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Abstract

For a certain class of martingales, the convergence to mixture normal distribution
is established under the convergence in distribution for the conditional variance.
This is less restrictive in comparison with the classical martingale limit theorem
where one generally requires the convergence in probability. The extension removes
a main barrier in the applications of the classical martingale limit theorem to non-
parametric estimates and inferences with non-stationarity, and essentially enhances
the effectiveness of the classical martingale limit theorem as one of the main tools
in the investigation of asymptotics in statistics, econometrics and other fields. The
main result is applied to the investigations of asymptotics for the conventional kernel
estimator in a nonlinear cointegrating regression, which essentially improves the
existing works in literature.
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1 Introduction

Let {Mni,Fni, 1 ≤ i ≤ kn} be a zero-mean martingale array with the difference yni, and let

M2 be an a.s. finite random variable, where the σ-fields are nested, that is, Fn,i ⊆ Fn+1,i

for 1 ≤ i ≤ kn, n ≥ 1. Suppose that, for all ε > 0,∑
i

E[y2
niI(|yni| ≥ ε) | Fn,i−1] →P 0, (1.1)

and the conditional variance ∑
i

E[y2
ni | Fn,i−1] →P M2. (1.2)
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The classical martingale limit theorem (MLT) shows that Mn,kn =
∑

i yni →D Z, where

the r.v. Z has characteristic function EeitZ = Ee−M2t2/2, t ∈ R. If M2 is a constant, the

nested structure of the σ-fields Fn,i is not necessary.

As one of the main conventional tools, the classical MLT is widely used in statistics,

econometrics and other fields. In many applications, however, the convergence in prob-

ability in (1.2) seems to be too restrictive. To illustrate, consider a functional of the

form

Mn,i = (nh2)−1/4

i∑
k=1

g(xk/h)εk+1, i = 1, 2, ..., n, (1.3)

where g is a real integrable function on R, εk is a stationary process, xt is an integrated

process (i.e., I(1) process) such as a random walk, and h ≡ hn is a certain sequence of

positive constants satisfying that h → 0 and nh2 →∞. Write Fk = σ(x1, ..., xk; ε1, ..., εk).

If E(εk+1 | Fk) = 0 and E(ε2
k+1 | Fk) = 1, {Mni,Fi}n

i=1 forms a zero-mean martingale array

with the conditional variance V 2
n = 1√

nh

∑n
k=1 g2(xk/h). Unfortunately, the asymptotics

of Mn,n can not be obtained by the classical MLT. Indeed, under certain conditions on xt

such that x[ns]/
√

n ⇒ W (s) on D[0, 1], where W (s) is a standard Brownian motion, we

may prove

V 2
n →D

∫ ∞

−∞
g2(x)dx LW (1, 0), (1.4)

where LW (t, s) is the local time of the process W (s) defined as in next section, but

it is difficult or not possible to replace the convergence in distribution in (1.4) by the

convergence in probability. See, e.g., Wang and Phillips (2009a) for instance. It should

be pointed out that, given (1.4), one may enlarge the probability space in which x1, ..., xt

are equipped so that under this new space

V 2
n →P

∫ ∞

−∞
g2(x)dx LW (1, 0). (1.5)

This fact can not be used to establish the asymptotics of Mn,n as well since, without

independence between εt and xt, this enlarged probability space may destroy the nested

σ-fields structure (i.e., Fn,i ⊆ Fn+1,i) required in the classical MLT.

Such functionals Mn,n having a martingale structure commonly arise in non-linear

regression with integrated time series [Park and Phillips (1999, 2001)], non-parametric

estimation in relation to nonlinear cointegration models [Phillips and Park (1998), Karlsen

and Tjostheim (2001), Karlsen, et al. (2007), and Wang and Phillips (2009a, 2009b, 2010)]
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and many other related research areas [Marmer (2008), Gao, et.al (2009a, 2009b), Choi

and Saikkonen (2010), Kasparis (2008, 2010), Kasparis and Phillips (2009)]. In such cases,

g may be a kernel function K or a squared kernel function K2, and the sequence h is the

bandwidth used in the nonparametric regression. As illustrated above, the classical MLT

is limited to establish the asymptotics of Mn,n, which, as is well-known, plays a key rule

in the development of non-parametric estimates and inferences with non-stationarity.

The main aim of this paper is to provide an extension of the classical MLT. It is shown

that, for a certain class of martingales such those having a shape as in (1.3), the condition

(1.2), that is, the convergence in probability for the conditional variance in the classical

MLT, can be reduced to less restrictive:∑
i

E[y2
ni | Fn,i−1] →D M2. (1.6)

As discussed above, this kind of extensions removes a main barrier in the applications of

the classical MLT to non-parametric estimates and inferences with non-stationarity. It is

expected that our results will essentially enhance the effectiveness of the classical MLT as

one of the main tools in the investigation of asymptotics in statistics, econometrics and

other fields. We finally remark that there are little useful works in literature to establish

a central limit theorem for martingale under less restrictive condition (1.6). Theorem

3.4 of Hall and Heyde (1980) provided a partial result in this direction, but the result

can not be used to our specified class of martingales as defined in next section. Park

and Phillips (2001) considered a class of martingales having the shape as in (1.3), but

imposed some extra conditions. More currently a unpublished manuscript by Jeganathan

(2006) discussed convergence in distribution of row sum process to mixture of additive

processes. When specified to the martingales defined as in (2.1) below, the conditions

used by Jeganathan (2006) are quite complicated and also hard to identify. Unlike these

existing works, our conditions are neat and the identification on the conditions is quite

straightforward.

This paper is organized as follows. In next section, we present our main results. The-

orem 2.1 provides a framework in an extension to the classical MLT. It is shown that, for

the specified class of martingales defined as in (2.1) below, a minor and easy identified

additional condition, together with the convergence in distribution for the conditional

variance, is sufficient to establish the convergence to mixture normal distribution. It is

interesting to notice that, general speaking, it is not possible to replace the convergence

in probability for the conditional variance by the convergence in distribution without any
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additional conditions. This kind of additional condition might be close to necessary to

investigate the asymptotics for the specified martingale defined as in (2.1). Theorem 2.2

gives an important application of Theorem 2.1 to general linear process, where we investi-

gate the asymptotics for the functionals having shape as in (1.3). Our result includes the

xk being a partial sum of ARMA process and fractionally integrated processes, which are

most common used in practice. Using Theorem 2.2 as a main tool, Theorems 2.3 and 2.4

investigate the asymptotics for the conventional kernel estimators in a non-linear cointe-

grating regression model. These results significantly improve those in existing literature.

This section also presents several remarks for possible further extensions of our results.

All technical proofs are given in Section 3.

