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Abstract. This is a summary of some of the basic facts about
flat 2-orbifold groups, otherwise known as 2-dimensional crystallo-
graphic groups. We relate the geometric and topological presen-
tations of these groups, and consider structures corresponding to
decompositions of the orbifolds as fibrations or as unions.

An n-dimensional crystallographic group is a discrete subgroup π of
the group E(n) = Rn ⋊ O(n) of isometries of euclidean n-space Rn

which acts properly discontinuously on Rn. The translation subgroup

π ∩ Rn is a lattice of rank n, with quotient a finite subgroup of O(n),
called the holonomy group of π. Since conjugation by π preserves the
lattice, the holonomy group is conjugate in GL(n,R) to a subgroup of
GL(n,Z). The quotient B of Rn by the action has a natural orbifold
structure, recording the images of points with nontrivial stabilizers.
The group π is then the orbifold fundamental group πorb(B).
It is well known that when n = 2 there are just 17 possibilities. We

shall relate the presentations of the groups deriving from their structure
as an extension of a finite group by a lattice to those deriving from the
orbifold structure. We give explicit embeddings of each group in E(2),
where there is not an obvious choice. (However, we do not consider
the issue of moduli, i.e., the parametrization of all such embeddings of
a given flat 2-orbifold group.) The orbifold fibres over a 1-orbifold if
and only if the group is an extension of Z or the infinite dihedral group
D∞. In the latter case the group is also a generalized free product
with amalgamation (GFPA), corresponding to a decomposition of the
orbifold along a codimension-1 suborbifold. Finally we describe the
minimal proper covering relations between these orbifolds. All this
material is well known; the only novelty here is perhaps in bringing
this material together. We list several relevant expository articles at
the end, although these are not explicitly invoked in the paper.

1. the holonomy group

Let A = ( 0 1
−1 0 ), B = ( 0 −1

1 1
) and R = ( 0 1

1 0
). If G is a nontrivial finite

subgroup of GL(2,Z) it is conjugate to one of the cyclic groups gener-
ated by A, −I, B, B2, R or AR, or to a dihedral subgroup generated
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by {A,R}, {−I, R}, {−I, AR}, {B,R}, {B2, R} or {B2, RB}. Let Z̃2

denote Z2, considered as a G-module via the inclusion G < GL(2;Z).
The flat 2-orbifold groups are the extensions of such groups G by Z2,

and so are determined by the cohomology group H2(G; Z̃2).

In 10 of these 13 cases H2(G; Z̃2) = 0, and so the semidirect product
Z2 ⋊ G is the unique extension of G by Z2 (up to isomorphism). The
eight semidirect products with G ≤ 〈A,R〉 = GL(2,Z)∩O(2) embed as
discrete cocompact subgroups of E(2) = R2⋊O(2) in the obvious way.
The five other semidirect products embed in Aff(2) = R2⋊GL(2,R),
and these embeddings may be conjugated into E(2). We shall give
explicit embeddings for each of the four non-split extensions.

2. presentations

We shall give presentations arising from the extensions and also those
arising from the corresponding flat orbifold. Epimorphisms to D∞

correspond to GFPA structures, arising naturally from Van Kampen’s
Theorem. These are essentially unique for A, Mb and Kb, since the
kernel must contain the centre ζπ. Each group is identified by the
traditional crystallographic symbol (in square brackets) and by the
now-standard orbifold symbol [4].
Let I = [[0, 1]] and J = [[0, 1] be the reflector interval and the interval

with one reflector endpoint and one ordinary endpoint. Let Mb and
D(2, 2) be the Möbius band and the disc with two cone points, but
with ordinary boundaries. Then I is the one-point union of two copies
of J, and so πorb

1
(J) = Z/2Z and πorb

1
(I) ∼= πorb

1
(D(2, 2)) ∼= D∞.

The first four orbifolds (T,A, Kb and Mb) fibre over S1.

Holonomy G = 1.

[p1] = T . Z2 = 〈x, y | xy = yx〉.
In the subsequent presentations the generators a, b, c, d, j, n and r

shall represent elements whose images in the holonomy group have
matrices A,B,B2, AR,−I, BR and R, respectively, with respect to the
basis {x, y} for the translation subgroup Z2. (The other generators
m, p, s, t, u, v, w, z do not have such fixed interpretations.)

