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Abstract. We introduce twisted Steinberg algebras, which generalise complex Stein-
berg algebras and are a purely algebraic notion of Renault’s twisted groupoid C∗-algebras.
In particular, for each ample Hausdorff groupoid G and each locally constant 2-cocycle
σ on G taking values in the complex unit circle, we study the complex ∗-algebra A(G, σ)
consisting of locally constant compactly supported functions on G, with convolution and
involution twisted by σ. We also introduce a “discretised” analogue of a twist Σ over a
Hausdorff étale groupoid G, and we show that there is a one-to-one correspondence be-
tween locally constant 2-cocycles on G and discrete twists over G admitting a continuous
global section. Given a discrete twist Σ arising from a locally constant 2-cocycle σ on
an ample Hausdorff groupoid G, we construct an associated Steinberg algebra A(G; Σ),
and we show that it coincides with A(G, σ). We also prove a graded uniqueness the-
orem for A(G, σ), and under the additional hypothesis that G is effective, we prove a
Cuntz–Krieger uniqueness theorem and show that simplicity of A(G, σ) is equivalent to
minimality of G.

1. Introduction

Steinberg algebras have become a topic of great interest for algebraists and analysts
alike since their independent introduction in [28] and [6]. Before Steinberg algebras were
specified by name, they appeared in the details of many groupoid C∗-algebra construc-
tions, such as those in [9, 13, 14, 22]. Not only have these algebras provided useful insight
into the analytic theory of groupoid C∗-algebras, they give rise to interesting examples
of ∗-algebras; for example, all Leavitt path algebras and Kumjian–Pask algebras can
be realised as Steinberg algebras. Moreover, Steinberg algebras have served as a bridge
to facilitate the transfer of concepts and techniques between the algebraic and analytic
settings; see [3] for one such case.

Thirty years prior to the introduction of Steinberg algebras, Renault [24] initiated
the study of twisted groupoid C∗-algebras. These are a generalisation of groupoid C∗-
algebras in which multiplication and involution are twisted by a T-valued 2-cocycle on
the groupoid. Twisted groupoid C∗-algebras have since proved extremely valuable in
the study of structural properties for large classes of C∗-algebras. In particular, work
of Renault [25], Tu [29], and Barlak and Li [2] has revealed deep connections between
twisted groupoid C∗-algebras and the UCT problem from the classification program for
C∗-algebras. For more work on twisted C∗-algebras associated to graphs and groupoids,
see [1, 11, 12, 15, 16, 17, 18, 19, 27].

Given the success of non-twisted Steinberg algebras and the far-reaching significance
of C∗-algebraic results relating to twisted groupoid C∗-algebras, we expect that a purely
algebraic analogue of twisted groupoid C∗-algebras will supply several versatile classes of
∗-algebras to the literature, as well as a new avenue to approach important problems in
C∗-algebras. In this article, we introduce the notion of a twisted Steinberg algebra A(G, σ)
(or AC(G, σ)) constructed from an ample Hausdorff groupoid G and a locally constant
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T-valued 2-cocycle σ on G. Our construction generalises the Steinberg algebra AC(G),
and provides a purely algebraic analogue of the twisted groupoid C∗-algebra C∗(G, σ).

In the non-twisted setting, the Steinberg algebra and the C∗-algebra associated to an
ample Hausdorff groupoid G are both built from the convolution algebra Cc(G). As a
vector space, Cc(G) denotes the set of continuous compactly supported functions from
the groupoid to the complex field C, with pointwise operations. The complex Steinberg
algebra A(G) of G is the ∗-subalgebra of Cc(G) consisting of locally constant functions,
and the full (or reduced) groupoid C∗-algebra C∗(G) (or C∗r (G)) is the closure of Cc(G)
with respect to the full (or reduced) C∗-norm (see [26, Chapter 3]). It turns out (see
[6, Proposition 4.2]) that A(G) sits densely inside of both the full and the reduced C∗-
algebras. Therefore, the definition of a twisted Steinberg algebra should result in the
same inclusions; that is, the twisted, complex, involutive Steinberg algebra should sit
∗-algebraically and densely inside the twisted groupoid C∗-algebra. However to even
make sense of that goal, one must first choose between two methods of constructing a
twisted groupoid C∗-algebra. The first involves twisting the multiplication on C∗(G) by
a continuous T-valued 2-cocycle, whereas the second involves constructing a C∗-algebra
from a twist over the groupoid itself.