Throughout the paper, we denote by C, C1, ... the constants, which may changes at

each appearance. We also use the following definitions and notation. If α
(1)
n , α

(2)
n ,..., α

(k)
n

(1 ≤ n ≤ ∞) are random elements of D[0, 1], we will understand the condition

(α(1)
n , α(2)

n , ..., α(k)
n ) →D (α(1)

∞ , α(2)
∞ , ..., α(k)

∞ )

to mean that for all α
(1)
∞ , α

(2)
∞ ,..., α

(k)
∞ -continuity sets A1, A2,...,Ak

P
(
α(1)

n ∈ A1, α
(2)
n ∈ A1, ..., α

(k)
n ∈ Ak

)
→ P

(
α(1)
∞ ∈ A1, α

(2)
∞ ∈ A2, ..., α

(k)
∞ ∈ Ak

)
.

[see Billingsley (1968, Theorem 3.1) or Hall (1977)]. D[0, 1]k will be used to denote

D[0, 1]× ...×D[0, 1], the k-times coordinate product space of D[0, 1]. We still use ⇒ to

denote weak convergence on D[0, 1].

2 Main results

Motivated by non-parametric estimates and inferences with non-stationarity, this section

considers a class of statistics defined by

Sn =
n∑

k=1

xk,nεn,k+1, (2.1)

where {εn,k+1,Fn,k}1≤k≤n forms a martingale difference and xk,n is adapted to Fn,k for

1 ≤ k ≤ n, n ≥ 1. Let fn(...) be a real function of its components, and ηn,k and ξnj be

two sequences of random variables. We specify the xk,n to have a form:

xk,n = fn

(
εn,1, ..., εn,k; ηn,1, ..., ηn,k; ξn1, ξn2, ...

)
,
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and the Fn,k to be an increasing σ-fields for each n ≥ 1. We do not require the nested

structure of Fn,k in this paper. The increase of Fn,k on k and the structure of xk,n are

quite natural in many applications.

In order to investigate the asymptotics of Sn, we make use of the following assumptions.

Assumption 1. {ηn,k+1, εn,k+1,Fn,k}1≤k≤n forms a martingale difference, where ηn,k

and εn,k satisfy that, as n →∞ first and then m →∞

max
m≤k≤n

|E(η2
n,k+1 | Fn,k)− 1| → 0, max

m≤k≤n
|E(ε2

n,k+1 | Fn,k)− 1| → 0, a.s.

and for some δ > 0,

max
1≤k≤n

n≥1

[
E(|ηn,k+1|2+δ | Fn,k) + E(|εn,k+1|2+δ | Fn,k)

]
< ∞.

By virtue of Assumption 1, it is readily seen that, for each 0 < s ≤ 1 and all ε > 0,

1
n

∑[ns]
k=1 E(η2

n,k+1 | Fn,k) →a.s. s and 1
n

∑n
k=1 E(η2

n,k+1I(|ηn,k+1| ≥ ε
√

n) | Fn,k) →P 0. The

classical martingale invariance principle implies that

Wn(t) :=
1√
n

[nt]∑
j=1

ηn,j+1 ⇒ W (t), (2.2)

on D[0, 1], where W (t) is a standard Winner process. See, e.g., McLeish (1974) for

instance. Our next assumption on xk,n depends on ηn,k as well as W (t).

Assumption 2. (i) ξnj, j ≥ 1, are Fn,1-measurable for each n ≥ 1, and there exist a

sequence of constants 0 < dn →∞ and a Gaussian process G(t), which is independent of

W (t), such that

Ξn(t) :=
1

dn

[nt]∑
j=1

ξnj ⇒ G(t), on D[0,∞). (2.3)

(ii) max1≤k≤n |xk,n| = oP (1) and

1√
n

n∑
k=1

|xk,n| |E(ηn,k+1εn,k+1 | Fn,k)| = oP (1). (2.4)

(iii) There exists a positive functional g2(W, G) of W (s), 0 ≤ s ≤ 1 and G(s), 0 ≤ s < ∞,

such that

G2
n :=

n∑
k=1

x2
k,n →D g2(W, G). (2.5)
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We have the following main result.

THEOREM 2.1. Under Assumptions 1-2, we have{
Sn, G2

n

}
→D

{
g(W, G) N, g2(W, G)

}
, (2.6)

where N is a standard normal variate independent of g(W, G). Consequently,

Sn/Gn →D N(0, 1). (2.7)

Remark 1. If the condition (2.5) can be strengthened to convergence in probability

without changing the probability space and the σ-fields Fn,k is nested, i.e., Fn,i ⊆ Fn+1,i

for 1 ≤ i ≤ n, Assumption 2(i), (2.4) and the part related to ηn,k in Assumption 1 are

not necessary. In this situation, Theorem 2.1 can be easily established by the classical

MLT as stated in Section 1. Unfortunately, it is generally difficult to replace (2.5) by

G2
n →P g2(W, G), except that g2(W, G) is a constant. Our result hence provides a useful

extension to the classical MLT.

Remark 2. If g2(W, G) does not depend on G(s), 0 ≤ s < ∞, Assumption 2(i) related

to ξn,j is not necessary. This point is important since, in many applications, we may have

xk,n = fn(Mn) with Mn =
∑n

k=1 ηn,k + ξn, where ξn is negligible comparing to Mn (that

is, Mn itself is not a martingale, but may be approached by a martingale. In regard to

the martingale approaches of stable random variables sum, we refer to Wu and Woodroofe

(2004) for further details). Theorem 2.1 can be used to this situation without Assumption

2(i) if the ηn,k and xk,n satisfy the related conditions.

Remark 3. If ηn,k is independent of εn,k, the condition (2.4) holds true automat-

ically. A simple sufficient condition to give (2.4) is 1√
n

∑n
k=1 |xk,n| = oP (1), if only

max 1≤k≤n
n≥1

[
E(|ηn,k+1|2 | Fn,k) + E(|εn,k+1|2 | Fn,k)

]
< ∞. This condition can not be re-

moved except the condition (2.5) can be strengthened to convergence in probability without

changing the probability space, as explained in Remark 1. A simple example is given as

follows. By letting ηk = εk, k ≥ 1, be a sequence of iid N(0, 1), xk,n = n−3/2(
∑k

j=1 εj)
2

and Fk = σ(ε1, ..., εk), we have that
∑n

k=1 x2
k,n →D

∫ 1

0
W 4(t)dt and

Sn =
n∑

k=1

xk,nεk+1 →D

∫ 1

0

W 2(t)dW (t),
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where W (t) is a standard Winner process. The result (2.5) in Theorem 2.1 is not true

for this example, since
∫ 1

0
W 2(t)dW (t) is not equal in distribution to

( ∫ 1

0
W 4(t)dt

)1/2
N .

