part for µ ∈ R∗. Furthermore, for µ ∈ C∗ \ (S1∪R∗)
the real part of a µ–Darboux transform is Re (f̂) = Im a

Im ((a−1)b̄−1) where a =
µ+µ−1

2 and b = µ−1−µ
2 I.

Remark 3.8. There are versions of Lemma 3.4 for other classes of im-
mersions given by a harmonicity condition. Analogues of Theorem 3.6 hold
for Hamiltonian stationary Lagrangian surfaces [18], and for (constrained)
Willmore surfaces in the 4–sphere [3].
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We conclude this section by determining which µ–Darboux transforms f̂ of
a constant mean curvature immersion f are classical. Since a µ–Darboux
transform f̂ is a Darboux transform there is a sphere congruence S envelop-
ing f and left–enveloping f̂ , hence satisfying (3) and (6). From arguments
analogous to those in the proof of Lemma 2.4 (see also [4]) it follows that
these enveloping conditions are equivalently described by δ ∧ δ̂ = 0. There-
fore, in order to see which µ–Darboux transforms are classical, we need by
Lemma 2.4 to investigate the condition δ̂∧ δ = 0 in the splitting V = L⊕ L̂.

Theorem 3.9. A non–constant µ–Darboux transform f̂ : M → R4 of a con-
stant mean curvature surface f : M → R3 is a classical Darboux transform
of f if and only if µ ∈ R∗ ∪ S1 \ {1}.

Note that by Remark 3.7 the µ-Darboux transform f̂ takes values in a
parallel translated R3 ⊂ R4 of distance cot θ2 where µ = eiθ. In particular,
f̂ takes values in the same R3 as f if and only if µ ∈ R \ {0, 1}.

Proof. Let ϕ ∈ Γ(V/L) be a parallel section of ∇µ and f̂ the Darboux
transform given by ϕ. From the definition of the prolongation map B̂ we
see that the decomposition of φ ∈ eH with respect to the splitting V = L⊕L̂
is

φ = (−B̂φ) + (1 + B̂)φ ∈ L⊕ L̂ .

Therefore, using equations (27) and (33) the derivatives of f and f̂ with
respect to this splitting are given by

δR = (1 + B̂) ∗A and δ̂(1 + B̂) = 2R ∗Q(â− 1) .

Since f̂ is not constant δ̂ has only isolated zeros and so does Q. Then

2R ∗Q(â− 1) ∧ ∗A = δ̂ ∧ δR = 0

if and only if ∗Q(â− 1) = Q(â− 1)J where we used ∗A = JA. Since Q has
isolated zeros this last is equivalent to [J, â− 1] = 0, that is

(38) (Im â)[J, Î] = 0 .

However the two complex structures J and Î commute only if Î = ±J . By
(24) and (23) this implies

0 = ∇̂µJ = 2(∗Q− ∗A) + [∗AĈ, J ] .

Considering the (0, 1)–part, this yields

∗Q = 0 ,

contradicting the assumption that f̂ is not constant. Therefore, (38) is equiv-
alent to Im â = 0, which shows that a non–constant µ–Darboux transform
is a classical Darboux transform if and only if µ ∈ R∗ ∪ S1 \ {1}. �
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Since the real part of a µ–Darboux transform f̂ of a constant mean cur-
vature surface f : M → R3 is constant only its imaginary part Im (f̂) is
geometrically relevant.

Theorem 3.10. Let f : M → R3 be a constant mean curvature surface and
f̂ a µ-Darboux transform. Then f̂ is a classical Darboux transform if and
only if Im (f̂) is.

Proof. If f̂ is a classical Darboux transform then by Theorem 3.6 and Re-
mark 3.7 either f̂ has vanishing real part or it is the parallel constant mean
curvature surface of f up to a real translation. Therefore Im f̂ is also a
classical Darboux transform. On the other hand, let us assume that Im (f̂)
is a classical Darboux transform. Then it follows from (10), (36) and the
fact that f̂ and Im (f̂) differ by a real constant that

N̂ = −T̂NT̂−1 = −Im (T̂ )N Im (T̂ )−1 ,

where T̂ = f̂ − f . Assuming Re (T̂ ) = Re (f̂) 6= 0 we conclude Im (T̂ ) = rN

with r : M → R and thus N̂ = −N . From Theorem 3.6 we know that
Im (f̂) is a constant mean curvature surface whose Gauss map is −N and
therefore Im (f̂) is the parallel constant mean curvature surface of f . Now
(31) and (37) imply that Re (T̂ ) = bb

1−ba which, using â2 + b̂2 = 1, shows that

â = Re ( bT )2−1

Re ( bT )2+1
∈ R and therefore µ ∈ S1. But then Theorem 3.9 implies that

f̂ is a classical Darboux transform. �

So far we have seen that µ–Darboux transforms are classical Darboux trans-
forms if and only if µ ∈ R∗ ∪ S1. We now turn to the question of which
classical Darboux transforms are µ–Darboux transforms.

Theorem 3.11. A classical Darboux transform f ] : M → R4 of a constant
mean curvature surface f : M → R3 is a µ–Darboux transform if and only
if T = f ] − f satisfies the Riccati equation

(39) dT = rTdgT − df , (T −N)2 = r−1 − 1 r ∈ R \ {0, 1} .

In this case Theorem 3.9 shows that µ ∈ R∗ ∪ S1 \ {1}. When µ ∈ S1 the
classical Darboux transform f ] is a translate of the parallel constant mean
curvature surface g = f +N and for µ ∈ R∗ it is a constant mean curvature
surface in R3.

Proof. Let f ] : M → R4 be a µ–Darboux transform for µ ∈ R∗ ∪ S1 \ {1}.
With (32) we see that T = f ] − f satisfies the Riccati equation with r =
1−ba

2 ∈ R since µ ∈ R∗ ∪ S1. Now (37) gives

((Tr)−1 +N)2 =
b̂2

(1− â)2
= r−1 − 1 ,
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where we used â2 + b̂2 = 1. Since r ∈ R∗ this equation is equivalent to
(T −N)2 = r−1 − 1.
Conversely, let T be a solution of the Riccati equation with r ∈ R∗, r 6= 1
and (39). We put

â = 1− 2r and b̂ = 2(T−1 +Nr) .

If r ∈ (0, 1) then â2 + b̂2 = 1 and â ∈ R imply b̂ ∈ R. In particular,
µ = â + Ib̂ ∈ S1, and T = N + bb

1−ba . Thus, f̂ = f + T is a µ–Darboux
transform of f with µ ∈ S1.