In [24], Renault observed that the structure of a twisted groupoid C∗-algebra with
multiplication incorporating a 2-cocycle σ could be realised instead by first twisting the
groupoid itself, and then constructing an associated C∗-algebra. This is achieved by
forming a split groupoid extension

G(0) × T ↪→ G×σ T � G,

where multiplication and inversion on the groupoid G×σ T both incorporate a T-valued
2-cocycle σ on G, and then defining the twisted groupoid C∗-algebra to be the completion
of the algebra of T-equivariant functions on Cc(G × T) under a C∗-norm. A few years
later, while developing a C∗-analogue of Feldman–Moore theory, Kumjian [12] observed
the need for a more general construction arising from a locally split groupoid extension

G(0) × T ↪→ Σ � G,

where Σ is not necessarily homeomorphic to G×T. It turns out that when G is a second-
countable, ample, Hausdorff groupoid, a folklore result (Theorem 4.10) tells us that every
twist over G does arise from a T-valued 2-cocycle on G.

Therefore, our first task is to define twisted Steinberg algebras with respect to both
notions of a twist, and then to show that they coincide when these twists are constructed
using the same 2-cocycle. This is the focus of Sections 3 and 4. In Section 3, we define the
twisted Steinberg algebra A(G, σ) by taking an ample Hausdorff groupoid G and twisting
the multiplication of the classical Steinberg algebra A(G) using a locally constant T-valued
2-cocycle σ on G. We then show that A(G, σ) sits densely inside the twisted groupoid
C∗-algebra C∗(G, σ). In Section 4.3, we give an alternative construction of a twisted
Steinberg algebra built using a twist over G, and then verify that these two definitions of
twisted Steinberg algebras agree when the twist over G arises from a 2-cocycle.

However, in order to construct a twisted Steinberg algebra using a twist over a group-
oid, we are forced to first “discretise” our groupoid extension by replacing the standard
topology on T with the discrete topology. Though this may seem a little artificial to a C∗-
algebraist, this change is indeed necessary, as we explain in Remarks 4.20. (Nonetheless,
this should not come as too much of a surprise, given the purely algebraic nature of Stein-
berg algebras.) Thus, Section 4.1 is dedicated to introducing these discretised groupoid
twists and establishing in this setting the aforementioned folklore result (Theorem 4.10).
Then in Section 4.2, we flesh out the relationships between these twists over groupoids
and the cohomology theory of groupoids.
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Section 5 provides several examples of twisted Steinberg algebras, including a notion of
twisted Kumjian–Pask algebras. The final two sections of the paper are devoted to proving
several important results in Steinberg algebras in the twisted setting. In Section 6 we
prove a twisted version of the Cuntz–Krieger uniqueness theorem for effective groupoids
(Theorem 6.1), and we show that when G is effective, simplicity of A(G, σ) is equivalent
to minimality of G (Theorem 6.2). Finally, in Section 7, we show that twisted Steinberg
algebras inherit a graded structure from the underlying groupoid, and we prove a graded
uniqueness theorem for twisted Steinberg algebras (Theorem 7.2).

In [28], and in much of the related literature, Steinberg algebras are defined more
generally by replacing the set C of scalars with a unital ring R (which may not have an
involution). Because our inspiration comes from twisted groupoid C∗-algebras, we have
chosen to focus on the setting where the ring of scalars for the algebra is C. However, if R
is a unital ring with involution r 7→ r ∈ R such that r = r−1 for every unit r ∈ R× ⊆ R,
then we expect that all of the results of Section 3 and much of Section 4 will still hold
when C is replaced by R and T is replaced by R×.

2. Preliminaries

In this section we introduce some notation, and we recall relevant background informa-
tion on topological groupoids, continuous 2-cocycles, and twisted groupoid C∗-algebras.
Throughout this article, G will always be a locally compact Hausdorff topological group-
oid with unit space G(0), composable pairs G(2) ⊆ G × G, and range and source maps
r, s : G → G(0). We will refer to such groupoids as Hausdorff groupoids. We evaluate
composition of groupoid elements from right to left, which means that γγ−1 = r(γ) and
γ−1γ = s(γ), for all γ ∈ G. We write G(3) for the set of composable triples in G; that is,

G(3) := {(α, β, γ) : (α, β), (β, γ) ∈ G(2)}.
For each x ∈ G(0), we define

Gx := s−1(x), Gx := r−1(x), and Gx
x := Gx ∩Gx.

For any two subsets U and V of a groupoid G, we define

U s×r V := (U × V ) ∩G(2), UV := {αβ : (α, β) ∈ U s×r V }, and U−1 := {α−1 : α ∈ U}.
We call a subset B of G a bisection if there exists an open subset U of G such that

B ⊆ U , and r|U and s|U are homeomorphisms onto open subsets of G. We say that G is
étale if r (or, equivalently, s) is a local homeomorphism. If G is étale, then G(0) is open,
and both Gx and Gx are discrete in the subspace topology for any x ∈ G(0). We recall
that G is étale if and only if G has a basis of open bisections. We say that G is ample if
it has a basis of compact open bisections. If G is étale, then G is ample if and only if its
unit space G(0) is totally disconnected (see [10, Proposition 4.1]).