On the other hand, the condition (2.4) can not be satisfied as

1√
n

n∑
k=1

|xk,n| |E(ε2
k+1 | Fk)| =

1

n2

n∑
k=1

(
k∑

j=1

εj)
2 →D

∫ 1

0

W 2(t)dt.

In what follows we consider an application of Theorem 2.1 to general linear processes.

Let {ξj, j ≥ 1} be a linear process defined by

ξj =
∞∑

k=0

φk νj−k, (2.8)

where {νj,−∞ < j < ∞} is a sequence of iid random variables with Eν0 = 0, Eν2
0 = 1,

E|ν0|2+δ < ∞ for some δ > 0 and characteristic function ϕ(t) of ν0 satisfying
∫∞
−∞ |ϕ(t)|dt <

∞. Throughout the section, the coefficients φk, k ≥ 0, are assumed to satisfy one of the

following conditions:

C1. φk ∼ k−µ ρ(k), where 1/2 < µ < 1 and ρ(k) is a function slowly varying at ∞.

C2.
∑∞

k=0 |φk| < ∞ and φ ≡
∑∞

k=0 φk 6= 0.

Put yk =
∑k

j=1 ξj and yk,n = yk/dn + c′n, where c′n → 0 and d2
n = Ey2

n. It is well-known

that, with cµ = 1
(1−µ)(3−2µ)

∫∞
0

x−µ(x + 1)−µdx,

d2
n = Ey2

n ∼
{

cµ n3−2µ ρ2(n), under C1,
φ2 n, under C2.

(2.9)

See, e.g., Wang, Lin and Gulati (2003) for instance. We consider the limit behavior of

sample functions of the form:

S1n =
(cn

n

)1/2
n∑

k=1

f
(
cn yk,n

)
εk+1, (2.10)

when cn →∞ and cn/n → 0, under the following conditions:

Assumption 3. f is a real function on R satisfying
∫∞
−∞

[
|f(x)| + |f(x)|4+γ

]
dx < ∞

for some γ > 0.

Assumption 4. (i) Fk is a sequence of increasing σ-fields such that νk ∈ Fk and νk+1

is independent of Fk for all k ≥ 1, and νk ∈ F1 for all k ≤ 0. (ii) {εk,Fk}k≥1 forms a

martingale difference satisfying, as m →∞, maxk≥m |E(ε2
k+1 | Fk)− 1| → 0, a.s. and for

some δ > 0, maxk≥1 E(|εk+1|2+δ | Fk) < ∞.
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Assumption 4 is a specified version of Assumption 1 by making use of the independence

between νk. Typically, in applications, we may choose Fk = σ{νk, νk−1, ...} or Fk =

σ{εk, ..., ε1; νk, νk−1, ...} together with the condition that νk+1 is independent of Fk for all

k ≥ 1. To investigate the asymptotics of S1n, we start with the following notation. A

fractional Brownian motion with 0 < β < 1 on D[0, 1] is defined by

Wβ(t) =
1

A(β)

∫ 0

−∞

[
(t− s)β−1/2 − (−s)β−1/2

]
dW ∗(−s) +

∫ t

0

(t− s)β−1/2dW (s),

where

A(β) =
( 1

2β
+

∫ ∞

0

[
(1 + s)β−1/2 − sβ−1/2

]2

ds
)1/2

,

W (s), 0 ≤ s < ∞ is a standard Brownian motion, and W ∗(u), 0 ≤ u < ∞ is an indepen-

dent copy of W (s), 0 ≤ s < ∞. It is readily seen that W1/2(t) = W (t) and Wβ(t) has a

continuous local time LWβ
(t, s) with regard to (t, s) in [0,∞)×R. See, e.g., Theorem 22.1

of Geman and Horowitz (1980). Here and below, the process {Lζ(t, s), t ≥ 0, s ∈ R} is

said to be the local time of a measurable process {ζ(t), t ≥ 0} if, for any locally integrable

function T (x), ∫ t

0

T [ζ(s)]ds =

∫ ∞

−∞
T (s)Lζ(t, s)ds, all t ∈ R,

with probability one.

Note that LWβ
(1, 0) is a functional of W (s), 0 ≤ s ≤ 1 and W ∗(u), 0 ≤ u < ∞. Write

G2
1n = cn

n

∑n
k=1 f 2(cn yk,n). As a direct consequence of Theorem 2.1, we have the following

theorem.

THEOREM 2.2. Under Assumptions 3 and 4, when cn →∞ and cn/n → 0, we have{
S1n, G2

1n

}
→D

{
g(W, W ∗) N, g2(W, W ∗)

}
, (2.11)

where N is a standard normal variate independent of g2(W, W ∗) =
∫∞
−∞ f 2(x)dxLW with

LW being defined by

LW =

{
LW3/2−u

(1, 0), under C1,

LW (1, 0), under C2.

Consequently,

S1n/G1n →D N(0, 1). (2.12)

Remark 4. The result (2.11) under C1 is new, in which the yn includes the frac-

tionally integrated process as an example. Theorem 3.2 of Park and Phillips (2001) in-

vestigated the asymptotics of S1n under C2, but only allows the cn to be equal Ey2
n = φn
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and imposes strong restrictions on f and ν0. Using similar ideas as in Park and Phillips

(2001), Wang and Phillips (2009a) considered more general situations under C2 (the re-

sult is included in the proof of their Theorem 3.2), but still imposes some additional con-

ditions. The result (2.11) under C2 essentially improves these existing results. It should

be mentioned that, unlike these existing results, our proof is quite neat and straightforward

by our extended martingale limit theorem, given in Theorem 2.1.

Remark 5. Under the conditions of Theorem 2.2, one always has cov(yt, εt+1) =

E[ytE(εt+1 | Ft)] = 0. Wang and Phillips (2009b) investigated the asymptotics of S1n

under C2, imposing the εt+1 to be serially dependent and cross correlated with ys for

|t − s| < m0, where m0 is a given constant. As a consequence, in Wang and Phillips

(2009b), one may have cov(yt, εt+1) 6= 0. This makes the functionals in Wang and Phillips

(2009b) essentially different from the one investigated in current Theorem 2.2. However,

Wang and Phillips (2009b) does not cover the result (2.11) under C2 as a special case,

since in (2.11) we allow εk+1 is cross correlated with ys for 1 ≤ s ≤ k.

Remark 6. It is interesting to notice that the result would be quite different if cn = 1.

Indeed, under much weaker conditions on f, yk,n and εk which adds to

{
y[nt],n,

1√
n

[nt]∑
j=1

εj+1

}
⇒ {U(t), V (t)}

on D[0, 1]2, one may prove 1√
n

∑n
k=1 f

(
yk,n

)
εk+1 →D

∫ 1

0
f [U(s)]dV (s), a stochastic inte-

gral. There are many papers which investigate the convergence to stochastic integrals. We

only cite Kurtz and Protter (1991) and Hansen (1992) for reference.

Remark 7. The individual asymptotics of the functionals like G2
1n has been investi-

gated in Wang and Phillips (2009a) [also see Wang and Phillips (2010) for zero energy

situation] under weaker condition than Assumption 3. Explicitly, it follows from (2.5)

of Wang and Phillips (2010) 1 that, for each fixed x ∈ R and all h satisfying h → 0

(h2 log n → 0 under C2) and dn/nh → 0,{( dn

nh

)1/2
n∑

k=1

g
[
(yk − x)/h

]
,

dn

nh

n∑
k=1

f1

[
(yk − x)/h

]
,

dn

nh

n∑
k=1

f2

[
(yk − x)/h

]}
→D

{
τ0 N L1/2

W , τ1 LW , τ2 LW

}
, (2.13)

where d2
n = Ey2

n is given as in (2.9), τ 2
0 =

∫∞
−∞ g2(x)dx, τ1 =

∫
f1(x)dx and τ2 =∫

f2(x)dx, provided that
∫
|g(t)|dt < ∞,

∫
|ĝ(t)|dt < ∞ and |ĝ(t)| ≤ C min{|t|, 1}, where

1The result is only for x = 0, but it is not difficult to see that the result holds true for any fixed x ∈ R.

9



ĝ(x) =
∫

eitxg(t)dt; |fj(x)| and f 2
j (x), j = 1, 2, are Lebesgue integrable functions on R

with τ1 6= 0 and τ2 6= 0. It is readily from (2.13) that(
dn

nh

)−1/2 ∑n
k=1 g[(yk − x)/h]∑n

k=1 f2[(yk − x)/h]
→D

τ0

τ2

N L−1/2
W , (2.14)∑n

k=1 f1[(yk − x)/h]∑n
k=1 f2[(yk − x)/h]

→P
τ1

τ2

. (2.15)

These results will be used in the proofs of Theorems 2.2-2.4.

As stated in Introduction, the results given in Theorem 2.2 play a key rule in the inves-

tigation of non-stationary cointegration regression. To illustrate, consider the following

nonlinear cointegrating regression model

zt = m(yt) + εt+1, t = 1, 2, ..., n, (2.16)

where εt+1 is a zero mean stationary equilibrium error and m is an unknown function

to be estimated with the observed data {zt, yt}n
t=1. The conventional kernel estimator of

m(x) in model (2.16) is given by

m̂(x) =

∑n
t=1 ztKh(yt − x)∑n
t=1 Kh(yt − x)

, (2.17)

where Kh(s) = 1
h
K(s/h), K(x) is a nonnegative real function, and the bandwidth param-

eter h ≡ hn → 0 as n →∞. Note that m̂(x) has the usual decomposition:

m̂(x)−m(x) =

∑n
t=1 εt+1Kh(yt − x)∑n

t=1 Kh(yt − x)
+

∑n
t=1

[
m(yt)−m(x)

]
Kh(yt − x)∑n

t=1 Kh(yt − x)
, (2.18)

and it is the first term to determine the asymptotic distribution, depending on the asymp-

totics of

(S2n, G
2
2n) :=

{(cn

n

)1/2
n∑

t=1

εt+1K(cn yt,n),
cn

n

n∑
t=1

K2(cn yt,n)
}

, (2.19)

where yt,n = (yt − x)/dn, d2
n = Ey2

n and cn = dn/h. An application of Theorem 2.2

to (S2n, G
2
2n) essentially improves the existing results on the asymptotics of the kernel

estimator m̂(x), which was currently investigated in Wang and Phillips (2009a, 2010). To

do this, we require the following additional assumptions.

Assumption 5. yt =
∑t

j=1 ξj, where ξj is defined as in (2.8) with φk satisfying C1 or

C2.

Assumption 6. The kernel K satisfies that
∫∞
−∞ K(s)ds = 1 and sups K(s) < ∞.
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Assumption 7. For given x, there exists a real function m1(s, x) and an 0 < γ ≤ 1

such that, when h sufficiently small, |m(hy + x)−m(x)| ≤ hγ m1(y, x) for all y ∈ R and∫∞
−∞ K(s) [m1(s, x) + m2

1(s, x)]ds < ∞.

THEOREM 2.3. Under Assumptions 4-7, for any h satisfying nh/dn →∞ and nh1+2γ/dn →
0, we have ( dn

nh

)−1/2
(m̂(x)−m(x)) →D τ N L−1/2

W (2.20)

where d2
n = Ey2

n, given as in (2.9), τ 2 =
∫∞
−∞ K2(s)ds and N is a standard normal variate

independent of LW , which is given as in Theorem 2.2. We also have(
h

n∑
t=1

Kh(yt − x)
)1/2

(m̂(x)−m(x)) →D τ N. (2.21)

If Assumptions 6 and 7 are strengthened to the following Assumptions 6∗ and 7∗, an

explicit bias term may be incorporated into the limit theory (2.20) and (2.21).

Assumption 6∗. (i) K(x) satisfies that
∫

K(y)dy = 1 and for some p ≥ 2,∫
ypK(y)dy 6= 0,

∫
yiK(y)dy = 0, i = 1, 2, ..., p− 1.

(ii) K(x) has a compact support and is twice continuous differentiable on R.

Assumption 7∗. For given fixed x, m(x) has a continuous p + 1 derivative in a small

neighborhood of x, where p ≥ 2 is defined as in Assumption 6∗.

THEOREM 2.4. Under Assumptions 4-5 and 6∗-7∗, for any h satisfying nh/dn → ∞
and nh1+2(p+1)/dn → 0, we have

( dn

nh

)−1/2
[
m̂(x)−m (x)− hpm(p)(x)

p!

∫ ∞

−∞
ypK(y)dy

]
→D τ N L−1/2

W , (2.22)

and also,(
h

n∑
t=1

Kh(yt − x)
)1/2

[
m̂(x)−m (x)− hpm(p)(x)

p!

∫ ∞

−∞
ypK(y)dy

]
→D τ N . (2.23)

Remark 8. In past decade there have been increasing interests in the investigation of

asymptotics for the kernel estimator m̂(x) of m(x) in the model (2.16), under different

setting on the regressor yt and the error process εt. Phillips and Park (1998) studied
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nonparametric autoregression in the context of a random walk. Karlsen and Thostheim

(2001) and Guerre (2004) studied nonparametric estimation for certain nonstationary

processes in the framework of recurrent Markov chains. Karlsen, et al. (2007) developed

an asymptotic theory for nonparametric estimation of a time series regression equation

involving stochastically nonstationary time series. Under similar conditions and using

related Markov chain methods, Schienle (2008) investigated additive nonlinear versions of

(2.16) and obtained a limit theory for nonparametric regressions under smooth backfitting.