Holonomy Z/2Z = 〈AR〉. In this case H2(G; Z̃2) = Z/2Z.

[pm] = A = S1 × I. π = Z × D∞
∼= (Z ⊕ Z/2Z) ∗Z (Z ⊕ Z/2Z).

This is the split extension.

〈Z2, d | dx = xd, dyd = y−1, d2 = 1〉.

Let u = dy. Then also

〈d, u, x | dx = xd, ux = xu, d2 = u2 = 1〉.
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The subgroups 〈x+ y, d〉 and 〈dx, y〉 are isomorphic to πorb(Mb) and
π1(Kb), respectively.

[pg] = Kb = Mb ∪Mb. π = Z ⋊−1 Z ∼= Z ∗Z Z.

〈Z2, d | d2 = x, dyd−1 = y−1〉 = 〈d, y | dyd−1 = y−1〉.

Let u = dy. Then also
〈d, u | d2 = u2〉.

The quotient of π by its centre 〈x〉 ∼= Z is D∞, but this extension does
not split.
We may embed π in E(2) via y 7→ (j, I2) and z 7→ (1

2
i, ( 1 0

0 −1 )).

Holonomy Z/2Z = 〈R〉:

[cm] = Mb = Mb ∪ S1 × J. π ∼= Z ∗Z (Z⊕ Z/2Z).

〈Z2, r | rxr = y, r2 = 1〉.

Let z = xr. Then also

〈r, z | rz2 = z2r, r2 = 1〉.

Let τ be the involution of the normal subgroup 〈xy−1, r〉 = 〈r, zrz−1〉 ∼=
D∞ which swaps r and zrz−1. Thus π ∼= D∞⋊τZ. The centre is
〈xy〉 ∼= Z and π/ζπ ∼= D∞, but this extension does not split.
The subgroup 〈xr, rx〉 = 〈z, [r, z]〉 is isomorphic to π1(Kb).

The next five orbifolds fibre over I.

Holonomy Z/2Z = 〈−I〉:

[p2] = S(2, 2, 2, 2) = D(2, 2) ∪D(2, 2). π ∼= D∞ ∗Z D∞.

〈Z2, j | jxj = x−1, jyj = y−1, j2 = 1〉.

Let u = jx and v = jy. Then also

〈j, u, v | j2 = u2 = v2 = (juv)2 = 1〉.

This group is a semidirect product of the normal subgroup 〈ju〉 with
〈j, v〉. Thus π ∼= Z ⋊D∞.

Holonomy D4 = 〈−I, R〉:

[cmm] = D(2, 2, 2). π ∼= 〈S(2, 2, 2, 2), r | rxr = y, r2 = (jr)2 = 1〉.
Let u = jx, v = jy and z = jr. Then v = rur and juv = rzurur.
Then also

〈r, u, z | r2 = u2 = z2 = (rz)2 = (zuru)2 = 1〉.

This group is the semidirect product of the normal subgroup 〈xy−1, u〉
with 〈j, x〉, and so π ∼= D∞ ⋊D∞. The corresponding GFPA structure
π ∼= (D∞ × Z/2Z) ∗D∞

D∞ derives from the decomposition of the disc
along a chord which separates the cone point from the corner points.
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Holonomy D4 = 〈−I, AR〉. In this case H2(G; Z̃2) = (Z/2Z)2.
The group π has a presentation

〈Z2, d, j | dx = xd, dyd−1 = y−1, jxj = x−1, jyj = y−1,

(jd)2 = ye, d2 = xf , j2 = 1〉.

We may assume that 0 ≤ e, f ≤ 1. In all cases, 〈x〉 and 〈y〉 are the
maximal infinite cyclic normal subgroups.
Two extension classes give isomorphic groups, and so there are three

possibilities:

[pmm] = D(2, 2, 2, 2). π ∼= (D∞ × Z/2Z) ∗D∞
(D∞ × Z/2Z).

This is the split extension (with e = f = 0). It is also D∞ ×D∞:

〈Z2, d, j | dx = xd, dyd = y−1, jxj = x−1, jyj = y−1,

d2 = j2 = (dj)2 = 1〉.

Let s = jdx and t = dy. Then also

〈d, j, s, t | d2 = j2 = s2 = t2 = (st)2 = (tj)2 = (jd)2 = (ds)2 = 1〉,

or 〈d, j, s, t | d, t ⇌ j, s, d2 = j2 = s2 = t2 = 1〉.

The GFPA structure derives from the decomposition of the disc along
a chord which separates one pair of adjacent corner points from the
others.

[pmg] = D(2, 2) = S1 × J ∪D(2, 2). π ∼= (Z⊕ Z/2Z) ∗Z D∞.
This corresponds to (e, f) = (1, 0). (The choice (0, 1) gives an iso-

morphic group.)

〈Z2, d, j | jxj = x−1, y = (jd)2, dx = xd, d2 = j2 = 1〉.

Let v = jx. Then also

〈d, j, v | djv = jvd, d2 = j2 = v2 = 1〉.

The relation djv = jvd is equivalent to jdj = vdv, since j2 = v2 = 1.
Hence we also have π ∼= D∞ ∗D∞

D∞, This GFPA structure derives
from the decomposition of the disc along a chord which separates the
two cone points.
The subgroups 〈jv〉 and 〈d, jdj〉 are normal, and so π ∼= Z⋊D∞ and

π ∼= D∞ ⋊D∞.
We may embed π in E(2) via d 7→ (−1

2
j, ( 1 0

0 −1 )), j 7→ (0,−I2) and
v 7→ (−i,−I2).
The index-2 subgroups of the group of D(2, 2) corresponding to

〈AR〉 < D4 and 〈−AR〉 < D4 are isomorphic to π1(Kb) = Z ⋊−1 Z

and πorb(A) = Z×D∞, respectively.

[pgg] = P (2, 2) = Mb ∪D(2, 2). π ∼= Z ∗Z D∞.
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This corresponds to e = f = 1.

〈Z2, d, j | d2 = x, (jd)2 = y, jd2j = d−2, d2(jd)2 = (jd)2d2, j2 = 1〉.

Let v = jd2. Then this reduces to

〈d, j, v | d2 = jv, j2 = v2 = 1〉 or just 〈d, j | (jd2)2 = j2 = 1〉.

There is an automorphism which fixes j and swaps d and jd. We have
π/〈(jd)2〉 ∼= π/〈d2〉 ∼= D∞, but these extensions do not split.
We may embed π in E(2) via d 7→ (1

2
i, ( 1 0

0 −1 )) and j 7→ (1
2
(i+j),−I2).

The index-2 subgroups of the group of P (2, 2) corresponding to
〈AR〉 < D4 and 〈−AR〉 < D4 are both isomorphic to π1(Kb).

The remaining eight orbifolds do not fibre over S1 or I.

Holonomy Z/4Z = 〈A〉:

[p4] = S(2, 4, 4). 〈Z2, a | axa−1 = y−1, aya−1 = x, a4 = 1〉.
Let u = a2x. Then also 〈a, u | a4 = u2 = (au)4 = 1〉.

Holonomy D8 = 〈A,R〉. In this case H2(G; Z̃2) = (Z/2Z).
The group π has a presentation

〈Z2, a, r | axa−1 = y−1, aya−1 = x, rxr = y, a4 = r2 = 1, (ar)2 = ye〉,

where e = 0 or 1. Let a = t2x. Then this reduces to

〈a, r, v | ava = rva2r, a4 = r2 = v2 = (va)4 = 1, (ar)2 = r(t2v)er〉.

[p4m] = D(2, 4, 4). This is the split extension. It reduces to

〈a, r, v | rav = vra, a4 = r2 = v2 = (ar)2 = (va)4 = 1〉,

since a2r = ra2. Let w = au and z = vra. Then also

〈r, w, z | r2 = w2 = z2 = (rw)4 = (wz)2 = (zr)4 = 1〉.

[p4g] = D(2, 4). This is the non-split extension.

〈a, r, v | (ar)2 = ra2vr, a4 = r2 = v2 = (va)4 = 1〉.

Since va = (a2r)a(a2r)−1 and ava−1 = a−1rar, this reduces to

〈a, r | a4 = r2 = (a−1rar)2 = 1〉.

We may embed π in E(2) via a 7→ (0, ( 0 −1

1 0
)), r 7→ (1

2
i, ( 0 1

1 0
)) and

v 7→ (−i,−I2).
The index-2 subgroup of this group corresponding to 〈−I, AR〉 < D8

is the split extension. In particular, the groups with holonomy Z/4Z
or D8 do not contain the groups of Kb, D(2, 2) or P (2, 2).

Holonomy Z/3Z = 〈B2〉:

[p3] = S(3, 3, 3). 〈Z2, c | cxc−1 = x−1y, cyc−1 = x−1, c3 = 1〉.
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Let u = cx. Then also

〈c, u | c3 = u3 = (cu)3 = 1〉.

Holonomy Z/6Z = 〈B〉:

[p6] = S(2, 3, 6). 〈Z2, b | bxb−1 = y, byb−1 = x−1y, b6 = 1〉.
Let v = b2x. Then also

〈b, v | b6 = v3 = (bv)2 = 1〉.

Holonomy D6 = 〈B2, R〉:

[p3m1] = D(3, 3, 3). 〈S(3, 3, 3), r | rxr = y, r2 = (rc)2 = 1〉.
Let s = rc and t = crx. Then also

〈r, s, t | r2 = s2 = t2 = (rs)3 = (st)3 = (tr)3 = 1〉.

Holonomy D6 = 〈B2, BR〉:

[p31m] = D(3, 3). 〈S(3, 3, 3), n | nxn = x−1y, ny = yn, n2 = (nc)2 = 1〉.
Let v = nx−1y−1 and w = nx2y−1. Then also

〈c, v, w | c3 = v2 = w2 = 1, w = cvc−1〉

or 〈c, w | w2 = c3 = (c−1wcw)3 = 1〉.

Holonomy D12 = 〈B,R〉:

[p6m] = D(2, 3, 6). 〈S(2, 3, 6), r | rxr = y, r2 = (rb)2 = 1〉.
Let m = brb−1 = b2r, n = br and p = rbxy−2. Then also

〈m,n, p | m2 = n2 = p2 = (mn)6 = (np)3 = (pm)2 = 1〉.

The matrix B is not orthogonal. However conjugation by
(

−2 1

0
√
3

)
)

carries 〈B,R〉 into O(2), and thus carries each of the subgroups Z2⋊G
of Aff(2) determined by the five groups with 3-torsion into E(2).

3. fibrations over I

We shall say that two epimorphisms λ, λ′ : π → D∞ = πorb(I) are
equivalent if λ′ = δλα for some α ∈ Aut(π) and δ ∈ Aut(D∞). Such
epis are most easily found by considering the possible kernels, which are
maximal normal virtually-Z subgroups. (Note that since Out(D∞) =
Z/2Z and we are working with epimorphisms, it is sufficient to take δ
to be either the automorphism which swaps the standard generators or
the identity.)
All epimorphisms from πorb(S(2, 2, 2, 2)) toD∞ are equivalent. These

correspond to fibrations over I with general fibre S1 and two singular
fibres (reflector intervals connecting pairs of cone points).
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All epimorphisms from πorb(D(2, 2, 2, 2)) toD∞ are equivalent. (There
are two maximal normal virtually-Z subgroups.) These correspond to
the projections of D(2, 2, 2, 2) = I× I onto its factors.
All epimorphisms from πorb(P (2, 2)) to D∞ are equivalent. (There

are two maximal normal virtually-Z subgroups.) These correspond
to a fibration over I with general fibre S1 and two singular fibres (the
centreline ofMb, and one reflector interval connecting the cone points).
There are two equivalence classes of epimorphisms from πorb(D(2, 2))

to D∞. (There are two maximal normal virtually-Z subgroups, namely
〈x〉 and 〈y〉.) One corresponds to a fibration over I with general fibre
S1 and two singular fibres (one reflector interval connecting the cone
points and the reflector curve). The other corresponds to a fibration
with general fibre I and two singular fibres (two reflector intervals, each
connecting a cone point to a reflector curve).

• •2 2 • •2 2

D(2, 2)

All epimorphisms from πorb(D(2, 2, 2)) to D∞ are equivalent. (There
are two maximal normal virtually-Z subgroups.) These correspond to a
fibration over I with general fibre I and one exceptional fibre (a reflector
interval connecting the cone point to a reflector curve).

2•

D(2, 2, 2)

4. coverings

If α and β are two flat orbifold groups and there is a monomorphism
α → β which is an isomorphism on the translation subgroups then
we shall say that the corresponding orbifold cover is equitranslational.
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In this case β1(α) ≥ β1(β), the holonomy group Gα is conjugate in

GL(2,Z) to a subgroup of Gβ, and the extension class eβ ∈ H2(Gβ; Z̃
2)

must restrict to eα.
Such inclusions are easily determined from the lattices of subgroups

of the two maximal subgroups 〈A,R〉 and 〈B,R〉 of GL(2,Z) (mod-
ulo conjugacy). Determining the lattices of equitranslational covers of
D(2, 4, 4) or of D(2, 3, 6) is straightforward, since in these cases the orb-
ifold groups arising are split extensions. The only subtle point is how
the nonsplit extensions (with holonomy a 2-group) restrict over sub-
groups of the holonomy groups. The index-2 subgroups of πorb(D(2, 4))
corresponding to 〈−I, AR〉 are split extensions, and so D(2, 2) and
P (2, 2) do not cover D(2, 4). The index-2 subgroups of πorb(P (2, 2))
corresponding to 〈±AR〉 are both π1(Kb), and so A does not cover
P (2, 2).
The orientable orbifold S(2, 2, 2, 2) covers all flat orbifolds with ho-

lonomy of even order except for Kb, A, Mb, D(3, 3) and D(3, 3, 3). In
particular, D(2, 2), D(2, 2, 2) and D(2, 2, 2, 2) are quotients by reflec-
tions across circles passing through 0, 2 or 4 cone points, respectively.
The quotient by rotation of order 2 with both fixed points cone points
is S(2, 4, 4), while the quotient by rotation of order 3 with one fixed
point a cone point is S(2, 3, 6).
Similarly, S(2, 4, 4) covers each ofD(2, 4) and D(2, 4, 4), and S(3, 3, 3)

covers all with holonomy divisible by 3.
If we drop the requirement that the translation subgroups coin-

cide, there also less obvious inclusions. It remains necessary that
Gα be conjugate in GL(2,Q) to a subgroup of Gβ. We may also use
the (non)existence of reflector curves and/or corner points in testing
whether one orbifold covers another. In all cases the subgroup gener-
ated by 2x and 2y is normal and of index 4 in the translation subgroup,
and so the orbifolds have degree-4 self-coverings. (If G ≤ 〈A,R〉 there
is a degree-2 self-covering, since the subgroup generated by x + y and
x− y is normal and of index 2 in the translation subgroup.)
For example, although AR and R are not conjugate in GL(2,Z),

they are conjugate in GL(2,Z[1
2
]). The inclusion Z ×D∞ < D∞ ⋊τ Z

corresponds to the geometric fact that A covers Mb. Folding Mb across
its centerline gives A, while the quotient of Kb by fibrewise reflection
is Mb. However P (2, 2) is covered only by T,Kb, S(2, 2, 2, 2) and itself.
The involution [x : y : z] 7→ [x : −y : −z] of RP 2 has one fixed point

and one fixed circle. Hence P (2, 2) covers D(2, 2).
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Rotating D(2, 2, 2, 2) about its centre gives D(2, 2, 2). Conversely,
folding D(2, 2, 2) across a diameter through the cone point and sep-
arating the corner points gives D(2, 2, 2, 2). Folding D(2, 2) across a
diameter separating the cone points gives D(2, 2, 2).
Since D(2, 2) has no corner points, it is not covered by D(2, 2, 2).

Since D(2, 4) has no corner points 4 with stabilizer D8, it is not covered
by D(2, 4, 4). Nor does it cover D(2, 4, 4).
The non-orientable orbifold D(2, 3, 6) is covered by all with holo-

nomy divisible by 3. Rotating D(3, 3, 3) about its centre gives D(3, 3).
However D(3, 3) does not cover D(3, 3, 3).
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