If B and D are compact open bisections of an ample Hausdorff groupoid, then B−1 and
BD are also compact open bisections. In fact, the collection of compact open bisections
forms an inverse semigroup under these operations (see [22, Proposition 2.2.4]).

The isotropy of a groupoid G is the set

Iso(G) := {γ ∈ G : r(γ) = s(γ)} =
⋃

x∈G(0)

Gx
x.

We say that G is principal if Iso(G) = G(0), and that G is effective if the topological
interior of Iso(G) is equal to G(0). We say that G is topologically principal if the set
{x ∈ G(0) : Gx

x = {x}} is dense in G(0). Every principal étale groupoid is effective and
topologically principal. If G is a Hausdorff étale groupoid, then G is effective if it is
topologically principal, and the converse holds if G is additionally second-countable (see
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[3, Lemma 3.1]). We will often work with Hausdorff groupoids that are étale, ample, or
second-countable, but we will explicitly state these assumptions.

Before we describe algebras of functions defined on a groupoid, a few remarks on pre-
liminary point-set topology and notation are in order. Given topological spaces X and
Y , a function f : X → Y is said to be locally constant if every element of X has an open
neighbourhood U such that f |U is constant. Every locally constant function is continuous
(because the preimage of every singleton set under a locally constant function is open);
moreover, if Y has the discrete topology, then every continuous function f : X → Y is
locally constant. We write Cd for the set of complex numbers endowed with the discrete
topology, and Td for the complex unit circle endowed with the discrete topology. We will
frequently view locally constant C-valued (or T-valued) functions as continuous functions
taking values in Cd (or Td).

Given a complex-valued function f on a topological space X, we define the support of
f to be the set

supp(f) := {x ∈ X : f(x) 6= 0}.
If f is continuous, then its support is open, because supp(f) = f−1(C\{0}). If f is

locally constant, then its support is clopen, because supp(f) = f−1(Cd\{0}). If supp(f)
is compact, then we say that f is compactly supported.

As motivation for our definition of a twisted Steinberg algebra, it will be helpful to
briefly recall the construction of groupoid C∗-algebras and Steinberg algebras, and to de-
scribe the ways in which twisted groupoid C∗-algebras have been defined in the literature.

We begin by describing groupoid C∗-algebras, which were introduced by Renault in
[24]. In the discussion that follows, it will suffice to restrict our attention to the setting
in which the underlying Hausdorff groupoid G is second-countable and étale. Although
the étale assumption is not required, this setting is general enough to include a plethora
of examples, including the Cuntz–Krieger algebras of all compactly aligned topological
higher-rank graphs (see [30, Theorem 3.16]).

Given a second-countable Hausdorff étale groupoid G, the convolution algebra Cc(G) is
the complex ∗-algebra

Cc(G) := {f : G→ C : f is continuous and supp(f) is compact},

equipped with multiplication given by the convolution product

(f ∗ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

f(α) g(β) =
∑

η∈Gs(γ)
f(γη) g(η−1),

and involution given by f ∗(γ) := f(γ−1). The full groupoid C∗-algebra C∗(G) is defined
to be the completion of Cc(G) in the full C∗-norm, and the reduced groupoid C∗-algebra
C∗r (G) is defined to be the completion of Cc(G) in the reduced C∗-norm (see [26, Chapter 3]
for the details).

The first conception of a twisted groupoid C∗-algebra was also introduced by Renault
in [24]. In this setting, the “twist” refers to a continuous T-valued 2-cocycle on G, which
is incorporated into the definitions of the multiplication and involution of the convolution
algebra Cc(G). A 2-cocycle is a continuous function σ : G(2) → T that satisfies the 2-
cocycle identity :

σ(α, β)σ(αβ, γ) = σ(α, βγ)σ(β, γ),

for all (α, β, γ) ∈ G(3), and is normalised, in the sense that

σ(r(γ), γ) = 1 = σ(γ, s(γ)),
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for all γ ∈ G. We say that the 2-cocycles σ, τ : G(2) → T are cohomologous if there is a
continuous function b : G→ T such that b(x) = 1 for all x ∈ G(0), and

σ(α, β) τ(α, β) = b(α) b(β) b(αβ),

for all (α, β) ∈ G(2). Cohomology of continuous 2-cocycles on G is an equivalence rela-
tion. The equivalence class of a continuous 2-cocycle σ under this relation is called its
cohomology class.

Given a 2-cocycle σ : G(2) → T, the twisted convolution algebra Cc(G, σ) is the complex
∗-algebra that is equal as a vector space to Cc(G), but has multiplication given by the
twisted convolution product

(f ∗ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β) =
∑

η∈Gs(γ)
σ(γη, η−1) f(γη) g(η−1),

and involution given by

f ∗(γ) := σ(γ, γ−1) f(γ−1).

The 2-cocycle identity guarantees that the multiplication is associative, and the assump-
tion that the 2-cocycle is normalised implies that the twist is trivial when either multiply-
ing or applying the involution to functions supported on G(0). The full twisted groupoid
C∗-algebra C∗(G, σ) is defined to be the completion of Cc(G, σ) in the full C∗-norm,
and the reduced twisted groupoid C∗-algebra C∗r (G, σ) is defined to be the completion of
Cc(G, σ) in the reduced C∗-norm (see [24, Chapter II.1] for the details). There is also a
∗-algebra norm on Cc(G, σ), called the I-norm, which is given by

‖f‖I,σ := max
{

sup
u∈G(0)

{ ∑
γ∈Gu
|f(γ)|

}
, sup
u∈G(0)

{ ∑
γ∈Gu

|f(γ)|
}}
,

for all f ∈ Cc(G, σ). The I-norm dominates the full norm on Cc(G, σ).
Renault [24] also introduced an alternative construction of these twisted groupoid C∗-

algebras involving twisting the groupoid itself, via a split groupoid extension

G(0) × T ↪→ G×σ T � G,

called a twist over G. In 1986, Kumjian generalised this construction to give twisted
groupoid C∗-algebras whose twists are not induced by T-valued 2-cocycles. In particular,
the extension Σ of G by G(0) × T need not admit a continuous global section P : G→ Σ.
In Section 4.1 we develop a “discretised” version of this more general notion of a twist.
Since our definition is almost identical to Kumjian’s (with the difference being the choice
of topology on T), we refer the reader to Definition 4.1 for a more precise definition of a
twist over a Hausdorff étale groupoid. Given a twist

G(0) × T ↪→ Σ � G,

over a Hausdorff étale groupoid G, one defines Cc(Σ) with (untwisted) convolution and
involution. The completion of the ∗-subalgebra of Cc(Σ) consisting of T-equivariant func-
tions with respect to the full (or reduced) C∗-norm yields the full (or reduced) twisted
groupoid C∗ algebra C∗(G,Σ) (or C∗r(G,Σ)). (See [25] or [26, Chapter 5] for more details.)

We conclude this section with the definition of Steinberg algebras, which were originally
introduced in [28, 6], and are a purely algebraic analogue of groupoid C∗-algebras. Let G
be an ample Hausdorff groupoid and let 1B denote the characteristic function of B from
G to C. The (complex) Steinberg algebra associated to G is the complex ∗-algebra

AC(G) := span{1B : G→ C : B is a compact open bisection of G}
= {f : G→ C : f is locally constant and supp(f) is compact},
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equipped with multiplication given by the convolution product

(f ∗ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

f(α) g(β) =
∑

η∈Gs(γ)
f(γη) g(η−1),

and involution given by f ∗(γ) := f(γ−1). The Steinberg algebra A(G) := AC(G) is dense
in Cc(G) with respect to the full and reduced C∗-norms (as shown in [28, 6]).

3. Twisted Steinberg algebras arising from locally constant 2-cocycles

In this section we introduce the twisted complex Steinberg algebraA(G, σ) (orAC(G, σ))
associated to an ample Hausdorff groupoid G and a continuous 2-cocycle σ : G(2) → Td.
As a vector space, the twisted Steinberg algebra is identical to the untwisted version
defined in Section 2. That is

A(G, σ) := span{1B : G→ Cd : B is a compact open bisection of G};
we now emphasise that we are viewing C with the discrete topology.

Lemma 3.1. Let G be an ample Hausdorff groupoid. Let Cc(G,Cd) denote the collection
of continuous, compactly supported functions f : G → Cd. For any continuous 2-cocycle
σ : G(2) → Td, we have the following:

(a) A(G, σ) = Cc(G,Cd) = {f ∈ Cc(G) : f is locally constant} as vector spaces; and
(b) for any f ∈ A(G, σ), there exist λ1, . . . , λn ∈ C\{0} and mutually disjoint compact

open bisections B1, . . . , Bn ⊆ G such that f =
∑n

i=1 λi1Bi.

Proof. Part (a) follows from the characterisations of the (untwisted, complex) Steinberg
algebra A(G) given in [6, Definition 3.2 and Lemma 3.3], because A(G, σ) and A(G) agree
as sets. Similarly, part (b) follows from [6, Lemma 3.5]. �

From now on, we will use the characterisations of A(G, σ) given in Lemma 3.1 inter-
changeably with the definition.

As a vector space, A(G, σ) is identical to the usual (complex) Steinberg algebra A(G)
introduced in [28, 6]. However, we equip A(G, σ) with a multiplication and involution
that both incorporate the 2-cocycle σ into their definitions, thereby distinguishing A(G, σ)
from A(G).

Proposition 3.2. Let G be an ample Hausdorff groupoid and σ : G(2) → Td be a contin-
uous 2-cocycle. There is a multiplication (called (twisted) convolution) on A(G, σ) given
by

(f ∗ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β) =
∑

η∈Gs(γ)
σ(γη, η−1) f(γη) g(η−1),

and an involution given by
f ∗(γ) := σ(γ, γ−1) f(γ−1).

Under these operations, along with pointwise addition and scalar multiplication, A(G, σ)
is a dense ∗-subalgebra of the twisted convolution algebra Cc(G, σ) with respect to the
I-norm, and hence also with respect to the full and reduced C∗-norms.

We call A(G, σ) the twisted Steinberg algebra associated to the pair (G, σ).

Remarks 3.3.

(1) If the 2-cocycle σ is trivial (in the sense that σ
(
G(2)

)
= {1}), then A(G, σ) is

identical to A(G) as a complex ∗-algebra.
(2) We often write fg to denote the convolution product f ∗ g of functions f, g ∈

A(G, σ) if the intended meaning is clear.
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(3) If f, g ∈ A(G, σ), then supp(fg) ⊆ supp(f) supp(g). If B and D are compact open
bisections of G such that supp(f) = B and supp(g) = D, then supp(fg) = BD
and supp(f ∗) = B−1.

(4) From the 2-cocycle identity, one can readily verify that σ(γ, γ−1) = σ(γ−1, γ) for
any γ ∈ G.

Proof of Proposition 3.2. Since A(G, σ) and A(G) agree as vector spaces, it follows from
[22, Proposition 2.2.7] that A(G, σ) is dense in Cc(G, σ) with respect to the I-norm. We
know from [24, Proposition II.1.1] that Cc(G, σ) is a ∗-algebra, and so to see that A(G, σ)
is a ∗-algebra, it suffices to show that A(G, σ) is closed under the twisted convolution and
involution.

Fix f, g ∈ A(G, σ). By Lemma 3.1(b), there exist mutually disjoint compact open
bisections B1, . . . , Bm, C1, . . . , Cn ⊆ G and scalars λ1, . . . , λm, µ1, . . . , µn ∈ C\{0} such
that

f =
m∑
i=1

λi1Bi and g =
n∑
j=1

µj1Cj .

We claim that fg ∈ A(G, σ). Since 0 /∈ σ
(
G(2)

)
, [26, Proposition 3.1.1] implies that for

each γ ∈ G, the set{
(α, β) ∈ G(2) : αβ = γ and σ(α, β) f(α) g(β) 6= 0

}
is finite. Since σ is locally constant, we can assume that for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}, there exists νi,j ∈ Td such that σ(α, β) = νi,j for all (α, β) ∈ (Bi)s×r (Cj)
(because otherwise we can further refine the bisections to ensure that this is true). Thus,
for all γ ∈ G, we have

(fg)(γ) =
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β)

=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β)

(
m∑
i=1

λi1Bi(α)

)(
n∑
j=1

µj1Cj(β)

)

=
∑

(α,β)∈G(2),
αβ=γ

m∑
i=1

n∑
j=1

νi,j λi µj 1Bi(α) 1Cj(β)

=
m∑
i=1

n∑
j=1

νi,j λi µj 1BiCj(γ).

Hence fg ∈ A(G, σ).
We now show that f ∗ ∈ A(G, σ). Since σ is locally constant, we can assume that for

all i ∈ {1, . . . ,m}, there exists κi ∈ Td such that σ(γ, γ−1) = κi for all γ ∈ Bi (because
otherwise we can further refine the bisections to ensure that this is true). Thus, for all
γ ∈ G, we have

f ∗(γ) = σ(γ, γ−1) f(γ−1) = σ(γ, γ−1)

(
m∑
i=1

λi 1Bi(γ
−1)

)
=

m∑
i=1

κi λi 1B−1
i

(γ).

Hence f ∗ ∈ A(G, σ). �

Note that we used that σ is locally constant in order to show that A(G, σ) is closed
under the twisted convolution and involution.
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In the untwisted Steinberg algebra setting, given compact open bisections B and D of
G, we have 1B1D = 1BD. This is not the case in the twisted setting, due to the presence
of the 2-cocycle in the convolution formula. Instead, we have the following properties
concerning the generators 1B of the twisted Steinberg algebra A(G, σ).

Lemma 3.4. Let G be an ample Hausdorff groupoid, σ : G(2) → Td be a continuous
2-cocycle, and B and D be compact open bisections of G.

(a) For all (α, β) ∈ Bs×rD, we have

(1B1D)(αβ) = σ(α, β) 1B(α) 1D(β) = σ(α, β) 1BD(αβ) = σ(α, β).

(b) If B ⊆ G(0) or D ⊆ G(0), then 1B1D = 1BD.

(c) For all γ ∈ G, we have 1∗B(γ) = σ(γ, γ−1) 1B−1(γ).
(d) We have 1B1∗B = 1r(B) and 1∗B1B = 1s(B).
(e) We have 1B1∗B1B = 1B and 1∗B1B1∗B = 1∗B.

Proof. (a) This follows immediately from the definition of the twisted convolution
product because B and D are bisections.

(b) Suppose that B ⊆ G(0) or D ⊆ G(0), and fix γ ∈ G. If γ ∈ BD, then γ = αβ for
some pair (α, β) ∈ Bs×rD. Since σ is normalised, we have σ(α, β) = 1, and so

(1B1D)(γ) = σ(α, β) 1B(α) 1D(β) = 1B(α) 1D(β) = 1BD(γ).

If γ /∈ BD, then (1B1D)(γ) = 0 = 1BD(γ). Thus 1B1D = 1BD.
(c) If γ ∈ B−1, then we have

1∗B(γ) = σ(γ, γ−1) 1B(γ−1) = σ(γ, γ−1) 1B−1(γ).

If γ /∈ B−1 = supp(1∗B), then

1∗B(γ) = 0 = 1B−1(γ) = σ(γ, γ−1) 1B−1(γ).

(d) We know that supp(1B1∗B) = BB−1 = r(B), and for all γ ∈ B, we have

(1B1∗B)
(
r(γ)

)
= (1B1∗B)(γγ−1)

= σ(γ, γ−1) 1B(γ) 1∗B(γ−1)

= σ(γ, γ−1) 1B(γ)σ(γ−1, γ) 1B−1(γ−1) (using part (c))

= 1

= 1r(B)

(
r(γ)

)
.

Similarly, we have supp(1∗B1B) = B−1B = s(B), and so for all γ ∈ B, we have

(1∗B1B)
(
s(γ)

)
= (1∗B1B)(γ−1γ)

= σ(γ−1, γ) 1∗B(γ−1) 1B(γ)

= σ(γ−1, γ)σ(γ−1, γ) 1B−1(γ−1) 1B(γ) (using part (c))

= 1

= 1s(B)

(
s(γ)

)
.

(e) Parts (b) and (d) imply that

1B1∗B1B = 1r(B)1B = 1r(B)B = 1B, and 1∗B1B1∗B = 1s(B)1
∗
B.

Hence supp(1∗B1B1∗B) = s(B)B−1 = B−1. For all γ ∈ B, we have

(1∗B1B1∗B)(γ−1) = σ(s(γ), γ−1) 1s(B)

(
s(γ)

)
1∗B(γ−1) = 1∗B(γ−1),

and so 1∗B1B1∗B = 1∗B. �
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The proof of the following result is inspired by the proof of [24, Proposition II.1.2].

Lemma 3.5. Let G be an ample Hausdorff groupoid, and σ, τ : G(2) → Td be two con-
tinuous 2-cocycles whose cohomology classes coincide. Then A(G, σ) is ∗-isomorphic to
A(G, τ).

Proof. For this proof, we will use ∗ to denote convolution, in order to distinguish it from
the pointwise product.

Since σ is cohomologous to τ , there is a continuous function b : G → Td such that
b(x) = 1 for all x ∈ G(0), and

σ(α, β) τ(α, β) = b(α) b(β) b(αβ), (3.1)

for all (α, β) ∈ G(2).
For each f ∈ A(G, σ) = Cc(G,Cd), let φ(f) denote the pointwise product bf . Since

bf : G → Cd is continuous and satisfies supp(bf) = supp(f), we have bf ∈ Cc(G,Cd) =
A(G, τ). We claim that φ : A(G, σ) → A(G, τ) is a ∗-isomorphism. It is clear that φ is
linear, so we must show that it respects the twisted convolution and involution.

For all γ ∈ G, letting α = γ and β = γ−1 in Equation (3.1) gives

σ(γ, γ−1) τ(γ, γ−1) = b(γ) b(γ−1) b(γγ−1) = b(γ) b(γ−1),

and hence
b(γ)σ(γ, γ−1) = τ(γ, γ−1) b(γ−1). (3.2)

Thus, for all f ∈ A(G, σ) and γ ∈ G, we have

φ(f ∗)(γ) = b(γ) f ∗(γ)

= b(γ)σ(γ, γ−1) f(γ−1)

= τ(γ, γ−1) b(γ−1) f(γ−1) (using Equation (3.2))

= (bf)∗(γ)

= φ(f)∗(γ).

For all (α, β) ∈ G(2), Equation (3.1) implies that

σ(α, β) b(αβ) = τ(α, β) b(α) b(β). (3.3)

Hence, for all f, g ∈ A(G, σ) and γ ∈ G, we have(
φ(f) ∗ φ(g)

)
(γ) =

∑
(α,β)∈G(2),
αβ=γ

τ(α, β)φ(f)(α)φ(g)(β)

=
∑

(α,β)∈G(2),
αβ=γ

τ(α, β) b(α)f(α) b(β) g(β)

=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) b(αβ) f(α) g(β) (using Equation (3.3))

= b(γ)
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β)

=
(
b(f ∗ g)

)
(γ)

= φ(f ∗ g)(γ).

Therefore, φ is a ∗-homomorphism.
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We now show that φ is a bijection. For each h ∈ A(G, τ), we have bh ∈ A(G, σ),
and so φ(bh) = bbh = h. Hence φ is surjective. To see that φ is injective, suppose that
f, g ∈ A(G, σ) satisfy φ(f) = φ(g). Then f = bbf = bφ(f) = bφ(g) = bbg = g. Therefore,
φ is a ∗-isomorphism. �

Proposition 3.6. Let G be an ample Hausdorff groupoid and σ : G(2) → Td be a contin-
uous 2-cocycle. The set

{1B : G→ Cd : B is a nonempty compact open subset of G(0)}
forms a local unit for A(G, σ). That is, for any finite collection f1, . . . , fn ∈ A(G, σ),
there exists a compact open subset E of G(0) such that

1E fi = fi = fi 1E,

for each i ∈ {1, . . . , n}.

Proof. Since multiplication by 1E for E ⊆ G(0) is not affected by the 2-cocycle, this follows
from the analogous non-twisted result [5, Lemma 2.6]. �

4. Twisted Steinberg algebras arising from discrete twists

There is another (often more general) notion of a twisted groupoid C∗-algebra which is
constructed from a “twist” over the groupoid itself; that is, an algebra built from a locally
split groupoid extension of an ample Hausdorff groupoid G by G(0) × T. In this section,
we define a discretised analogue of this twist and its associated twisted Steinberg algebra.
The primary modification is to replace the standard topology on T with the discrete
topology. Many of the results in Section 4.1 and Section 4.2 have roots or inspiration in
Kumjian’s study of groupoid C∗-algebras built from groupoid extensions in [12].

The results in Section 4.1 and Section 4.2 also hold in the non-discrete setting with the
same proofs. Replacing Td with T will not change any of the algebraic arguments therein,
and the topological arguments carry through mutatis mutandis. As our ultimate focus is
algebraic, we present all of our results in terms of Td.

4.1. Discrete twists over Hausdorff étale groupoids. The definition of a twist over
a Hausdorff étale groupoid, which we refer to as a classical twist, can be found in [26,
Definition 5.1.1]. The following is our discretised version.

Definition 4.1. Let G be a Hausdorff étale groupoid. A discrete twist over G is a
sequence

G(0) × Td
i
↪→ Σ

q
� G,

where the groupoid G(0) × Td is regarded as a trivial group bundle with fibres Td, Σ is
a Hausdorff groupoid with Σ(0) = i

(
G(0) × {1}

)
, and i and q are continuous groupoid

homomorphisms that restrict to homeomorphisms of unit spaces, such that the following
conditions hold.

(a) The sequence is exact, in the sense that i({x} × Td) = q−1(x) for every x ∈ G(0),
i is injective, and q is surjective.1

(b) The groupoid Σ is a locally trivial G-bundle, in the sense that for each α ∈ G, there
is an open bisection Bα of G containing α, and a continuous map Pα : Bα → Σ
such that
(i) q ◦ Pα = idBα ;

(ii) Pα(G(0) ∩Bα) ⊆ Σ(0); and

1Although it is not explicitly stated in [26, Definition 5.1.1] that the groupoid homomorphism q : Σ→ G
is surjective and satisfies q(i(x, z)) = x for every (x, z) ∈ G(0) × Td, it is implicitly assumed.
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(iii) the map (β, z) 7→ i(r(β), z)Pα(β) is a homeomorphism from Bα × Td to
q−1(Bα).

(c) The image of i is central in Σ, in the sense that i(r(ε), z) ε = ε i(s(ε), z) for all
ε ∈ Σ and z ∈ Td.

We denote a discrete twist over G either by (Σ, i, q), or simply by Σ. We identify Σ(0)

with G(0) via i. A continuous map Pα : Bα → Σ is called a (continuous) local section if
it satisfies parts (i) and (ii) of condition (b). A (classical) twist over G has the same
definition as above, with the exception that Td is replaced by T.

In brief, we think of a twist over G as a locally split extension Σ of G by G(0) × Td,
where the image of G(0)×Td is central in Σ. If G is ample, then the open bisections from
condition (b) can be chosen to be compact.

Example 4.2. If G is a discrete group, then a twist over G as defined above is a central
extension of G.

The following result is an immediate consequence of Definition 4.1.

Lemma 4.3. Let G be a Hausdorff étale groupoid, and (Σ, i, q) be a discrete twist over
G. Then i is a homeomorphism onto its image.

Proof. Since i is injective and continuous by definition, we need only show that i is an
open map. Fix open sets U ⊆ G(0) and W ⊆ Td. For each x ∈ U , condition (b)(iii) of
Definition 4.1 implies that there is an open bisection Bx of G containing x, and a homeo-
morphism ψx : Bx×Td → q−1(Bx) given by ψx(β, z) := i(r(β), z)Px(β). In particular, for
each y ∈ Bx ∩G(0) and z ∈ Td, we have ψx(y, z) = i(y, z), since Px(y) ∈ Σ(0). Therefore,

i(U ×W ) =
⋃
x∈U

ψx
(
(Bx ∩ U)×W

)
,

which is an open subset of Σ, because each ψx is a homeomorphism onto the open set
q−1(Bx), and each Bx ∩ U is open. �

We define a notion of an isomorphism of discrete twists in an analogous way to the
non-discrete version.

Definition 4.4. We say that two twists (Σ, i, q) and (Σ′, i′, q′) over a Hausdorff étale
groupoid G are isomorphic if there exists a groupoid isomorphism2 φ : Σ → Σ′ that is
equivariant for i′ and q′; or, equivalently, if the following diagram commutes.

G(0) × Td Σ G

G(0) × Td Σ′ G

i q

φ

i′ q′

It is natural to ask whether there is a correspondence between twists over a groupoid and
locally constant 2-cocycles which can be used to “twist” the multiplication in Steinberg
algebras, given the shared terminology. As one familiar with the literature would expect,
we can readily build a twist over a Hausdorff étale groupoid from a locally constant 2-
cocycle. To demonstrate this, we adapt the construction outlined in [26, Example 5.1.5]
to the setting where the continuous 2-cocycle maps into Td (rather than T), which is
equivalent to insisting that the 2-cocycle is locally constant.

2We say that φ : Σ→ Σ′ is a groupoid isomorphism if it is a homeomorphism such that φ(δε) = φ(δ)φ(ε)
for all (δ, ε) ∈ Σ(2).
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Example 4.5. Let G be a Hausdorff étale groupoid, and σ : G(2) → Td be a continuous
2-cocycle. Let G ×σ Td be the set G × Td endowed with the product topology, with
multiplication given by

(α, z)(β, w) := (αβ, σ(α, β) zw),

and inversion given by

(α, z)−1 := (α−1, σ(α, α−1) z) = (α−1, σ(α−1, α) z),

for all (α, β) ∈ G(2) and z, w ∈ Td. Then G ×σ Td is a Hausdorff groupoid. In fact,
unlike in the classical setting, G being étale implies that G ×σ Td is étale, because for
each z ∈ Td and bisection U of G, r|U×{z} is a homeomorphism onto r(U)× {1}. Define

i : G(0) × Td → G ×σ Td by i(x, z) := (x, z), and q : G ×σ Td → G by q(γ, z) := γ. Then
q is easily verified to be a surjective groupoid homomorphism, and since σ is normalised,
i is an injective groupoid homomorphism. Just as in [26, Example 5.1.5], it is routine to
then check that (G×σ Td, i, q) is a discrete twist over G.

Example 4.5 shows that any locally constant 2-cocycle on a Hausdorff étale groupoid
G gives rise to a discrete twist over G. According to folklore, the converse is true when G
is additionally second-countable and ample. The proof of this fact and its consequences
will be the focus of the remainder of this subsection.

Before we proceed, we need two technical results regarding the left and right group
actions of Td on Σ that are induced by the map i : G(0) × Td → Σ. Identifying Σ(0) with
G(0), these actions are given by

z · ε := i(r(ε), z) ε and ε · z := ε i(s(ε), z),

for each z ∈ Td and ε ∈ Σ. Since the image of i is central in Σ, we have z · ε = ε · z, and
(z · ε)(w · δ) = (zw) · (εδ) for all (ε, δ) ∈ Σ(2) and z, w ∈ Td.

Lemma 4.6. Let G be a Hausdorff étale groupoid. Suppose that (Σ1, i1, q1) and (Σ2, i2, q2)
are discrete twists over G, and φ : Σ1 → Σ2 is an isomorphism of twists, as defined in
Definition 4.4. Then φ respects the action of Td, in the sense that φ(z · ε) = z · φ(ε), for
all z ∈ Td and ε ∈ Σ1.

Proof. Since φ : Σ1 → Σ2 is an isomorphism of twists, we have i2 = φ ◦ i1. Thus, for all
z ∈ Td and ε ∈ Σ1, we have

φ(z · ε) = φ
(
i1(r(ε), z) ε

)
= i2(r(ε), z)φ(ε) = z · φ(ε). �

The following result is inspired by [26, Proposition 5.1.3].

Lemma 4.7. Let G be a Hausdorff étale groupoid. Suppose that (Σ, i, q) is a discrete
twist over G, and δ, ε ∈ Σ satisfy q(δ) = q(ε). