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ABSTRACT. Let X and Y be the complementary regions of a closed hypersur-
face M in S* = X Up; Y. We use the Massey product structure in H*(M;7Z)
to limit the possibilities for x(X) and x(Y). We show also that if 71 (X) # 1
then it may be modified by a 2-knot satellite construction, while if x(X) <1
and 71(X) is abelian then 81(M) < 4 or $1(M) = 6. Finally we use TOP
surgery to propose a characterization of the simplest embeddings of F x SI.

A closed hypersurface in S™ is orientable and has two complementary compo-
nents, by the higher-dimensional analogue of the Jordan Curve Theorem. There
have been sporadic papers presenting restrictions on the orientable 3-manifolds
which may embed in $*, but little is known about how many distinct embeddings
there may be. (Here and in what follows, “embed” shall mean “embed as a TOP
locally flat submanifold”, unless otherwise qualified.) While the question of which
rational homology 3-spheres embed smoothly in S* has received considerable at-
tention, work on embeddings of more general 3-manifolds is very limited. Most of
the relevant papers known to us are cited in [1].

The complementary components of embeddings of S3 in S* are balls, by the
Schoenflies Theorem. A result of Aitchison shows that every embedding of S2 x S*
in S% has one complementary component homeomorphic to S? x D? [18]. The
other component is a 2-knot complement, with Euler characteristic x = 0 and
fundamental group a 2-knot group, and so embeddings of S? x S* in S* correspond
to 2-knots. But for 3-manifolds M with 8 = (M) > 1 even the possible Euler
characteristics of the complementary components are not known.

In the first section we make some simple observations on the complementary
components X and Y. We may assume that 1 — 8 < x(X) <1< x(Y)<1+43. In
§2 we use the Massey product structure in H*(M;Z) to show that if M fibres over an
orientable base surface and the fibration has Euler number 1 then x(X) = x(Y) =1
is the only possibility. At the other extreme, x(X) = 1 — S is realizable only if the
rational nilpotent completion of m = (M) is that of a free group. In the brief
§3 we use a “satellite” construction based on 2-knots to modify the fundamental
group of a complementary component which is not 1-connected, without changing
the other complementary component. In §4 we show that m1(X) can be abelian
only if 8 < 4 or 8 = 6, and give examples realizing these possibilities. In §5 we
assume that M is Seifert fibred, with orientable base orbifold. If the generalized
Euler invariant eg is 0 and x(X) < 0 then the regular fibre has nonzero image in
H,(Y;Q), and so x(X) > 1— 6. If eg # 0 then x(X) = x(Y) = 1.
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When M = F x S! or when M is the total space of an S*-bundle with non-
orientable base the simplest embeddings of M have one complementary component
X ~ F and the other with cyclic fundamental group. In §6 we sketch how surgery
may be used to identify such embeddings (up to s-cobordism). (No such argument
is yet available when M fibres over an orientable base with Euler number 1.)

1. EULER CHARACTERISTIC AND CUP PRODUCT

Let M be a closed connected orientable 3-manifold with fundamental group
m, and let 8 = B1(M;Q). Let Ty be the torsion subgroup of Hi(M;Z) and
Car 2 Tap X Ty — Q/Z the torsion linking pairing.

Suppose M embeds in S*, with complementary components X and Y. Let jx
and jy be the inclusions of M into X and Y, respectively. Then x(X)+ x(Y) = 2.

Lemma 1. Let v = 51(X;Q). Then x(X) =1+ 8—2y =1+ 8 mod (2), and
1-B8<x(X)<1+8.

Proof. The Mayer-Vietoris sequence for S* = X Uy, Y gives isomorphisms
Hi(M;Z) = Hi(X;Z) ® Hi(Y; Z),

for ¢+ = 1,2, while H;(X;Z) = H;(Y;Z) = 0 for j > 2. Moreover, Hy(X;Z) =
HY(Y;Z), by Poincaré-Lefshetz duality, and so 82(X) = 8 —v. Hence x(X) =
1+ 68— 2y, where 0 < v < 6. (]

We may assume X and Y are chosen so that x(X) < x(Y). Thus if 5 = 0 then
X(X) =x(Y) =1, while if 8 =1 then x(X) =0 and x(V) = 2.

Let Tx and Ty be the torsion subgroups of Hy(X;Z) and H; (Y;Z), respectively.
Then Ty = Tx @ Ty, and each of these summands is self-annihilating under £,
by Poincaré-Lefshetz duality. Hence £j; is hyperbolic [12]. In particular, Ty =
Ext(Tx,Z) = Hom(Tx,Q/Z), and so Ty is a direct double: it is (non-canonically)
isomorphic to Tx & Tx.

The cohomology ring H*(M;Z) is determined by the 3-fold product

pns : NPHY (M Z) — H?(M;Z)

and Poincaré duality. Every finitely generated free abelian group H and linear
homomorphism j : A3H — Z is realized by some closed orientable 3-manifold [20].
(If B < 2 then A3ZP =0, and so uy = 0.)

Lemma 2. The cup product 3-form s is 0 if and only if all cup products of classes
in HY(M;Z) are 0. Its restrictions to each of N> HY(X;Z) and N*H*(Y;Z) are 0.

Proof. Poincaré duality implies immediately that py; = 0 if and only if all cup
products from A2HY(M;Z) to H?(M;Z) are 0.

Since H3(X;Z) = H3(Y;Z) = 0, the restrictions of uy to ASHY(X;Z) and
NSHY(Y;Z) are 0. O

See [15] for the parallel case of doubly sliced knots.

If pips # 0 then HY(X;Z) and H'(Y;Z) must be nontrivial proper summands.
In particular, no embedding of the 3-torus S* x S' x S' can have a complementary
region Y with H;(Y;Z) = 0. However, if pps = 0 this lemma places no constraint
on the splitting H*(M;Z) = H'(X;Z) ® H (Y ;7).

Any 3-manifold M may be obtained by O-framed surgery on some r-component
link L, with r > 5. If L = Ly U L_ is the union of an s-component slice link
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L, and an (r — s)-component slice link L_ then ambient surgery on S% in S*
shows that M embeds in S*, with complementary components having x = 1 +
2s —r and 1 — 2s + r. In particular, if L is a slice link then 8 = r and there are
embeddings realizing each value of x(X) allowed by this lemma, including one with
a l-connected complementary region.

For instance, #7(S? x S!) is the result of O-framed surgery on the S-component
trivial link, and so has embeddings realizing all the possibilities for Euler charac-
teristics allowed by Lemma 1. In particular, it has an embedding with one comple-
mentary region §%(S? x D?), and the other having fundamental group F(3). (In
this case pp = 0.)

The 3-torus is the result of O-framed surgery on the Borromean rings Bo = 63.
(We refer to the tables of [17]. This link shall play a role in the construction of other
examples.) Let T, = #9T be the closed orientable surface of genus g. Then T, x S !
is an iterated fibre sum of copies of T x S', and so it may be obtained by 0-framed
surgery on a (2g+1)-component link L which shares some of the Brunnian properties
of Bo. It has an embedding as the boundary of T, x D?, the regular neighbourhood
of the unknotted embedding of T, in S*, with the other complementary region
having fundamental group Z. On the other hand, if g > 1 then uz, 51 # 0, and so
no embedding has a complementary region Y with 5;(Y) = 0.

It is not hard to show that if H = Z# with 8 < 5 then for every i : ANH =7
there is an epimorphism X : H — Z such that p is 0 on the image of A3Ker()\).
Hence there are splittings H &2 A @ B with A of rank 3 or 4 such that p restricts
to 0 on each of A3A and A3B. However if 3 = 6 this fails for the 3-form

w=ejNesNes+el Ner Nei+e5Nej Ae;.

(Here {e}} is the basis for Hom(Z°,Z) which is Kronecker dual to the standard
basis {e;} of Z°.) For every epimorphism X : Z% — Z there is a rank 3 direct
summand A of Ker()\) such that g is nontrivial on A3A. [This requires a little
calculation. Suppose that A = X\ef. If A\¢ # 0 then we may take A to be the
direct summand containing (f1, fa, f3), where f; = Age; — Ajeg, for 1 < j < 3, for
then u(f1 A fa A f3) = A§ # 0. Similarly if A3 or A4 is nonzero. If A\3 = Ay = A\ =0
but A; # 0 then we may take A to be the direct summand containing (g, €4, g5),
where go = A1ea — Ageq and g5 = Ajes — Aseq. Similarly if A2 or A5 is nonzero.]

This example arose in a somewhat different context [3]. It is the cup product
3-form of the 3-manifold M given by O-framed surgery on the 6-component link of
Figure 6.1 of [3]. This link has certain “Brunnian” properties. All the 2-component
sublinks, all but three of the 3-component sublinks and six of the 4-component sub-
links are trivial. Thus M has embeddings in S* with x(X) = —1 or 1, corresponding
to partitions of L into a pair of trivial sublinks, but there are no embeddings with
X(X) = =5 or —3, since the condition on pys fails.

2. MASSEY PRODUCTS AND LOWER CENTRAL SERIES

Massey product structures in the cohomology of M provide further obstructions.
For instance, if H?(X;Q) = Q or 0 then all triple Massey products (a,b,c) of
elements a,b,c € H'(X;Q) are proportional.

Let M(g;(1,€)) be the total space of the S'-bundle with base the closed ori-
entable surface of genus g and Euler number —e. (This notation is consistent with
that used for Seifert fibred 3-manifolds in §4 below.) Then M = M (1;(1,1)) is the
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Ni/3-manifold obtained by O-framed surgery on the Whitehead link Wh = 632, and
has fundamental group 7 = F(2)/F(2)[3. This group has a presentation

1

7= {(z,y,2 |z =xyx y", xz= 2z, yz = 2y).

Every element of 7 has an unique normal form zy™zP. The images X,Y of z,y
in Hi(m;Z)/ = H1(T;Z) form a (symplectic) basis. Let &, 1 be the Kronecker dual
basis for H'(m;Z). Define functions ¢¢, ¢, and 6 : 7 — Z by

1—
olamysr) = PO, g (amya) =
for all z™y"2P € 7. (We consider these as inhomogeneous 1-cochains with values
in the trivial 7-module Z.) Then

dpe(g,h) = E(9)E(h),  0dy(g,h) =n(g)n(h) and §0(g,h) = E(g)n(h),

for all g,h € 7. Thus £2 = n? = ¢ Un = 0, and the Massey triple products (&, &,7)
and (&, 7, n) are represented by the 2-cocycles ¢¢n+£6 and On+£é,, respectively. On
restricting these to the subgroups generated by {z, 2z} and {y, z}, we see that they
are linearly independent. In fact, (£, &, 1n)Un and (€,1,n) UE each generate H?(m; Z)
(i.e., these Massey products are the Poincaré duals of Y and X, respectively).

Since the components of Wh are unknotted M embeds in S*, with x(X) =
x(Y) = 1, and since § = 2 we have up; = 0. On the other hand, M has no
embedding with y(X) = —1, for otherwise H3(X;Z) would contain (£,£,n) U7,
and so be nontrivial.

A similar strategy may be used for M = M(g;(1,1)) and 7 = 71 (M), when
g > 1. Let {ai,B1,...,a4, B4} be the basis for H = H'(m;Z) which is Kronecker
dual to a symplectic basis for Hy(m;Z) & H1(F;Z). Then H = A ® B, where A
and B are self-annihilating with respect to cup product on F. The Massey triple
products (a;, a;, 8;) and (v, Bi, 3;) (for 1 < i < g) form a basis for H?(m; Z) which
is Poincaré dual to the given basis for Hy(m;Z). If L < H is a direct summand of
rank > g then there are a € LN A and b € L/A such that a Ub # 0 in H*(F;Z).
We may assume that ¢ = a3 and then b = 1 + ', where ¥ is in the span of
{ag, B2, ..., a4, By} But then (a,a,b) Ub # 0. It follows that if j : M — S* is
any embedding then H'(X;Z) and H'(Y;Z) each have rank at most g, and so
X(X) = x(Y) = 1. (See §5 for a O-framed link representing M and giving rise to
such an embedding.)

We shall let G[,,; denote the nth term of the descending lower central series of
a group G, defined inductively by Gj) = G and G,,11) = [G,G[py], for all n > 1.
Similarly, the rational lower central series is given by letting G? = G and Gg 1
be the preimage in G of the torsion subgroup of G/[G,GY]. Then G/GY is a

torsion free nilpotent group, and {G%}k21 is the most rapidly descending series of
subgroups of G with this property.

The 3-form gy is 0 if and only if W/W%] = F(B)/F(/B)%] [20]. However, this is a

rather weak condition. The next lemma gives a stronger result.

1—
nl=n) and 0(2™y"2P) = —mn — p,

Lemma 3. If Hy(Y;Z) = 0 then /7y = F(B)/F(B) k), for all k > 1.

Proof. It H1(Y;Z) = 0 then Hy(X;Z) = 0, and T must be 0, by the non-degeneracy
of £yr, so Hi(M;Z) = H\(X;Z) =2 ZP. Let f:Vv#S' — X be any map such that
Hy(f;7Z) is an isomorphism. Then jx and f induce isomorphisms on all quotients of
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the lower central series, by Stallings” Theorem [19], and so /7 = F(8)/F(8) ]
for all £ > 1. O

If M is the result of surgery on a [B-component slice link L then it has an
embedding with a 1-connected complementary region, and so this lemma applies.

There are parallel results for the rational lower central series and the p-central
series, for primes p, with coefficients Q and F,, respectively. In particular, if
B£1(Y) = 0 then w/w%] & F(ﬂ)/F(ﬂ)([%], for all k > 1. These lower central se-
ries are dual to the Massey product structures for classes in H(G;F), with F = Q
or Iy, and Stallings’ Theorem can be refined to relate “freeness” of quotients of
such series and the vanishing of higher Massey products [5]. In particular, the ker-
nel of cup product from A2H*(G; Q) to H?(G; Q) is isomorphic to G%/G%, by the
argument of [20].

Unfortunately, the fact that Ker(Ux) C Ker(Ups) does not have useful con-
sequences for M. For if 81(X) < f then Ker(Ux) has rank at most (51(2)()) <

(?3") = (§) — B, which is a lower bound for the rank of Ker(Uy). If 8;(X) = j

then B2(X) =0 so up = 0, and all cup products of degree-1 classes are 0.

3. KNOT SURGERY

We may modify embeddings by “knot surgery” on a complementary region, as
follows. Let N, be a regular neighbourhood in X of a simple closed curve rep-
resenting v € 71(X). Then S*\ N, = D? x S? contains Y and M. If K is a
2-knot with exterior E(K) then ¥ = S*\ N, U E(K) is a homotopy 4-sphere,
and so is homeomorphic to S*. The complementary components to M in ¥ are
X1 =X\ N,UE(K)andY; =Y. Let t be the image of a meridian for K in the knot
group 7K = 71 (E(K)). If v has infinite order in 71 (X) then m1 (X1) & m1(X)*z7K;
if it has finite order c then 71 (X1) = 71 (X) *z/cz (TK/{(t%))).

When M = S? x S! is embedded as the boundary of the trivial 2-knot, with
X =D3x St and Y = 5% x D?, the core S% x {0} C Y7 is K, realized as a satellite
of the unknot in . This “satellite” construction gives all possible embeddings of
S2 x S'in S* (up to composition with self-homeomorphisms of domain and range),
by Aithchison’s result [18].

If v = 1 then any simple closed curve representing +y is isotopic to one contained
in a small ball, since homotopy implies isotopy for curves in 4-manifolds. Hence in
this case the construction does not change the topology of X. If M embeds with one
complementary component 1-connected and another embedding has a component
with H; = 0 must that component also be 1-connected?

4. ABELIAN FUNDAMENTAL GROUP

In this section we shall show that manifolds with embeddings for which 7 (X)
is abelian are severely constrained.

Theorem 4. Suppose M has an embedding in S* for which 7y (X) is abelian. Then
either $ <4 orB=06. If =0 or2 thenm(X) =2 Z/nZ or Z&Z/nZ, respectively,
for some n > 1, while if 8 =1, 3, 4 or 6 then m(X) =X Z", where r = L%J If
B =1 or3 then X is aspherical.
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Proof. Let r = $1(X), A = m(X) and 7 = Tx. Then 2r > fand A= Z" @ 7.
Since A is abelian, Hy(A4;Z) = AN A = 70) @ @ (t A 7). This is a quotient of
Hy(X;7Z) = /i by Hopf’s Theorem. Hence (;) <fB-r<r,andsor <3. If
7 # 0 then eitherr=8=0and TA7=0,orr =1, 8 =2and 7 A7 = 0. In either
case, 7 is (finite) cyclic. If 8 # 0 or 2 then 7 = 0 and either r = 8 =1, or r = 2
and S =3or4,orr=3and 5 =6.

Let A4 = Z[A]. The chain complex of the universal cover X is chain homotopy
equivalent to a finite complex C. of projective A 4-modules, with C; =0 for g > 3,
since X is a compact 4-manifold with nonempty boundary. Since m; (M ) surjects
onto 71 (X) = Hy(X;Z) the boundary 0X is connected, and so H;(X,0X;Z) = 0
for i < 1. Therefore H4(X;A4) = HY(Homa ,(C«,A4)) = 0 for ¢ > 2, by Poincaré-
Lefshetz duality. We shall show that if r = § = 1 or = 2 and f = 3 then we
may assume that C3 = 0 also, and so Il = Hy(C,) = m2(X) is the only potential
obstruction to asphericity.

In each case, A4 = Z[Z"] is a noetherian domain for which all projective modules
are free, and the alternating sum of the ranks of the modules C; is x(X) = 0. If
r = [ = 1 then the submodule Z; of 1-cycles is free and (Z7 — C; — () is
a resolution of the augmentation module HO()A(:;Z) = Z, by Schanuel’s Lemma.

Moreover, Cy maps onto Zq, since Hq(C\) = Hl()?; Z) = 0. Therefore C, splits as
C* = (03 — Zz) D (Zl — Cl — Co),

and Cs and Z; are free of the same rank. Now Z ®, IT = 0, since Hy(X;Z) =
q > 2. Therefore the differential 03 : C3 — Zs is injective, and so Hd( «) =0.
If r =2 and 8 = 3 then H3(C,) = HY(X;0X;A4) = 0, since H*(0X;A4) =0
and 71 (X) has one end. In each case,
H,(Cy) =HY(Homp,(Cy,Aa)) =0 for g >3,
and so C, is chain homotopy equivalent to a finite complex of free A 4-modules
of length at most 2, by Wall’s finiteness criterion [23]. Since H;(C,) = 0 and

Y (—1)4rank(C,) = 0 we see that Il = 0, so H,(X;Z) = 0 for ¢ > 1. Thus X is
aspherical. [l

0 for

Ifr=p5=0and 7 =0 then X and Y are contractible. In the remaining cases X
cannot be aspherical, since either Ho(X;Z) is too big (if 5 =2 or 4), or H3(X;Z)
is too small (if 8 = 6).

Embeddings realizing these possibilities may be easily found. The simplest ex-
amples are for 3 =0,1 or 3, with M = 83, M =52 x St or T x S1 = 81 x S x §!
the boundary of a regular neighbourhood of a point or of the standard unknotted
embedding of S? or T in S*, respectively.

Other examples may be given in terms of representative links. When 5 = 0 the
(2,2n) torus link gives examples with X 2 Y and m(X) = Z/nZ. When 8 =1 we
may use any knot which bounds a slice disc D C D* such that = (D*\ D) = Z,
such as the unknot or the Kinoshita-Terasaka knot. (All such knots have Alexander
polynomial 1. Conversely every Alexander polynomial 1 knot bounds a TOP locally
flat slice disc with group Z, by a striking result of Freedman.) The links 83 and 8}
give further simple examples. (These each have a trivial 2-component sublink and
an unknotted third component which represents a meridian of the first component
or the product of meridians of the first two components, respectively.) When 8 = 2
any 2-component link with unknotted components and linking number 0, such as
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the trivial 2-component link or Wh, gives examples with m(X) & Z. We may
construct examples realizing Z @& Z/nZ by adjoining to Bo a fourth unknotted
component which links only the first component, with linking number n. When
B = 3 we may use the links Bo, 95 or 93¢. (These each have a trivial 2-component
sublink and an unknotted third component which represents the commutator of the
meridians of the first two components. However neither of the latter two links is
Brunnian.)

Let L be the 4-component link obtained from Bo by adjoining a parallel to the
third component, and let M be the 3-manifold M obtained by O-framed surgery
on L. Then the meridians of L represent a basis for Hy(M;Z) = Z*, and uy =
ey Nes Nes+ei Aes Ael, where {ef} is the Kronecker dual basis. This link may
be partitioned into the union of two trivial 2-component links in two essentially
different ways, and ambient surgery gives two essentially different embeddings of
M. 1f the sublinks are {L;, Lo} and {L3, L4} then the complementary components
have fundamental groups Z? and F(2). Otherwise, the complementary components
are homeomorphic and have fundamental group Z2.

If M is an example with 8 =6 and 71 (X) and 7 (Y) abelian then
Uy =ejNer Negt+esNeyNeg+es NejNer+el Nes ANég+el Aes Nex+e5 Nes Néy,
where {e}, €5, e3} is a basis for H'(X;Z) and {e}, €%, ei} and {&},é5,é5} are bases
for HY(Y;Z). The simplest link giving rise to such a 3-manifold is a 6-component
link with all 2-component sublinks trivial, a partition into two trivial 3-component
links, and also a partition into two copies of Bo. It also has some trivial 4-
component sublinks, but no trivial 5-component sublinks. We shall not give further
details.

In all of the above examples except for when 8 = 2 and Tx # 0 the group

7m1(Y) is also abelian. Note that Theorem 4 does not apply to 71 (Y), as it uses the
hypothesis 31 (X) > 34!

5. SEIFERT FIBRED 3-MANIFOLDS

We shall assume henceforth that M is Seifert fibred. Let M = M (g;.S) be the
orientable Seifert fibred 3-manifold with base orbifold T,(c,...,a,) and Seifert
data S = {(a1,01),--., (ar, Br)}, where 1 < o; and (a;,3;) =1, for all 1 <14 < r.
If ¢ > 0 we let also M (—¢;S) be the orientable Seifert fibred 3-manifold with base
orbifold #°RP?(ay,...,qa,) and Seifert data S. (Our notation is based on that of
[10]. In particular, we do not assume that 0 < 8; < a;.) If r = 1, we allow also
the possibility a; = 1. Let eg = —Xi=7(8;/a;) be the generalized Euler invariant
of the Seifert bundle.

Let p : M — B be the projection to the base orbifold B, and let |B| be the
surface underlying B. If h is the image of the regular fibre in 7 then the subgroup
generated by h is normal in 7, and 7°"%(B) = 7 /(h).

Lemma 5. Let M a an orientable Seifert fibred 3-manifold. If B is nonorientable
or if eg # 0 then H*(M;Q) = H*(#°5% x S';Q). Otherwise, the image of h in
Hy(M;Q) is nonzero, and H*(M;Q) = H*(|B| x S};Q).

Proof. There is a finite regular covering ¢ : M— M , which is an Sl—l)lmdle space
with orientable base B, say. Let G' = Aut(q). Then H*(M;Q) = H*(M;Q)%. If B
is nonorientable or if eg # 0 then the regular fibre has image 0 in H;(M;Q), and
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so H *(E, Q) maps onto H*(M;Q). Hence all cup products of degree-1 classes are
0. In such cases, H*(M;Q) =2 H*(#°52 x S';Q). Otherwise, M = B x S! and G
acts orientably on each of S* and B. Hence the image of h in H;(M;Q) is nonzero
and H*(M;Q) = H*(|B| x S*; Q). O

We may use the observations on cup product from §1 to extract some information
on the image of the regular fibre under the maps H;(jx) and Hy(jy).

Theorem 6. Let M = M(g; S) where g > 1 and es = 0. If M embeds in S* then
X(X)>1=0==-2g and x(Y) <148 =2g+2. If x(X) <0 then the image of h
in H1(Y;Q) is nontrivial.

Proof. Let {a},b};1 <i < g} be the images in H'(M;Q) of a symplectic basis for
H'(|B|;Q). Then a}(h) = bf(h) = 0 for all i. Let & € H'(M;Q) be such that
6(h) # 0. By Lemma 5 we have

H*(M;Q) = H*(|B| x §%:Q) = Q[d, a0, Vi < g]/I,

where I is the ideal (6%, a}2, b2, 0a}b; — 0azbs,a;ay,bibs, V1 <i<j<g).

Since faijb; # 0 the triple product ups # 0, and so M has no embedding with
B2(Y) =0 (see §1). Hence x(X)=1-8 (& x(Y) # 1+ ) is impossible.

If x(X) < 0 then 81 (X) > g+1, and so the image of H*(X; Q) in H'(M;Q) must
contain some pair of classes from the image of H'(|B|; Q) with nonzero product.
But then it cannot also contain 6, since all triple products of classes in H*(X;Q)
are 0. Thus the image of H'(Y;Q) must contain a class which is nontrivial on h,

and so jy(h) # 0 in H(Y;Q). O

In particular, if g = 1 then x(X) =0 and x(Y) = 2.

Theorem 6 also follows from Lemma 3, since the centre of 7 is not contained in
the commutator subgroup gy = [, 7).

If the base orbifold B is nonorientable or if eg # 0 then uy = 0, by Lemma
5, and so the argument of Theorem 6 does not extend to these cases. However,
Lemma 5 also suggests that when g # 0 we should be able to use Massey product
arguments as in §2 (where we considered the case S = 0)).

Theorem 7. Let M = M(g;S), where es # 0. If M embeds in S* with comple-
mentary regions X andY then x(X) =x(Y)=1.

Proof. The group m = 71(M(g;S)) has a presentation
(T1, Y15+, gy Yg, €1y - - - s &y B | Tay, b;]1Ie; = 1, c?ihﬁ" =1, h central).

We may assume that ¢ > 1, for if ¢ = 0 then M is a Q-homology 3-sphere and
the result is clear. To calculate cup products and Massey products of pairs of
elements of a standard basis for H!(7m; Q) (corresponding to the Kronecker dual
of a symplectic basis for H;(|B];Q)), it suffices to reduce to the case ¢ = 1. Let
G =mn/({x2,y2,...,%g,Yq)), 50 G has a presentation

(,y,c1,...,¢0, b | [z, y|le; =1, cf”hﬁi =1, h central).

Let G, = {{¢1,...,¢, h)), and let H be the preimage in G of the torsion subgroup
of G/[G,G;]. Then G./H = Z, with generator ¢, say, and [z,y] = t¢ for some
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e # 0. Every element has a normal form g = x™y"tPw, with w € H. Define
functions ¢¢, ¢, and 0 : 7 — Q by

1-— 1-—
selamyrtrw) = " g ) = L)
and O(z™y"tPw) = —mn — B,
e

for all z™y"tPw € G. (In effect, we are passing to the Nil*>-group G/H, with
presentation (x,y,t | [x,y] = t¢, t central).) We may now complete the argument
as in §2, and we may conclude that only x(X) = x(Y) = 1 is possible when
£S 75 0. (I

If x(X) = 0 and h has nonzero image in H;(X;Q) then S is skew-symmetric
(i.e., the Seifert data occurs in pairs {(a, b), (a, —b)}), by the main result of [8]. (In
particular, this must be the case if g = 0.) Conversely, if S is skew-symmetric and
all cone point orders a; are odd then M (0;S) embeds smoothly. Since 5 = 1 we
must have x(X) = 0 and H1(Y;Q) = 0. (In fact, for the embedding constructed
on page 693 of [2] the component X has a fixed point free S'-action.) Hence also
M (g; S) embeds smoothly (as in Lemma 3.3 of [2]).

If £ is hyperbolic then all even cone point orders have the same 2-adic valuation,
by Theorem 3.7 of [2] (when g < 0) and Lemma 6 of [9] (when g > 0).

Donald has stronger results for the case of smooth embeddings, using gauge
theoretic methods rather than algebraic topology [4]. If M(g;S) embeds smoothly
and eg = 0 then S is skew-symmetric. (Thus if eg = 0 and all cone point orders
are odd then M (g;S) embeds smoothly if and only if S is skew-symmetric.) If
M(—c¢; S) (with ¢ > 0) embeds smoothly then S is weakly skew-symmetric (i.e., the
data occurs in pairs {(a,b), (a, —b’)}, where b’ = b or bb’ =1 mod (a)) and all even
cone point orders are equal.

Are there further obstructions related to 2-torsion in the cone point orders of the
base orbifolds B? What are the possible values of x(X) for embeddings of M (g;S)
(with eg = 0) or M(—¢; 5)?

6. RECOGNIZING THE SIMPLEST EMBEDDINGS

The simplest 3-manifolds to consider in the present context are perhaps the total
spaces of S'-bundles over surfaces. Most of those which embed have canonical
“simplest” embeddings. We give some evidence that these may be characterized by
the conditions 71 (X) 2 71 (F'), where F is the base, and m1(Y") is abelian.

If p: E — F is an S'-bundle with base a closed surface F' and orientable total
space E then 71 (F) acts on the fibre via w = w1 (F'), and such bundles are classified
by an Euler class e(p) in H?(F;ZY) = Z. If we fix a generator [F] for Hy(F;ZY)
we may define the Euler number of the bundle by e = e(p)([F]). (We may change
the sign of e by reversing the orientation of E.) Let h be the image of the fibre in
7w =m (E).

Suppose first that F = T,. Then E = M(g;(1,¢)) can only embed in S* if e = 0
or +1, since Ty = 0 if e = 0 and is cyclic of order e otherwise. If e = 0 then
E =T, x S'. There is a canonical embedding j, : T, x S* — 5%, as the boundary
of a regular neighbourhood of the standard smooth embedding T, C S® C S*.
Let X, and Y, be the complementary components. Then X, = T, x D? and
Y, ~ 81 v \/* 52 and so w1 (Y,) = Z.
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We shall assume henceforth that g > 1, since embeddings of $% x S! and S3 =
M (0;(1,1)) may be considered well understood.

Lemma 8. Let j: Ty x S' — S* be an embedding such that m(X) = 71(T,). Then
X is s-cobordant rel 0 to X, = Ty x D2

Proof. Let X be the universal cover, with boundary 0X = T, xR, and let I' =
Z[m1 (F)]. Then Hy(X;7Z) = 0and HY(X;T)) = Hy_o(X,0X;T) = Hy_ (X, Ty; Z) =
0 for ¢ > 2, by Poincaré-Lefshetz duality and the long exact sequence of the pair
(X,0X). Therefore the equivariant chain complex for X is chain homotopy equiv-
alent to a complex P, of finitely generated projective I'-modules which is of length
2, by Wall’s finiteness criteria [23]. Hence there is an exact sequence

Ol —P,—P —- Py —7Z—0,

where IT = m5(X). Hence IT is a finitely generated projective I'-module, by Schanuel’s
Lemma (and the fact that c.d.m(T,) = 2.) Since Hs(m(Ty);Z) = 0, the Cartan-
Leray spectral sequence of the universal cover gives a short exact sequence

0— Z@FH — HQ(X,Z) — Hg(ﬂl(Tg);Z) — 0.

Now Hy(X;Z) = Hy(m1(Ty); Z) =2 Z, and so Z @r II = 0. Since m1(Ty) satisfies the
weak Bass Conjecture, it follows that IT = 0 [6]. Hence H,(X;Z) = 0 for all ¢ > 1,
and so X is aspherical. Any homeomorphism from 0X to 0X, which preserves the
product structure extends to a homotopy equivalence of pairs (X, 0X) ~ (X, 0X,).
Now Ls(m1(Ty)) acts trivially on the s-cobordism structure set Stop(Xy4, 0X,), by
Theorem 6.7 and Lemma 6.9 of [7]. Therefore X and X, are TOP s-cobordant (rel
0). O

If m(Y) 2 Z then ¥ =Y U (T, x D?) is 1-connected, since 71 (Y) is generated
by the image of h, and x(X) = 2. Hence ¥ is a homotopy 4-sphere, containing a
locally flat copy of Tj; with exterior Y.

Lemma 9. If there is a map f : Y — Y, which extends a homeomorphism of the
boundaries then Y is homeomorphic to Y.

Proof. Let A = Z[t,t~!] be the group ring of 71(Y) = (t).

We see easily that Hy(Y;A) = HY(Y;A) = 0 for ¢ > 2, by Poincaré-Lefshetz
duality (and using the fact that 9Y = T, x S1). As in Lemma 8 it follows that the
equivariant chain complex for Y is chain homotopy equivalent to a finite projective
A-complex @, of length 2, and so there is an exact sequence

0—-II—Q:s— Q1 —>Qo—7Z —0,

where II = mo(Y"). All projective A-modules are free, and the alternating sum of
the ranks of the modules Q; is x(Y) = 2¢. Applying Schanuel’s Lemma to this
resolution of Z and to the standard short exact sequence

0=A—>A—-7Z—0,

we see that II = A%9. In particular, this holds also for Y.

If f:Y — Y, restricts to a homeomorphism of the boundaries then m(f)
is an isomorphism. Comparison of the long exact sequences of the pairs shows
that f induces an isomorphism Hy(Y,0Y;Z) = H4(Y,0Y;Z), and so has degree 1.
Therefore mo(f) = Ha(f; A) is onto, by Poincaré-Lefshetz duality. Since m2(Y") and
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m2(Yy) are each free of rank 2g, it follows that mo(f) is an isomorphism, and so f
is a homotopy equivalence, by the Whitehead and Hurewicz Theorems.

Thus f is a homotopy equivalence rel 9, by the HEP, and so it determines an
element of the structure set Srop(Yy,0Yy). The group L5(Z) acts trivially on the
structure set, as before, and so the normal invariant gives a bjection Stop(Yy, 9Y,) =
H?(Y,,0Y,;Fa) = Hy(Yy;F2). Since Hy(Z;F2) = 0 the Hurewicz homomorphism
maps ma(Yy) onto Ha(Yy;Fy). Therefore there is an a € m2(Y,) whose image in
Hy(Yy;Fo) is the Poincaré dual of the normal invariant of f. Let f, be the com-
posite of the map from Y, to Y, vV S* which collapses the boundary of a 4-disc in
the interior of Y, with idy, V an?, where 7% is the generator of m4(S?). Then f, is
a self homotopy equivalence of (Y, dY;,) whose normal invariant agrees with that
of f. (See Theorem 16.6 of [22].) Therefore f is homotopic to a homeomorphism
Y=Y, O

However, finding such a map f to begin with seems difficult. Can we somehow
use the fact that Y and Y, are subsets of S4? In fact, Y must be homeomorphic to
Y, if g > 3, according to [13].

Suppose now that W is an s-cobordism rel 0 from X to X, = T, x D?, and
that Y = Y,. Since g > 1 the 3-manifold T, x S* is irreducible and sufficiently
large. Therefore mo(Homeo(Ty x S')) = Out(r) [21]. If g > 1 then m(T}) has
Out(m1(Ty)) O

729 7%
homeomorphism of T}, x S extends to a self homeomorphism of F' x D?. Attaching
Y x[0,1] 2 Y, x [0,1] to W along T, x S* x [0, 1] gives an s-concordance from j to
Jjg (i.e, one whose complementary regions are s-cobordisms rel 9).

If g =1 then X = T x D? and Out(n) = GL(3,Z). Automorphisms of 7 are
generated by those which may be realized by homeomorphisms of T' x D? together
with those that may be realized by homeomorphisms of Y; [16]. Thus if embeddings
of T with group Z are standard so are embeddings of S x S! x S' with both
complementary components having abelian fundamental groups.

The situation is less clear for bundles over 7; with Euler number +1. We may
construct embeddings of such manifolds by fibre sum of an embedding of T}, x S*
with the Hopf bundle n : S3 — S2. However, it is not clear how the comple-
ments change under this operation. There are natural O-framed links representing
such bundle spaces. As we saw earlier, M(1;(1,1)) may be obtained by 0-framed
surgery on the Whitehead link. This is an interchangeable 2-component link, and
so M(1;(1,1)) has an embedding with X Y ~ S1 v 82 and m1(X) =2 1 (V) & Z.
Is this embedding characterized by these conditions? (Once again, it is enough to
find a map which restricts to a homeomorphism on boundaries.)

The product M(1;(1,0)) =2 S* x S x S may be obtained by 0-framed surgery
on the Borromean rings. Changing the framing on one component of Bo to 1, and
applying a Kirby move to isolate this component gives the disjoint union of Wh
and the unknot. Since the linking numbers are 0 the framings are unchanged, and
we may delete the isolated 1-framed unknot. The corresponding modification of the
standard O-framed (2g+1)-component link L representing T}, x 51 involves changing
the framing of the component L, whose meridian represents the central factor
of w. Performing a Kirby move and deleting an isolated 1-framed unknot gives a
0O-framed 2g-component link representing M (g; (1,1)). Since the original link had
partitions into two trivial links with g + 1 and g components respectively, the new

~

trivial centre, and so Out(mw) = ( ) It follows easily that every self
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link has a partition into two trivial g-component links. However this is the only
partition into slice sublinks, for as we saw in §2 consideration of the Massey product
structure shows that all embeddings of M(g; (1,1)) have x(X) = x(Y) = 1.

Suppose now that F is nonorientable. Then F = #°RP? where ¢ = 2 — x(F) >
1, and M(—c; (1,e)) embeds if and only if it embeds as the boundary of a regular
neighbourhood of an embedding of F' with normal Euler number e. We must have
e < 2cand e = 2¢ mod (4) [2]. The standard embedding of RP? in S* is determined
up to composition with a reflection of S*. The complementary regions are each
homeomorphic to a disc bundle over RP? with normal Euler number 2, and so
have fundamental group Z/2Z. The standard embeddings of #¢RP? are obtained
by taking iterated connected sums of these building blocks 4(S4, RP?), and in
each case the exterior has fundamental group Z/2Z. The regular neighbourhoods
of #°RP? are disc bundles with boundary M (—c; (1,€)). Thus M(—c;(1,¢)) has a
standard embedding with one complementary component X.. a disc bundle over
#°RP? and the other component Y, . having fundamental group Z/2Z.

The constructions in the appendix to [2] suggest framed link presentations for
M(—c¢; (1,e)). The standard embedding corresponds to a 0-framed (c+1)-component
link assembled from copies of the (2,4)-torus link 42 and its reflection. This is the
union of an unknot and a trivial c-component link, but has no other partitions into
slice links. However, we can do better if we recall that #°RP? & (#° 29 RP?)#T,
for any g such that 2g < c. Using copies of +43 and Bo accordingly, for each e < 2¢
such that e = 2¢ mod (4) we find a representative link with partitions into trivial
sublinks corresponding to all the values x(X) > 2 — % (Note Figure A.3 of [2].)
Are any other values realized?

We may again argue that if j is an embedding of M(—¢;(1,€)), where ¢ > 2,
and 71 (X) = m(#°RP?) then X is aspherical, and hence is s-cobordant to X,.
Moreover, if 71(Y) = Z/2Z then Y is the exterior of an embedding of #°RP? in S*
with normal Euler number e. Kreck has shown that in certain cases embeddings of
#¢RP? with group Z/2Z must be standard, and we should again expect that j is s-
concordant to a standard embedding [14]. In particular, Kreck’s result includes the
case when F' = Kb (i.e., ¢ = 2). Hence embeddings of the half-turn flat 3-manifold
M(—2;(1,0)) and of the Nil>-manifold M (—2;(1,4)) with 71 (X) = m1(Kb) and
m(Y) = Z/2Z are standard.

Seven of the thirteen 3-manifolds with elementary amenable fundamental groups
that embed are total spaces of S*-bundles (namely, S3, 53/Q, S? x S, St x St x S,
M(-2;(1,0)), M(1;(1,1) and M(—2;(1,4))). Two of these and five of the others
are the result of surgery on 2-component links with trivial component knots. (See
[2].) The thirteenth such 3-manifold is the Poincaré homology sphere S/I*, which
bounds a contractible TOP 4-manifold C' (as do all homology 3-spheres) and so
embeds in the double DC =2 S*. However, it is well known that S3/I* does not
embed smoothly.
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