More recently, Wang and Phillips (2009a) and Cai, et al. (2009) considered an al-

ternative treatment by making use of local time limit theory and, instead of recurrent

Markov chains, worked with partial sum representations yt of linear process, as given in

Assumption 5. Unlike these cited results where the independence between the regressor yt

and the error process εt is essentially imposed, our results allow the endogenous regressor

case, and also allow the regressor yt to be fractionally integrated processes. Furthermore

Theorem 2.4 investigates the bias analysis, which does not attend in the previous articles.

In another papers, Wang and Phillips (2009b, 2010) considered the errors ut to be serially

dependent and cross correlated with the regressor xt for small lags. As stated in Remark

5, these works have different error structure as used in current Theorems 2.3 and 2.4.

Remark 9. Many interesting facts are raised in the nonlinear cointegrating regression.

For instance, a possible ”optimal” bandwidth h which yields the best rate m̂(x) − m(x)

or the minimal E(m̂(x)−m(x))2 is different from non-parametric regression with a sta-

tionary regressor; the use of augmented regression, as is common in linear cointegration

modeling to address endogeneity, does not lead to bias deduction in nonparametric regres-

sion, except there is an asymptotic gain in variance deduction; the particular advantage

that the local linear nonparametric estimator has bias reducing properties in comparison

with the Nadaraya-Watson estimator m̂ (x) defined as in (2.17) is lost when the regressor

yt is nonstationary. For more detailed discussions of these interesting facts, we refer to

Wang and Phillips (2009a, 2009b, 2010).

3 Proofs of main results

3.1. Proof of Theorem 2.1. For convenience of notation, we omit the index n on ηn,k,

εn,k and ξn,k in the following proof. It suffices to show that, for any α, β ∈ R

lim
n→∞

Eeiα Sn+iβG2
n = Ee(−α2

2
+iβ)σ2

, (3.1)

12



where σ2 = g2(W, G). Let λ > 0 be a continuous point of σ2. Write

x∗k,n = xk,nI(
k∑

j=1

x2
j,n ≤ λ), S∗n =

n∑
k=1

x∗k,nεk+1

and σ2
λ = σ2I(σ2 ≤ λ) + λI(σ2 > λ). It is readily seen that

max
1≤k≤n

|x∗k,n| ≤ max
1≤k≤n

|xk,n| = oP (1) (3.2)

and because of (2.4),

1√
n

n∑
k=1

|x∗k,n| |E(ηn,k+1εn,k+1 | Fn,k)|

≤ 1√
n

n∑
k=1

|xk,n| |E(ηn,k+1εn,k+1 | Fn,k)| = oP (1). (3.3)

Since λ is a continuous point of σ2, the continuous mapping theorem shows that

G̃2
n := G2

nI(G2
n ≤ λ) + λ I(G2

n > λ) →D σ2
λ.

Now, by noting G̃2
n −max1≤k≤n x2

k,n ≤
∑n

k=1 x∗2k,n ≤ G̃2
n, we have

G∗2
n :=

n∑
k=1

x∗2k,n →D σ2
λ. (3.4)

Combining all above facts, the result (3.1) will follow if we prove, for all α, β ∈ R,

lim
n→∞

Eeiα S∗n+iβG∗2
n = Ee(−α2

2
+iβ)σ2

λ , (3.5)

Indeed, this claim follows from the facts that S∗n = Sn and G∗2
n = G2

n on the set G2
n ≤ λ,

and limλ→∞ P (G2
n > λ) = 0.

Recall that ES∗2n ≤ C EG∗2
n ≤ 2C λ. {S∗n, G∗2

n }n≥1 is tight on D[0, 1]2. Hence, for each

{n′} ⊆ {n}, there exists a subsequence {n′′} ⊆ {n′} such that

{S∗n′′ , G∗2
n′′} →D (S, σ2

λ), (3.6)

where S is a limit random variable of S∗n′′ . For β1k, β2k ∈ R, 0 = u10 < u11 < ... < u1N1 = 1

and 0 = u20 < u21 < ... < u2N2 < ∞, define

V1 =

N1∑
k=1

β1k[W (u1k)−W (u1,k−1)],

13



and

V2 =

N2∑
k=1

β2k[G(u2k)−G(u2,k−1)].

By virtue of (3.6) and recalling that σ2
λ is F = σ{W (s), 0 ≤ s ≤ 1; G(t), 0 ≤ t < ∞}-

measurable, to establish (3.5), it suffices to show that, for all α, β, β1k, β2k ∈ R, 0 = u10 <

u11 < ... < u1N1 = 1 and 0 = u20 < u21 < ... < u2N2 < ∞,

EeiV1+iV2+iαS+ 1
2
α2σ2

λ = EeiV1+iV2 . (3.7)

Indeed, the result (3.7) implies that

E(eiαS+iβσ2
λ | F) = e(− 1

2
α2+iβ)σ2

λ .

This, together with (3.6), yields that, for each {n′} ⊆ {n}, there exists a subsequence

{n′′} ⊆ {n′} such that

lim
n′′→∞

Eeiα S∗
n′′+iβG∗2

n′′ = EeiαS+iβσ2
λ = Ee(−α2

2
+iβ)σ2

λ .

The result (3.1) hence follows because the limitation does not depend on the choice of the

subsequence.

We next prove (3.7). To this end, write

V1n =

N1∑
k=1

β1k[Wn(u1k)−Wn(u1,k−1)] :=
n∑

k=1

β∗1k ηk+1,

where β∗1k = β1j/
√

n when [nu1,j−1] < k ≤ [nu1j], for j = 1, ..., N1;

V2n =

N2∑
k=1

β2k[Ξn(u2k)− Ξn(u2,k−1)] :=
n∑

k=1

β∗2k ξk,

where β∗2k = β2j/dn when [nu2,j−1] < k ≤ [nu2j], for j = 1, ..., N2; and

Γn =
n∑

k=1

E
{
(eiβ∗1k ηk+1+iα x∗k,n εk+1 − 1) | Fn,k

}
We need the following two propositions. Their proofs will be given in Sections 3.5 and

3.6.

PROPOSITION 3.1. For any α, β1k ∈ R and 0 = u10 < u11 < ... < u1N1 = 1, we have

Γn →D Γ := −1

2

N1∑
k=1

β2
1k(u1k − u1,k−1)−

1

2
α2σ2

λ, (3.8)

and e|Γn| is uniformly integrable.
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PROPOSITION 3.2. For any α, β1k, β2k ∈ R, 0 = u10 < u11 < ... < u1N1 = 1 and

0 = u20 < u21 < ... < u2N2 < ∞, we have

In := E
∣∣E(

ei αS∗n+iV1n−Γn | Fn,1

)
− 1

∣∣ = o(1). (3.9)

Furthermore, as n →∞, we have

Eei αS∗n+iV1n+iV2n−Γn → EeiV2 . (3.10)

We are now ready to prove (3.7). First recall that {S∗n}n≥1 is tight, and

V1n →D V1, V2n →D V2, (3.11)

by virtue of (2.2) and (2.3). These facts, together with (3.8), yield that

{S∗n, V1n, V2n, Γn}n≥1

is tight on D[0, 1]4. Hence, for each {n′} ⊆ {n}, there exists a subsequence {n′′} ⊆ {n′}
such that

{S∗n′′ , V1n′′ , V2n′′ , Γn′′} →D

{
S, V1, V2, Γ

}
. (3.12)

on D[0, 1]4. Consequently it follows from the uniformity of EeiS∗
n′′+iV1n′′+iV2n′′−Γn′′ because

of Proposition 3.1 that, as n′′ →∞,

EeiS∗
n′′+iV1n′′+iV2n′′−Γn′′ → EeiS+iV1+iV2−Γ. (3.13)

This, together with (3.10), yields that

EeiS+iV1+iV2−Γ = EeiV2 , (3.14)

and hence

EeiV1+iV2+iS+ 1
2
α2σ2

λ = e−
1
2

PN1
k=1 β2

1k(u1k−u1,k−1) EeiV2 = EeiV1+iV2 ,

where we have used the independence between W (t) and G(t) and the fact that

EeiV1 = e−
1
2

PN1
k=1 β2

1k(u1k−u1,k−1).

This proves (3.7) and also completes the proof of Theorem 1. 2

3.2. Proof of Theorem 2.2. We may write S1n =
∑n

k=1 xk,nεk+1 with

xk,n =
(cn

n

)1/2
f(cnyk,n) = fn(ε1, ..., εk; η1, ..., ηk : ξ1, ξ2, ...),
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where ηj = νj, 1 ≤ j ≤ n and ξj = ν−j+1, j ≥ 1. It suffices to check that ηj, εj and

xj,n satisfy Assumptions 1 and 2. In fact, by Assumption 4, it is readily seen that

{ηj+1, εj+1,Fj}j≥1 forms a martingale difference satisfying Assumption 1 and 1√
n

∑[nt]
j=1 ηj ⇒

W (t) on D[0, 1], where W (t) is a standard Winner process. By the definitions of Fk and

ξk, ξk, k ≥ 1, is F1 measurable and obviously 1√
n

∑[nt]
j=1 ξj ⇒ W ∗(t), on D[0,∞), where

W ∗(t) is a standard Winner process independent of W (s). This gives Assumption 2(i).

On the other hand, it follows from Corollary 2.2 and Remark 2.1 of Wang and Phillips

(2009a) that, for any 0 ≤ γ′ ≤ 1 + γ,

cn

n

n∑
k=1

|f(cnyk,n)|1+γ′ →D

∫ ∞

−∞
|f(x)|1+γ′dx

{
LW3/2−u

(1, 0), under C1,

LW (1, 0), under C2,
(3.15)

whenever cn →∞ and cn/n → 0. By virtue of (3.15), simple calculations show that

max
1≤k≤n

|xk,n| ≤
(cn

n

)1+γ/2
n∑

k=1

|f(cnyk,n)|2+γ = oP (1),

1√
n

n∑
k=1

|xk,n| ≤ c−1/2
n

cn

n

n∑
k=1

|f(cnyk,n)| = oP (1),

and
n∑

k=1

x2
k,n =

cn

n

n∑
k=1

f 2(cnyk,n) →D g2(W, W ∗).

This gives Assumption 2 (ii) and (iii). Combining all these fact, we prove (2.11) by

Theorem 2.1. 2

3.3. Proof of Theorem 2.3. It follows from Theorem 2.2 that

{S2n, G
2
2n} →D {τ L1/2

W N , τ 2 LW}, (3.16)

whenever cn/n → 0 and cn → ∞, where cn = dn/h. This, together with (2.15) with

f1(y) = K2(y) and f2(y) = K(y), implies that( dn

nh

)−1/2

∑n
t=1 εt+1Kh(yt − x)∑n

t=1 Kh(yt − x)
=

S2n

G2
2,n

∑n
t=1 K2

h(yt − x)∑n
t=1 Kh(yt − x)

→D τ N L−1/2
W . (3.17)

On the other hand, it is readily from Assumption 7 and (2.15) with f1(y) = K(y) m1(y, x)

and f2(y) = K(y) that

( dn

nh

)−1/2

∑n
t=1

∣∣m(yt)−m(x)
∣∣ Kh(yt − x)∑n

t=1 Kh(yt − x)

≤
( dn

nh

)−1/2
hγ

∑n
t=1 |m1[(yt − x)/h, x]|K[(yt − x)/h]∑n

t=1 K[(yt − x)/h]
= oP (1),
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since nh2γ+1/dn →∞. Taking these estimates into (2.18), we proves (2.20). The proof of

(2.21) is similar, and hence the details are omitted. 2

3.4. Proof of Theorem 2.4. By virtue of (2.18) and (3.17), to establish (2.22), it

suffices to show that, under Assumptions 6∗ and 7∗, for any h satisfying nh1+2(p+1)/dn → 0,

Λ1n :=

∑n
t=1

[
m(yt)−m(x)

]
Kh(yt − x)∑n

t=1 Kh(yt − x)

=
hpm(p)(x)

p!

∫ ∞

−∞
ypK(y)dy + oP

[
(
dn

nh

)1/2]
. (3.18)

This is exactly same as in the proof of Theorem 2.2 of Wang and Phillips (2010). For the

sake of completeness, we rewrite the proof as follows since it is not very complex. The

numerator of Λ1n involves

n∑
t=1

{m (yt)−m (x)}K

(
yt − x

h

)
=

p+1∑
j=1

Ij, (3.19)

where

Ij =
m(j)(x)

j!

n∑
t=1

(yt − x)j K

(
yt − x

h

)
, j = 1, 2, ..., p,

Ip+1 =
n∑

t=1

{
m(yt)−

p∑
j=0

m(j)(x)

j!
(yt − x)j

}
K

(
yt − x

h

)
.

Write Hj(x) = xjK(x), j = 1, 2..., p. Recall that K(x) has a compact support with twice

continuous differentials. For j = 1, ..., p − 1, Hj(x) are twice continuous differentiable

satisfying
∫∞
−∞

[
|H ′

j(x)| + |H ′′
j (x)|

]
dx < ∞. Hence Ĥj(t), j = 1, ..., p − 1, is integrable,

where Ĥj(t) =
∫∞
−∞ eitxHj(x)dx. See Proposition 18.1.2 of Gasquet and Witomski (1998)

for instance. Furthermore, for j = 1, ..., p− 1, |Ĥj(x)| ≤ C min{|t|, 1} as
∫

Hj(x)dx = 0.

By virtue of these facts, together with
∫

K(x)dx = 1 and
∫

Hp(x)dx 6= 0, it is readily

seen from (2.13) that

h−j
(

dn

nh

)−1/2
Ij∑n

t=1 K
(

yt−x
h

) →D σj N L−1/2
W , j = 1, 2, ..., p− 1, (3.20)

where σ2
j =

[m(j)(x)
j!

]2 ∫
H2

j (x)dx, and

h−p Ip∑n
t=1 K

(
yt−x

h

) →P
m(p)(x)

p!

∫
Hp(x)dx. (3.21)
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On the other hand, by noting limh→0 supy∈Ω |m(p+1)(yh + x)| ≤ C by Assumption 7∗,

Taylor expansion yields

|Ip+1| ≤ C

n∑
t=1

|yt − x|p+1 K

(
yt − x

h

)
,

and hence

h−(p+1) |Ip+1|∑n
t=1 K

(
yt−x

h

) ≤ C

∑n
t=1 Hp+1

(
yt−x

h

)∑n
t=1 K

(
yt−x

h

) →P C

∫
Hp+1(x)dx, (3.22)

where Hp+1(x) = |x|p+1K(x). Combining (3.19)-(3.22), simple calculation show that

( dn

nh

)−1/2
[
Λ1n −

hpm(p)(x)

p!

∫ ∞

−∞
ypK(y)dy

]
≤

(
dn

nh

)−1/2∑n
t=1 K

(
yt−x

h

) p−1∑
j=1

|Ij|+
(

dn

nh

)−1/2|Ip+1|∑n
t=1 K

(
yt−x

h

)
= OP

[
h +

( dn

nh

)−1/2
hp+1

]
= oP (1),

whenever nh1+2(p+1)/dn → 0. This proves (3.18). The proof of (2.23) is similar and hence

the details are omitted. The proof of Theorem 2.3 is now complete. 2

3.5. Proof of Proposition 3.1. Write Ynm = i β∗1mηm+1 + i α x∗m,n εm+1. By As-

sumption 1, simple calculations show that

E
{
(eYnm − 1) | Fn,m

}
= −1

2
E

{
[β∗1mηm+1 + αx∗m,nεm+1]

2 | Fn,m

}
+ Rnm,

where, for the δ > 0 defined as in Assumption 1,

|Rnm| ≤ E
(
|Ynm|2+δ | Fn,m

)
≤ C

(
n−(2+δ)/2 + |x∗m,n|2+δ

)
.

Recall (3.2) and (3.4). It is readily seen that

n∑
m=1

|Rnm| ≤ cn−δ/2 + C max
1≤k≤n

|x∗nk|δ
n∑

m=1

x∗2nm = oP (1).
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It now follows from Assumption 1 again that

Γn =
n∑

m=1

E
{
(eYnm − 1) | Fn,m

}
= −1

2

n∑
m=1

E
{
[β∗1mηm+1 + αx∗m,nεm+1]

2 | Fn,m

}
+ oP (1)

= −1

2

n∑
m=1

β∗21mE
(
η2

m+1 | Fn,m)− α2

2

n∑
m=1

x∗2m,nE(ε2
m+1 | Fn,m)

−
n∑

m=1

α β∗1m x∗m,n E
{
(ηm+1εm+1) | Fn,m

}
+ oP (1)

= − 1

2n

N1∑
m=1

β2
1m([nu1m]− [nu1,m−1])−

α2

2

n∑
m=1

x∗2m,n + oP (1)

→D −1

2

N1∑
m=1

β2
1m(u1m − u1,m−1)−

α2

2
σ2

λ,

where we used the fact that, by (3.3),

|
n∑

m=1

α β∗1m x∗m,n E
{
(ηm+1εm+1) | Fn,m

}
|

≤ C
n∑

m=1

|x∗m,n| |E
{
(ηm+1εm+1) | Fn,m

}
| = oP (1).

This proves (3.8). Recall that E(ε2
k+1 | Fn,k) + E(η2

k+1 | Fn,k) ≤ C and note that∣∣E{
(eYnm − 1) | Fn,m

}∣∣ ≤ 1

2
E(Y 2

nm | Fn,m) ≤ C (n−1 + x∗2m,n). (3.23)

We have

|Γn| ≤ C(1 +
n∑

m=1

x∗2m,n) ≤ C(1 + 2λ).

The uniformly integrality of e|Γn| is obvious. The proof of Proposition 3.1 is now complete.

2

3.6. Proof of Proposition 3.2. Write Ynm = i β∗1mηm+1 + i α x∗m,n εm+1 as in the

proof of Proposition 3.1, and let E1X = E(X | Fn,1). We have that

In = E
∣∣∣E1 exp

{ n∑
k=1

Ynk −
n∑

k=1

E
[(

eYnk − 1
)
| Fn,k

]}
− 1

∣∣∣
≤

n∑
m=2

E
∣∣∣E1

[
exp

{ m−1∑
k=1

Ynk −
m∑

k=1

E
[(

eYnk − 1
)
| Fn,k

]}{
eYnm − eE

[(
eYnm−1

)
|Fn,m

]}]∣∣∣
+E

∣∣∣E1 exp
{

Yn1 − E
[(

eYn1 − 1
)
| Fn,1

]}
− 1

∣∣∣
:= I1n + I2n. (3.24)

19



Recall that (3.23). It follows from max1≤m≤n x∗2nm = oP (1) and max1≤m≤n x∗2nm ≤ λ that

∆1n :=
∣∣∣E1 exp

{
Yn1 − E

[(
eYn1 − 1

)
| Fn,1

]}
− 1

∣∣∣
≤

∣∣∣e−E
[(

eYn1−1
)
|Fn,1

]
− 1

∣∣∣ +
∣∣∣E[(

eYn1 − 1
)
| Fn,1

]∣∣∣
≤ C(n−1 + x∗2n1)e

C(n−1+x∗2n1) = oP (1),

and ∆1n is uniformly integrable as ∆1n ≤ C(1+λ)eλ. This implies that I2n = E∆1n → 0,

as n →∞.

To consider I1n, write

un,m = e
Pm−1

k=1 Ynk−
Pm

k=1 E
[
(eYnk−1)|Fn,k

]
,

vn,m = eYnm − eE
[
(eYnm−1)|Fn,m

]
.

Using (3.23) and
∑n

k=1 x∗2kn ≤ 2λ again, it follows that

|un,m| ≤ e
Pm

k=1 |E
[
(eYnk−1)|Fn,k

]
| ≤ eC

Pm
k=1(n−1+x∗2nk) ≤ eC(1+2λ). (3.25)

As for E(vn,m | Fn,m), by using |ex − 1− x| ≤ |x|(2+δ)/2e|x|, we have

|E(vn,m | Fn,m)| =
∣∣E{

(eYnm − 1) | Fn,m

}
+ 1− eE

[
(eYnm−1)|Fn,m

]∣∣
≤

∣∣E{
(eYnm − 1) | Fn,m

}∣∣(2+δ)/2
e|E

[
(eYnm−1)|Fn,m

]
|

≤ C eC(1+2λ) (n−1 + x∗2nm)(2+δ)/2.

Now, by recalling Fn,m ⊆ Fn,m+1 for any n ≥ m ≥ 1 and n ≥ 1, it is readily seen that

I1n ≤
n∑

m=2

E
[
|un,m| |E(vn,m | Fn,m)|

]
≤ C e2C(1+2λ) E

n∑
m=2

(n−1 + x∗2nm)(2+δ)/2 → 0,

since

∆2n :=
n∑

m=2

(n−1 + x∗2nm)(2+δ)/2

≤ (n−δ/2 + max
1≤m≤n

|x∗nk|δ)(1 +
n∑

m=1

x∗2nk) = oP (1),

and ∆2n is uniformly integrable by noting ∆2n ≤ C(1 + λ1+δ/2). Taking these facts into

(3.24), we proves (3.9).
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The proof of (3.10) is simple. Indeed it follows from (3.9), V2n is Fn,1-measurable and

and EeiV1n → EeiV1 due to (2.3) that

|Eei αS∗n+iV1n+iV2n−Γn − EeiV2|

≤ E
∣∣E(

ei αS∗n+iV1n−Γn | Fn,1

)
− 1

∣∣ + |EeiV2n − EeiV1| → 0.

The proof of Proposition 3.2 is now complete. 2

REFERENCES

Billingsley, P. (1968). Convergence of Probability Measures. Wiley.

Cai, Z., Li, Q. and Park, J. Y. (2009). Functional-coefficient models for nonstationary

time series data. J. Econometrics 148, 101–113.

Choi, I. and Pentti, S. (2010). Tests for nonlinear cointegration. Forthcoming in Econo-

metric Theory

Gao, J., K., Maxwell, Lu, Z., Tjøstheim, D. (2009). Nonparametric specification testing

for nonlinear time series with nonstationarity. Econometric Theory, 25, 1869–1892.

Gao, J., K., Maxwell, Lu, Z., Tjøstheim, D. (2009). Specification testing in nonlinear

and nonstationary time series autoregression. Ann. Statist. 37, 3893–3928.

Gaquet, C. and Witomski, P. (1999). Fourier Analysis and Applications. Springer, New

York.

Geman, D, J. Horowitz (1980). Occupation densities. Ann. Probab., 8 , 1–67.

Guerre, E. (2004). Design-Adaptive pointwise nonparametric regression estimation for

recurrent Markov time series. Unpublished pamnuscript.

Hall, P. (1977). Martingale invariance principles. Annals of Probability, 5, 875-887.

Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its application, Probability

and Mathematical Statistics. Academic Press, Inc.

Hansen, B. E. (1992). Convergence to stochastic integrals for dependent heterogeneous

processes. Econometric Theory 8, 489500.

Hong, S. H. and Phillips, P. C. B. (2010) Testing Linearity in Cointegrating Relations

with an Application to Purchasing Power Parity. Journal of Business and Economic

Statistics, forthcoming.

Jeganathan, P. (2006). Convergence in distribution of row sum processes to mixtures of

addive processes. unpublished manuscript.

Karlsen, H. A.; Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time

series. Ann. Statist. 29, 372–416.

21



Karlsen, H. A., Myklebust, T. and Tjøstheim, D. (2007). Nonparametric estimation in a

nonlinear cointegration model, Ann. Statist., 35, 252-299.

Kasparis, I. (2008). Detection on functional form misspecification in cointegrating rela-

tions, Econometric Theory, 24, 1373-1403.

Kasparis, I. (2011). Functional form misspecification in regressions with a unit root,

Econometric Theory, 27, forthcoming.

Kasparis, I. and Phillips, P. C. B. (2009). Dynamic Misspecification in Nonparametric

Cointegrating Regression. Yale University Working Paper.

Kurtz, T. G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and

stochastic differential equations. Ann. Probab. 19, 10351070.

Marmer, V. (2008). Nonlinearity, nonstationarity, and spurious forecasts. J. Economet-

rics 142, 1–27.

McLeish, D. L. (1974). Dependent central limit theorems and invariance principles. Ann.

Probab. 2, 620628.

Park, J. Y. and P. C. B. Phillips (1999). Asymptitocs for nonlinear transformation of

integrated time series, Econometric Theory, 15, 269-298.

Park, J. Y. and P. C. B. Phillips (2001). Nonlinear regressions with integrated time

series, Econometrica, 69, 117-161.

Phillips, P. C. B. and J. Y. Park (1998). Nonstationary Density Estimation and Kernel

Autoregression. Cowles Foundation discuss paper No. 1181.

Schienle, M. (2008). Nonparametric Nonstationary Regression, Unpublished Ph.D. The-

sis, University of Mannheim.

Wang, Q., Lin, Y.-X. and Gulati, C. M. (2003). Asymptotics for general fractionally

integrated processes with applications to unit root tests. Econometric Theory, 19,

143–164.

Wang, Q. and P. C. B. Phillips (2009a). Asymptotic Theory for Local Time Density

Estimation and Nonparametric Cointegrating Regression, Econometric Theory, 25,

710-738.

Wang, Q. and P. C. B. Phillips (2009b). Structural Nonparametric Cointegrating Re-

gression, Econometrica, 77, 1901-1948.

Wang, Q. and P. C. B. Phillips (2010). Asymptotic Theory for Zero Energy Functionals

with Nonparametric Regression Applications. Econometric Theory, forthcoming.

Wu, W. B. and Woodroofe, M. (2004). Martingale approximations for sums of stationary

22



processes. Ann. of Probab., 32, 1674-1690

The authors acknowledge partial research support from the Australian research coun-

cil. Address correspondence to Qiying Wang, School of Mathematics and Statistics, The

University of Sydney, NSW 2006, Australia; e-mail:qiying@maths.usyd.edu.au.

23