If r ∈ R \ [0, 1] then â2 + b̂2 = 1, |â| > 1, and â ∈ R imply that b̂ has
values in the imaginary quaternions. Moreover, the quaternionic connection
∇̂ = ∇+ ω, where ω ∈ Ω1(eH) is defined by

ωe = edfT−1 ,

is flat since T satisfies the Riccati equation. Let ϕ = eα be a ∇̂–parallel sec-
tion, that is (dα)α−1 = −dfT−1. Using again the Riccati equation together
with (39) we see

d(α−1b̂α) = 2α−1
(
[dfT−1, T−1 +Nr] + d(T−1) + dNr

)
α = 0 .

Thus we may assume after scaling ϕ by a quaternion that b̂ϕ = ϕb0i with
b0 ∈ R since b̂2 < 0. In particular,

(J(â− 1) + Ib0)ϕ = 2ϕT−1

so that ϕ is a parallel section of the complex connection ∇µ for µ = â− b0 ∈
R. The prolongation of ϕ gives a µ–Darboux transform of f which is exactly
f ] = f + T . �

In [12] it is shown that a classical Darboux transform f ] : M → R3 of a
constant mean curvature surface f : M → R3 has constant mean curvature
if and only if T = f ] − f satisfies (39) with r ∈ R \ {0, 1}. Therefore we
obtain:

Corollary 3.12. Let f : M → R3 be a constant mean curvature surface.
The classical Darboux transforms f ] : M → R3 of f with constant mean
curvature are exactly the µ–Darboux transforms of f with µ ∈ R \ {0, 1}.

4. The eigenline Spectral Curve

Thus far we have discussed the local properties of µ–Darboux transforms.
We now turn our attention to the question of global existence of solutions:
given a constant mean curvature surface f : M → R3 where M has topology,
is there a µ–Darboux transform f̂ : M → S4 of f defined on M rather than
on the universal cover M̃ of M? In general, this question is hard to decide,
however in the case of a constant mean curvature torus f : T 2 → R3 we
shall see that there are many such transformations. In fact we will show
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that the space of µ–Darboux transforms of f is given by Hitchin’s spectral
curve [13] together with finitely many complex projective lines. Henceforth
when we refer to Darboux transforms of a constant mean curvature torus
we will always assume that they are defined on T 2, rather than merely on
its universal cover.
As many authors have noted (see eg. [21, 26, 13]), a harmonic map N : M →
S2 from a Riemann surface M into the 2-sphere gives rise to a family of flat
connections ∇ζ on a trivial C2-bundle. In the quaternionic setting we view
our trivial complex bundle as a quaternionic line bundle W over M with a
trivial connection ∇. Choosing a ∇–parallel section φ, the harmonic map
N gives rise to a harmonic complex structure J on W by setting Jφ = φN .
Then the endomorphism J is parallel with respect to the pull back

∇̃ = ∇+
1
2
J−1∇J

under N of the Levi-Civita connection of S2. Writing ω = −1
2J
−1∇J , the

family of flat connections is given by

(40) ∇ζ = ∇̃+ ζω(1,0) + ζ−1ω(0,1), ζ ∈ C∗ ,

where the type decomposition of ω is with respect to the constant complex
structure I on W which is right multiplication by the quaternion i. However,
in Lemma 3.1 we encoded the harmonicity of a complex structure J on a
trivial quaternionic line bundle as the requirement that the connections (17)

∇µ = ∇̃+ (a+ Jb)A+Q, µ = a+ bI ∈ C∗
have zero curvature. Recall here that A = 1

4(J∇J+∗∇J) and Q = 1
4(J∇J−

∗∇J) give the type decomposition of ω with respect to the complex structure
J on W .

Lemma 4.1. The families of flat connections ∇µ and ∇ζ defined above are
gauge equivalent, with µ = ζ2.

Proof. Write ζ = u + vI with u = ζ+ζ−1

2 , v = ζ−1−ζ
2 I so that u2 + v2 = 1.

Then (40) shows that

∇ζ = ∇̃+ (u+ vJ)A+ (u− vJ)Q.

Define µ = ζ2, and put λ = a + bJ . Furthermore, denote by λ
1
2 = u + vJ

the choice of square root whose coefficients agree with those of ζ. Since J
is parallel with respect to ∇̃ we see

λ
1
4 · ∇ζ = λ

1
4 (∇̃+ λ

1
2A+ λ−

1
2Q)λ−

1
4 = ∇̃+ λA+Q = ∇µ.

Note that both choices of square root of λ
1
2 produce the same gauge. �

We now return to those harmonic maps N arising as Gauss maps of constant
mean curvature immersions f : M → Im H ' R3. In this case W = V/L
where L ⊂ V is the line subbundle of the trivial H2-bundle V given by
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the immersion f . As explained earlier the point at infinity eH defines a
splitting V = L ⊕ eH which induces on V/L = eH a trivial connection ∇
with parallel section φ = e. Specialising to the case when M = T 2 is a torus
for γ ∈ π1(T 2, p) let

Hµ
γ (p) ∈ SL(2,C)

be the holonomy of ∇µ about γ with base point p ∈ T 2. For generic µ ∈
C∗ there is a unique pair of lines Eµ(p) and Ẽµ(p) in (V/L)p which vary
holomorphically in µ and are eigenlines for Hµ

γ (p). Since the fundamental
group of the torus is abelian, the holonomy matrices for different generators
γ ∈ π1(T 2, p) commute, and so the eigenlines do not depend upon the choice
of γ.
We will define the eigenline spectral curve of f by taking the minimally
branched 2-sheeted cover of CP1 on which these eigenlines, and their limits
as µ → 0,∞, are well-defined. To determine the branching over µ = 0,∞,
we investigate the limiting behaviour of the eigenlines and eigenvalues of
the holonomy. Denote by E(p) the i-eigenspace of J(p), then E(p)j is the
(−i)-eigenspace.

Theorem 4.2. (i) The (common) eigenlines of the holonomy Hµ(p)
have the following holomorphic limits:

lim
µ→0
Eµ(p) = lim

µ→0
Ẽµ(p) = E(p)j

lim
µ→∞

Eµ(p) = lim
µ→∞

Ẽµ(p) = E(p).

(ii) These eigenlines each agree in the limit only to first order.
(iii) For γ ∈ π1(T 2), denote by hγ(ζ) the eigenvalues of the holonomy

Hµ
γ , where ζ2 = µ. There is a punctured neighbourhood U of ∞ ∈

CP1 and w−1 ∈ C∗, ui : π1(T 2)→ C satisfying

log hγ(ζ) = ±(w−1γζ + u0(γ) + u1(γ)ζ−1 + · · · ) , for ζ ∈ U
log hγ(ζ) = ∓(w̄−1γζ

−1 + ū0(γ) + ū1(γ)ζ + · · · ) , for ζ̄−1 ∈ U
where we interpret γ as a complex number.

Proof. We first give the proof of (i), which will include the statement and
proof of Lemma 4.3 below.
From [9, Sec. 6.3] there are only finitely many µ for which the holonomy of
∇µ has just one eigenspace. Thus we may let U be a punctured neighbour-
hood of ∞ ∈ CP1 consisting of µ for which the eigenlines of the holonomy
Hµ are distinct. The (0, 1) part of ∇µ with respect to the complex structure
I gives by (18) the complex holomorphic structure

(∇µ)(0,1) = ∇(0,1) + (µ−1 − 1)A(0,1)

on V/L resulting in a complex rank two holomorphic vector bundle over
T 2×(U∪{∞}). The restriction V/L(·,µ) is a bundle over T 2 with holomorphic
structure (∇µ)(0,1).
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The argument of [13, Prop. 3.5] may be applied here to show that U can be
chosen so that for each µ ∈ U ,

dimH0
(
End0(V/L(·,µ))

)
= 1 ,

and all holomorphic sections are in fact parallel with respect to ∇µ. Here
End0 denotes the bundle of trace free endomorphisms. Thus we can take a
family of non-trivial holomorphic sections

Ψ(p, µ) = Ψ0(p) + Ψ1(p)µ−1 + · · ·

of End0(V/L(·,µ)) for µ ∈ U ∪{∞}. Since Ψ is also ∇µ–parallel, we may use
it to investigate the limiting behaviour of the holonomy. We have

(41)
(
∇(1,0) + (µ− 1) adA(1,0)

)
(Ψ0 + Ψ1µ

−1 + · · · ) = 0 .

In particular

(42) [A(1,0),Ψ0] = 0

and

(43) ∇(1,0)Ψ0 + [A(1,0),Ψ1] = 0 .

In fact A(1,0) and Ψ0 are related by a global holomorphic differential, as we
now show.

Lemma 4.3. Let dz be a global nontrivial holomorphic differential on the
torus T 2. Then Ψ(p, µ) = Ψ0(p) + Ψ1(p)µ−1 + · · · may be chosen so that

A(1,0) = Ψ0dz.

Proof. We first show that A(1,0) is nowhere vanishing. Since −2A(1,0) =
(I + J) ∗ A it suffices to show that im(∗A) * Ej. But since ∗A is right H-
linear and from (27) is nowhere vanishing, im(∗A) ⊆ Ej is impossible. Using
(42), for any choice of parallel endomorphism Ψ, we have Ψ0dz = bA(1,0) for
some function b : T 2 → C. Then

(44) d∇(Ψ0dz) = ∇Ψ0 ∧ dz = db ∧A(1,0) + bd∇A(1,0)

and from (16)

0 = d∇ ∗A = d∇(JA) = ∇J ∧A+ Jd∇A = −2JA ∧A+ Jd∇A,

where the last equality used ∇J = 2(∗Q− ∗A) and Q ∧A = 0. Thus

(45) d∇A(1,0) =
1
2
d∇(A− I ∗A) = A ∧A.

Since Ψ is holomorphic,(
∇(0,1) + (µ−1 − 1) adA(1,0)

)
(Ψ0 + Ψ1µ

−1 + · · · ) = 0,

and equating constant terms gives

(46) ∇(0,1)Ψ0 = [A(0,1),Ψ0].
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Substituting this and (45) into (44) gives db ∧ A(1,0) = 0 and hence ∂̄b = 0
so we conclude that b is constant. Scaling Ψ by powers of µ if necessary, we
may assume that Ψ0 is not the zero function and hence b 6= 0, proving the
lemma. �

We henceforth choose Ψ as in Lemma 4.3. Since Ψ(p, µ) is parallel, Eµ(p)
and Ẽµ(p) are the eigenlines of Ψ(p, µ). Using ∗A = JA = −AJ , we see

imA(1,0) ⊆ E ⊆ kerA(1,0)

for the +i-eigenspace E of J , and since A(1,0) is nowhere vanishing these
are equalities. Thus A(1,0)(p) is nilpotent, with sole eigenvalue zero and just
one eigenspace, namely E(p). From Lemma 4.3, A(1,0) and Ψ0 have common
eigenspaces, and we conclude that

(47) lim
µ→∞

Eµ(p) = lim
µ→∞

Ẽµ(p) = E(p).

From the reality condition (19) we see also that as µ → 0, the limit of the
eigenlines is E(p)j. This concludes the proof of Theorem 4.2 (i).
We proceed now to the proof of (iii) of Theorem 4.2, which will include the
statement and proof of Lemma 4.4. Let pr : CP1 → CP1 be the double cover
pr(ζ) = ζ2. The eigenlines of Ψ(p) define a line bundle E on T 2× (pr)−1(U),
and writing Eζ := E|T 2×{ζ}, the holomorphic structure on each Eζ is given

by (∇ζ2)(0,1). From (47), the bundle E extends holomorphically over ζ =∞.

For each ζ ∈ (pr)−1(U), the line bundle Eζ carries the flat connection ∇ζ2 ,
so has degree 0 and hence is smoothly trivialisable. Since degree is constant
in families, E∞ = E also has degree 0 and we may choose a holomorphic
family of smooth trivialising sections

(48) ϕ(p, ζ) = ϕ0(p)+ ζ−1ϕ1(p)+ ζ−2ϕ2(p)+ · · · for ζ ∈ (pr)−1(U)∪{∞}.

Denote by Ωζ the connection form of the restriction of∇ζ2 to Eζ with respect
to this trivialisation, that is
(49)
(∇+(ζ2−1)A(1,0) +(ζ−2−1)A(0,1))(ϕ0 +ζ−1ϕ1 · · · ) = Ωζ(ϕ0 +ζ−1ϕ1 + · · · ) ,
and Ωζ = ζ2ω−2 + ζω−1 + ω0 + ζ−1ω1 + · · · . Let k be a function on the
universal cover C of T 2 so that k(p)ϕ(p, ζ) is parallel with respect to ∇ζ2 .
Then

dk = −Ωζk .

Integrating gives

log h(ζ) = log
(
k(p+ γ)
k(p)

)
= −

∫
γ

Ωζ .

Thus to prove the first equation in Theorem 4.2 (iii) it suffices to show that
for ζ near ∞, the connection form may be written as

Ωζ = ζw−1dz + ω0(p) + ζ−1ω1(p) + · · · for w−1 a non-zero constant.
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The section ϕ0 trivialises the bundle E∞ = E and hence is nowhere vanish-
ing, so since A(1,0) has sole eigenvalue zero the ζ2 term of (49) gives that
ω−2 = 0. Using Lemma 4.3, the ζ term of (49) is

(50) Ψ0ϕ1dz = ϕ0ω−1.

Using that Ψ(p, µ) is trace-free,

det Ψ(p, µ) = −1
2

tr
(
Ψ(p, µ)2

)
= det Ψ0(p)− tr(Ψ0(p)Ψ1(p))µ−1 + c2µ

−2 + · · ·
= µ−1(tr(Ψ0(p)Ψ1(p)) + c1(p)µ−1 + · · · ).

Writing ζ2 = µ, we see that the eigenvalues ±a(p, ζ) of Ψ(p, µ) are of the
form

a(p, ζ) = a1(p)ζ−1 + a2(p)ζ−2 + · · · , where a2
1(p) = − tr(Ψ0(p)Ψ1(p)).

The section ϕ is an eigenvector of Ψ and the ζ−1 term of the eigenvector
equation is

(51) Ψ0ϕ1 = a1ϕ0.

Combining this with (50) gives ω−1 = a1dz so that

Ωζ = ζa1(p)dz + ω0(p) + ζ−1ω1(p) + · · · , where a2
1(p) = − tr(Ψ0(p)Ψ1(p)).

The first equation in Theorem 4.2 (iii) now follows from the following lemma.

Lemma 4.4. The trace tr(Ψ0Ψ1) is a non-zero constant.

Proof. We first show that this trace vanishes if and only if ∇−A preserves
E = ker Ψ0. From (46) we know that ker Ψ0 is preserved by (∇−A)(0,1). On
the other hand (43) and Lemma 4.3 show that (∇−adA)(1,0)Ψ0 = [Ψ1,Ψ0]dz.
Thus ∇−A preserves E if and only if [Ψ1,Ψ0] is a multiple of Ψ0, which is
equivalent to tr(Ψ0Ψ1) = 0. Restricting

(∇− adA)J = 2QJ

to E and recalling that Q interchanges E and Ej, we have tr(Ψ0Ψ1) 6= 0.
Since Ψ0,Ψ1 are holomorphic on T 2, tr(Ψ0Ψ1) is constant. �

From the reality condition (19) we have

log h(ζ̄−1) = − log h(ζ) ,

which completes the proof of Theorem 4.2 (iii). For (ii), we observe that
since a1 and ϕ0 are nowhere vanishing, from (51) the same is true of ϕ1,
so the eigenlines of the holonomy agree only to first-order at ζ = ∞. This
concludes our verification of Theorem 4.2. �
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Let q be the unique (up to real scaling) quaternionic Hermitian form on V/L
that is parallel with respect to ∇, and denote by

q = qC + j det

its splitting into a complex valued hermitian form and a complex-linear non-
degenerate 2-form with respect to multiplication by the constant quaternion
i. We use det to measure the order to which eigenlines agree. Define a
polynomial

P (µ) =
∏

(µ− µα)nα

by the condition that µα ∈ C∗ is a zero of P of order nα if and only if
Eµα(p) and Ẽµα(p) agree to order nα, as measured by the order of vanishing
of the 2-form det. By (19) the polynomial P is preserved by µ 7→ µ̄−1. From
Theorem 4.2 the eigenlines of the holonomy have a unique limit at each of
µ = 0 and µ = ∞ and the two eigenlines agree there only to first-order.
Thus we define the eigenline spectral curve Σe to be the curve

y2 = µP (µ) .

By construction, for each p ∈ T 2 the eigenlines of Hµ
γ (p) define a line bun-

dle E(p) on Σe which by the above theorem extends holomorphically to
P∞ = y−1(∞) and P0 = y−1(0). We call the line bundles E(p) eigenline
bundles. The restriction of these bundles to an open set without singular
points is holomorphic, and since Σe is smooth in a neighbourhood of P∞
and P0, we may define the eigenline bundles over these points by holomor-
phic extension. The symmetry of P ensures that Σe possesses the fixed
point free real structure ρ corresponding to the action of the quaternion j
on V/L, that is, ρ∗E(p) = E(p)j. We can similarly define a polynomial Q(ζ)
using the holonomy of the family ∇ζ . Taking µ = ζ2, since the connections
∇µ and ∇ζ are gauge equivalent, the two eigenlines of the holonomy of ∇ζ
agree to the same order as the eigenlines of the holonomy of ∇µ. Thus

Q(ζ) = P (µ).

Define a hyperelliptic curve Y by

ν2 = Q(ζ);

this is the spectral curve used in [13]. We have shown above that Q is pre-
served under ζ 7→ −ζ and we denote by τ(ζ, ν) = (−ζ,−ν) the corresponding
fixed point free holomorphic involution of Y . We then obtain

Corollary 4.5. The eigenline spectral curve is the quotient

Σe
∼= Y/τ

of the curve Y by a holomorphic involution without fixed points.

The key property of these curves is that they have finite genus, and so we
are in the realm of algebraic geometry. This was proven for Y in [13] and
for Σe in [9, Sec. 6.3]. We note that working with a quaternionic line bundle
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rather than a complex rank two vector bundle makes the finite genus result
easier to prove for Σe than to prove directly for Y , so this corollary yields a
simplification of the proof in [13].
Denote by Σ◦e the open eigenline spectral curve Σe \ {P0, P∞}.

Theorem 4.6. For a constant mean curvature immersion f : T 2 → R3 of
a 2–torus the space of µ-Darboux transforms f̂ : T 2 → R4 of f is given by
the quotient of its open eigenline spectral curve by the (fixed point free) real
structure ρ, together with finitely many complex projective lines

{ µ-Darboux transforms f̂ : T 2 → R4, µ ∈ C∗} = Σ◦e/ρ ∪ CP1 ∪ . . . ∪ CP1,

where the projective lines are distinct and each intersects Σ◦e/ρ in one or
two points. The pair (P0, P∞) corresponds to the original immersion f .

Proof. For each x ∈ Σ◦e, choose a∇µ(x)-parallel section ϕx satisfying ϕx(p)C =
Ex(p) for p ∈ T 2, and let ϕ̂x be the prolongation (5) of ϕx. The map
f̂x = ϕ̂xH : T 2 → S4 is by definition a µ-Darboux transform of f . If the
holonomy Hµ

γ has distinct eigenspaces, then x clearly uniquely determines
f̂x. From [9] we know that there are only finitely many x ∈ Σ◦e such that the
holonomy has a two-dimensional eigenspace and hence we may extend the
map x 7→ f̂x to such points. By (19), the section ϕxj is parallel for ∇µ(ρ(x)),
so the points x and ρ(x) give rise to the same µ–Darboux transform and we
obtain a well–defined map

Σ◦e/ρ → {µ-Darboux transforms f̂ : T 2 → R4 of f}
x 7→ f̂x = ϕ̂xH .

It is proven in [13] that ρ acts without fixed points. In Theorem 6.1 we
prove that the points P0 and P∞ correspond to the original immersion f .

Suppose that f̂x1 = f̂x2 , i.e. ϕ̂µ2 = ϕ̂µ1g for g : R2 → H∗. Then

πdϕ̂µ2 = (πdϕ̂µ1)g + πϕ̂µ1dg

so from (5) we see that g = v + wj is constant. Thus

0 = ∇µ2(ϕ1g) = (∇µ2ϕ1)v + (∇µ̄
−1
2 ϕ1)wj

= (µ2 − µ1)A(1,0)ϕ1v + (µ̄−1
2 − µ1)A(1,0)ϕ1wj + (µ−1

2 − µ
−1
1 )A(0,1)ϕ1v

+(µ̄2 − µ−1
1 )A(0,1)ϕ1wj,

where the first and last terms take values in E = imA(1,0), and the remaining
terms are valued in Ej = imA(0,1). Since the (1, 0) and (0, 1) parts each
separately vanish, each of the four terms above is zero and so x2 is either x1

or ρ(x1).

Suppose that µ ∈ S1 is such that the holonomy matrix Hµ
γ (p) = H

ρ(µ)
γ (p)

has a two-dimensional eigenspace. The connection ∇µ has SU(2) holonomy
and the limiting lines Eµ = limη→µ Eη and Ẽµ = limη→µ Ẽη satisfy Ẽµ = Eµj.
In particular Eµ and Eµj span the two-dimensional eigenspace and each point
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in this eigenspace yields the same µ-Darboux transform, corresponding to
the point in Σe/ρ with this µ-value.
We turn our attention then to the finitely many µ ∈ C∗\S1 for which the ho-
lonomy matricesHµ

γ (p) andHρ(µ)
γ (p) each have two-dimensional eigenspaces.

In this case, writing Eµ again for the limiting eigenline, Eµj does not belong
to the two-dimensional eigenspace W of Hµ. Hence the µ–Darboux trans-
forms associated to the pair (µ, ρ(µ)) are parameterised by P(W ) ' CP1. If
Σ◦e is branched over µ there is exactly one µ–Darboux transform given by
the pair (x, ρ(x)) ∈ Σ◦e with µ(x) = µ, and the CP1 intersects Σ◦e/ρ in a
single point. When Σ◦e is unbranched over µ ∈ C∗ \S1, we have two limiting
eigenlines Eµ and Ẽµ 6= Eµj and the CP1 intersects Σ◦e/ρ in two points. �

5. The multiplier spectral curve

We introduce a one-dimensional analytic variety, called the multiplier spec-
tral curve [4], which has the advantage that it may be defined for any con-
formal immersion of a 2-torus into S4 with degree zero normal bundle. In
general this variety may have infinite geometric genus, but we show that
in the case of a constant mean curvature torus in R3 its geometric genus is
finite. Indeed, its normalisation completes to a compact Riemann surface
biholomorphic to the normalisation of the eigenline curve. The multiplier
curve and the eigenline curve are not in general isomorphic since the multi-
plier curve is always singular (Corollary 5.5).

As π1(T 2) is abelian the holonomy of a section of Ṽ/L (the pullback of V/L
to the universal cover C of T 2) lies in an abelian subgroup of H∗. We assume
that we have conjugated so that this subgroup is equal to C∗.

Definition 5.1. The multiplier spectral curve Σm of a conformal immersion
f : T 2 → S4 ' HP1 is the set of holonomies realised by holomorphic sections
of Ṽ/L. Denote by H0

h(Ṽ/L) the space of holomorphic sections ϕ with
multiplier h ∈ Hom(π1(T 2),C∗), that is γ∗ϕ = ϕhγ for all γ ∈ π1(T 2). Then

Σm = {h ∈ Hom(π1(T 2),C∗)| there exists 0 6≡ ϕ ∈ H0
h(Ṽ/L)} .

Let Harm(T 2,C) be the space of harmonic 1-forms on T 2, then there is a
natural isomorphism

Harm(T 2,C)/Γ∗ → Hom(π1(T 2),C∗)

ω 7→ exp
∫
ω

where Γ∗ denotes the harmonic 1-forms with periods in 2πiZ. The lift log Σm

of the multiplier spectral curve to Harm(T 2,C) is the space on which a holo-
morphic family of elliptic operators has nontrivial kernel [4, 5]. One con-
cludes that log Σm and hence Σm = log Σm/Γ∗ are one-dimensional analytic
varieties, justifying our terminology. Notice that these curves possess a real
structure σ given by complex conjugation of the holonomy.
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The multiplier curve allows us to give a geometric description of the space
of Darboux transforms.

Theorem 5.2. For an immersed torus f : T 2 → R3 of constant mean
curvature the set of all Darboux transforms of f is parameterised by the
quotient of the multiplier spectral curve under the real structure σ together
with at most countably many complex and quaternionic projective spaces:

{Darboux transforms} = Σm/σ ∪
∞⋃
m=1

CPkm ∪
∞⋃
n=1

HPln .

Proof. A section of Ṽ/L is holomorphic when it lies in the kernel of the
quaternionic holomorphic structure D (introduced in (4)) with multiplier
h. For all but a discrete set of h ∈ Σm, the space H0

h(Ṽ/L) is only com-
plex one-dimensional [4, Theorem 3.3]. The Darboux transform given by a
holomorphic section ϕ of Ṽ/L is unchanged by quaternionic scaling of this
section, and if ϕ has complex multiplier h, then ϕj has multiplier h̄ = σ(h).
Thus away from a discrete set, to each pair (h, σ(h)) ∈ Σm/σ there corre-
sponds a unique Darboux transform.

If H0
h(Ṽ/L) has complex dimension k + 1, then the same is true also for

σ(h) = h̄ since multiplying by j interchanges the two spaces of sections.
Thus if h 6∈ R, the space of Darboux transforms with multiplier h or σ(h) is
parameterised by CPk. If h ∈ R the space H0

h(Ṽ/L) is a quaternionic vector
space and thus the set of corresponding Darboux transforms is parameterised
by HPl with l = k−1

2 . �

The eigenvalues of Hµ
γ (p) give a well-defined holomorphic function hγ(x) on

Σ◦e, and we write

h : Σ◦e → Σm

x 7→ (h : γ 7→ hγ(x)) .

Let Σ̃e denote the normalisation of the eigenline spectral curve Σe and note
as before that any singularities of Σe are contained in Σ◦e. We write Σ̃m and
log Σ̃m for the (analytic) normalisations of the multiplier spectral curve Σm

and of log Σm, and observe that log Σ̃m/Γ∗ = Σ̃m. Let

h̃ : Σ̃◦e → Σ̃m

be the lifting of h to the normalisations.

Theorem 5.3. The multiplier curve of a constant mean curvature torus is
connected, and its normalisation can be completed to a compact Riemann
surface biholomorphic to the normalisation of the eigenline spectral curve.
This biholomorphism is given by (an extension of) the map h̃ defined above.
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Proof. We show first that h̃ is injective. It suffices to prove this away from
a discrete set, as h̃ is a holomorphic map between two Riemann surfaces.
Write πe : Σ̃e → Σe for the normalisation map. We show that h̃ is injective
on

U = {x ∈ Σ̃◦e : dimH0
h(πe(x))(Ṽ/L) = 1} \ π−1

e (Se ∪ h−1(Sm)),

where Se, Sm are the singular points of the two spectral curves. Since we
are omitting these points, we do not need to distinguish between h and h̃.
As mentioned before, the set {h ∈ Σm : dimH0

h(Ṽ/L) > 1} is discrete [4].
Its pre-image under the holomorphic map h̃ is thus also discrete, and so U
is the complement of a discrete set.
Each x ∈ U determines a unique ∇µ(x)–parallel section ϕx ∈ H0

h(x)(V/L) up
to complex scaling. If

(52) h(x) = h(x#)

then ϕx = ϕx
#
λ with λ ∈ C∗ since dimH0

h(x)(Ṽ/L) = 1. In particular ϕx

is parallel with respect to both ∇µ(x) and ∇µ(x#). Therefore (18) and the
fact that kerA(1,0) ∩ kerA(0,1) = {0} imply that µ(x#) = µ(x). If x and
x# are exchanged by the hyperelliptic involution then by (52) we see that
h(x) = h(x#) = ±1. Since dimH0

h(x)(Ṽ/L) = 1 we conclude that x = x# is

a branch point of µ and so h̃ is injective.
We now show that the map h̃ holomorphically extends to P0 = µ−1(0) after
completing one end of the multiplier spectral curve by a single point. It
suffices to extend h̃γ for an appropriate γ ∈ Γ. In this proof we will not
notationally distinguish between hγ and h. The eigenline spectral curve
Σe is branched at P0 hence ζ with ζ2 = µ is a local coordinate near P0.
Theorem 4.2 shows that log h(ζ) is a chart around the end of the multiplier
spectral curve which is completed by adding the point 0 in this chart. An
analogous argument can be used at P∞ and thus the normalised multiplier
spectral curve becomes a compact Riemann surface Σ̃m by adding these
two points. Moreover, h̃ : Σ̃e → Σ̃m extends to an injective holomorphic
map. For a general conformal branched immersion T 2 → S4, the multiplier
spectral curve Σm consists either of two components each of which has one
end, or of a single component with two ends [4]. Since both ends of Σ̃m are
contained in the image of h̃ the multiplier spectral curve of a constant mean
curvature torus is connected and h̃ is a biholomorphism. �

The space H0
h(Ṽ/L) of holomorphic sections with multiplier h is generically

complex one-dimensional. It defines a line bundle L → Σ̃m, the kernel
bundle, on the normalisation of the multiplier spectral curve [4, Theorem
3.6] with fibres Lh̃ = ϕC where ϕ ∈ H0

h(Ṽ/L) and h denotes the image of
h̃ ∈ Σ̃m under the normalisation map πm : Σ̃m → Σm. By Theorem 5.3 each
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point in Σ̃m is h̃(x) for a x ∈ Σ̃e, where h̃ denotes the biholomorphism of
the Theorem. Hence ϕ is parallel with respect to ∇µ(x) and therefore has no
zeros. This enables us to define for each p ∈ T 2 a holomorphic line bundle
L(p) where Lh̃(p) = ϕ(p)C.

Corollary 5.4. Let f : T 2 → R3 be a constant mean curvature torus. For
each p ∈ T 2 the push forward of the eigenline bundle E(p) under the biholo-
morphism h̃ is the evaluation L(p) of the kernel bundle

h̃∗E(p) = L(p) .

Consequently, every Darboux transform f̂ of f given by a holomorphic sec-
tion in Lh̃ with h̃ ∈ Σ̃m is a µ-Darboux transform of f .

As we have seen the normalisations of the eigenline and the multiplier spec-
tral curve are biholomorphic. However the two spectral curves are not in
general isomorphic.

Corollary 5.5. The multiplier spectral curve of a constant mean curvature
torus is always singular. The eigenline spectral curve is a partial desingular-
isation of the multiplier spectral curve.

Proof. The projection of Σe to the µ-plane has at least one pair x, ρ(x) of
ramification points over some µ, µ̄−1 ∈ C∗ \ S1. At these points, for each
generator γ ∈ π1(T 2, p) the eigenvalues of the holonomy matrix Hµ

γ (p) ∈
SL(2,C) are either both 1 or −1. Thus the representation h(x) : π1(T 2)→
C∗ is in particular real and so h(ρ(x)) = h(x) = h(x), showing that the
map h : Σ◦e → Σm is not one-to-one. Since Σe is smooth at P0 and P∞ the
normalisation maps give an extension πm ◦ π−1

e of h to all of Σe . We then
have that the normalisation map for Σm factors as πm = h◦πe and that it is
not one-to-one, proving our claims. We note that if we replace the original
torus by a four-fold cover then all ramification points other than P0, P∞ map
to the constant multiplier 1. �

6. Geometric Picture

The spectral curves encode geometric information about the original con-
stant mean curvature torus f : T 2 → R3. In this section we show that f is
the limit of µ–Darboux transforms as µ tends to 0 or ∞.
The eigenline bundle E(p)→ Σe based at p ∈ T 2 gives rise to a complex line
bundle E → T 2 × Σ◦e via parallel transport of the fiber E(p)x over x ∈ Σ◦e
by the connection ∇µ(x). Since ∇µ(x) has a simple pole at P0 and at P∞,
parallel transport is only defined on Σ◦e = Σe \ {P0, P∞}.
Then Ex = ϕxC where ϕx is a ∇µ(x)–parallel section with multiplier h(x).
The prolongation ϕ̂x of ϕx (see Lemma 2.1) defines a complex line subbundle

Ê → T 2 × Σ◦e



DARBOUX TRANSFORMS AND SPECTRAL CURVES 29

of the trivial H2 bundle V which is holomorphic over Σ◦e. The Darboux
transform for x ∈ Σ◦e is the map f̂x = ÊxH : T 2 → S4.

Theorem 6.1. Let f : T 2 → R3 be a constant mean curvature torus with
corresponding quaternionic line subbundle L ⊂ V and δ : L→ KV/L be the
derivative of f as defined in (1). For every p ∈ T 2 the line bundle Ê(p)→ Σ◦e
extends holomorphically across P0 and P∞ with

lim
x→P0

Êx = δ−1(Ej) and lim
x→P∞

Êx = δ−1(E) .

Hence, when x tends to P0 or P∞, the Darboux transforms f̂x limit to the
original constant mean curvature torus f .

Proof. As f is an immersion δ has no zeros, and from (21) and (18) we see
that ϕ̂x = ϕx − δ−1(αµϕx) , where

αµ = ∇µ −∇ = µA(1,0) + µ−1A(0,1) −A .
From (48) we have

ϕx = ϕ0 + ϕ1ζ
−1 + . . .

with ϕxC = Ex. From Theorem 4.2 we know that ϕ0 is a nowhere vanishing
section of E = kerA(1,0). Then

ϕ̂x = (ϕ0 + ϕ1ζ
−1 + · · · − δ−1(ζ2A(1,0) + ζ−2A(0,1) −A)(ϕ0 + ϕ1ζ

−1 + · · · ))

= −ζδ−1(A(1,0)ϕ1) + lower order terms

so using Lemma 4.3, Lemma 4.4 and (51) we have A(1,0)ϕ1 6= 0. Since
imA(1,0) = E we conclude that limx→P∞ Êx = δ−1(E). Furthermore, the
limit of f̂x = ÊxH as x tends to P0 or P∞ is δ−1(E ⊕ Ej) = L. �

Historically, points on the eigenline curve could be interpreted differential
geometrically only for unitary µ, where they correspond to the associated
family of constant mean curvature surfaces. From our results we obtain an
interpretation of all points on the spectral curve of a constant mean curva-
ture torus as its µ–Darboux transforms. We combine those observations in
the following

Theorem 6.2. Let f : T 2 → R3 be a constant mean curvature immersion
and π : CP3 → HP1 the twistor projection which sends a complex line in C4

to the corresponding quaternionic line in H2. The maps

CP3

π

��
T 2 × Σe bEH

//

bE ::uuuuuuuuu

HP1

defined by the prolongation of the eigenline bundles together with the twistor
projection satisfy:
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(i) For each x ∈ Σ◦e, f̂
x = πÊ(·, x) is a µ-Darboux transform of the

original constant mean curvature immersion f . In fact, f̂x is also a
constant mean curvature torus in Euclidean 3–space (Theorem 3.6).

(ii) The original constant mean curvature torus f = πÊ(·, P∞) = πÊ(·, P0)
is the limit of µ–Darboux transforms for µ→ 0,∞.

(iii) The Gauss map of f is given by E(·, P∞) = E as the +i eigenspace
of J .

(iv) For p ∈ T 2 the eigenline curve is algebraically mapped into CP3

by Ê(p, ·). Thus we obtain a smooth T 2–family of algebraic curves
Σe → CP3.

By pulling back the eigenline bundles and their prolongations, the analogous
result holds on the normalisation Σ̃e

∼= Σ̃m. This normalised version holds
more generally for conformally immersed tori into S4 of finite spectral genus
[4], for which there is a multiplier curve but no eigenline curve. The proof
of this result is much more involved and requires asymptotic analysis of
Dirac–type operators [5]. For constant mean curvature tori our proof can
be seen as a geometric interpretation of the eigenline spectral curve [13].
In fact, the harmonic Gauss map of the constant mean curvature torus is
described by the T 2–family of algebraic functions E : T 2×Σe → CP1 which,
interpreted as a flow of line bundles, is linear in the Jacobian of Σe. From
this one could show that the prolongation bundle Ê also gives a linear T 2–
flow in the Jacobian. In the generic case when Σe is smooth, such flows
can be parametrised by theta functions of Σe, providing explicit conformal
parametrisations of the constant mean curvature torus and all its spectral
µ–Darboux transforms [2].

Appendix A. Darboux Transforms of the Standard Cylinder

We now illustrate some of our results by explicitly computing µ–Darboux
transforms of the standard cylinder

(53) f(x, y) =
1
2

(−ix+ jeiy)

in R3. The derivative of f is

df =
1
2

(−idx+ jieiydy)

and the Gauss map of f is given by

N(x, y) = −jeiy .
To compute µ-Darboux transforms of f , we need to find parallel sections
ϕ ∈ Γ(Ṽ/L) of the flat connection ∇µ = ∇+∗A(J(a−1)+b) on V/L, where
a and b are defined in terms of µ (Remark 3.2). As in section 3 we identify

V/L with eH via the splitting V = L ⊕ eH where e =
(

1
0

)
. Thus, writing
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ϕ = eα we seek α : M̃ = R2 → H with (27)

dα = −1
2
df(Nα(a− 1) + αb) .

Using the decomposition α = α0 + jα1 where α0, α1 : R2 → C = span{1, i},
we rewrite the previous equation as(

α0

α1

)
x

=
i

4

(
b e−iy(a− 1)

eiy(a− 1) −b

)(
α0

α1

)
(
α0

α1

)
y

=
i

4

(
a− 1 −e−iyb
−eiyb 1− a

)(
α0

α1

)
.

The first differential equation has constant coefficients in x and therefore we
can solve this system explicitly. Choosing a square root c ∈ C of a− 1, the
general solution of this system on R2 is given by

α =

(
e
−iy
2

p+e
iy
2

)
m+e

w +

(
e
−iy
2

p−e
iy
2

)
m−e

−w

where m± ∈ C and

(54) w =
√

2
4c

((a− 1)x− by), p± = −b±
√

2ic
a− 1

.

Substituting the above formulae for α into (37) yields all µ–Darboux trans-
forms f̂ = f + T of the standard cylinder. In general, these f̂ do not satisfy
any periodicity conditions despite the fact that the above differential equa-
tions have periodic coefficients.

Figure 3. µ–Darboux transforms which are not classical
Darboux transforms.

We now compute the closed µ–Darboux transforms of the standard cylinder
f which are those f̂ satisfying

f̂(x, y) = f̂(x, y + 2π) .
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These are given by parallel sections ϕ ∈ Γ(Ṽ/L) of ∇µ such that

(55) ϕ(x, y + 2π) = ϕ(x, y)h with h ∈ H∗ .

For µ on the unit circle ∇µ is a quaternionic connection on a rank one
bundle. Then all parallel sections satisfy (55) and hence give rise to closed
µ-Darboux transforms. In particular, as in Theorem 3.6, when µ ∈ S1 \ {1}
we obtain a translated cylinder g = f +N + b

1−a .

For µ not on the unit circle ∇µ is not quaternionic but rather an SL(2,C)-
connection on the complex rank two bundle Ṽ/L. Therefore any parallel
section satisfying (55) must in fact have monodromy h ∈ C∗ and is thus
given by the eigenvectors of the monodromy representation of ∇µ. For
µ ∈ C∗ these parallel sections are

α± =

(
e
−iy
2

p±e
iy
2

)
e±w

and have monodromy

(56) hµ± = −e∓
√

2bπ
2c ∈ C∗ ,

where we recall p± and w from (54). Therefore, the prolongations of the
sections ϕ± = eα± give closed µ–Darboux transforms f̂±. Using (37) the µ–
Darboux transforms f̂± are rotations and translations of the original cylin-
der. Explicitly,

f̂± = f + T± = f + T±0 + jeiyT±1
where

T±0 =
2
r±

(
Re b− 2

p̄2
±i

1 + |p±|2
Im a− 1− |p±|2

1 + |p±|2
iIm b

)
∈ C

and

T±1 =
2
r±

(
Re a− 1 +

1− |p±|2

1 + |p±|2
iIm a− 2p±

1 + |p±|2
iIm b)

)
∈ C

with

r± = |a− 1|2 + |b|2 − 4 Im ((a− 1)b̄)
Im p±

1 + |p±|2
∈ R .

We call µ ∈ C∗ a resonance point of f if the monodromies hµ± coincide.
These are the points

µk = 2k2 − 1− 2k
√
k2 − 1 , k ∈ Z \ {0} .

Away from resonance points the monodromy of ∇µ is diagonalisable with
two distinct eigenvalues hµ+ and hµ−. Hence we obtain exactly two µ–Darboux
transforms given by parallel sections of ∇µ.
At the resonance points µ = µk with |k| > 1, by (56), the monodromy is

hµ := hµ+ = hµ− = −1 .
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The space of parallel sections of ∇µ with monodromy h = −1 has dimension
two and gives rise to a CP1– family of closed µ–Darboux transforms. A
parallel section α = α+m+ + α−m− for m+ = 0 or m− = 0 gives a rigid
motion of the standard cylinder. However for m+m− 6= 0 the parallel section
α yields a bubbleton with |k| lobes where the parameter m+

m−
∈ CP1 rotates

and slides the bubble [24, 12].

Theorem A.1. Every non–constant closed µ–Darboux transform f̂ : M →
R4 of the standard cylinder f is a rigid motion of f provided µ is not a
resonance point µk. At a resonance point µk we additionally obtain a CP1–
family of bubbletons with |k| lobes.

Figure 4. Darboux transform at the resonance point µ6

with 6 lobes.

We now restrict our attention to those closed µ–Darboux transforms of the
standard cylinder which are also classical Darboux transforms. By Theo-
rem 3.9 these are precisely the µ–Darboux transforms for which µ ∈ R∗∪S1.

Corollary A.2. The closed µ–Darboux transforms of the standard cylinder
f : M → R3 which are also classical are:

(i) the dual surface g = f+N of f for µ ∈ S1 \{1}, up to a translation
of R3 in the ambient R4;

(ii) a translation of f in R3 along the i–axis by ±
√

2i√
a−1

for µ ∈ (0,∞)
not a resonance point;

(iii) a rotation of f in R3 along the i-axis for µ ∈ (−∞, 0) not a reso-
nance point;

(iv) a bubbleton with |k| lobes for a resonance point µ = µk with |k| > 1;
(v) a constant point for µ = 1.

Proof. A straightforward computation, using a2 + b2 = 1, shows that

1 + |p±|2 =

{
2b
a−1p± a > 1
2 a < 1

, 1− |p±|2 =

{
±2
√

2i
c p± a > 1

0 a < 1 .
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Thus the translational part of the Darboux transform f̂ = f +T±0 + jeiyT±1 ,
away from the resonance points, is given by

T±0 =

{
∓
√

2i
c a > 1

0 a < 1

and the rotational part by

T±1 =

{
0 a > 1

2
a−1 ∓

√
2cib

(a−1)2
a < 1 .

�

Since for each k ∈ Z a parallel section of ∇µk gives a holomorphic section
with monodromy h = −1, we can also take linear combinations of parallel
sections α±µk and α±µl of ∇µk and ∇µl respectively with k 6= l. This gives a
holomorphic section

α = m+α
+
µk

+m−α
−
µk

+ n+α
+
µl

+ n−α
−
µl
∈ H0(Ṽ/L)

with monodromy h = −1 for each choice of m±, n± ∈ C. The prolongation
of α gives a closed Darboux transform of f , however α is in general not a
parallel section for any µ ∈ C∗. In particular

{closed µ–Darboux transforms} ( {closed Darboux transforms} .

For a further discussion of the geometry of these examples see [17].

Remark A.3. The Darboux transformation satisfies Bianchi permutabil-
ity [4]. In particular, a µ–Darboux transform of a bubbleton is given alge-
braically [16] and we obtain multibubbletons at the resonance points. Away
from the resonance points the µ–Darboux transformation is again given by
a rigid motion.

Figure 5. Darboux transform of a bubbleton (µ = µ3) at
the resonance point µ6 “adding” 6 lobes.
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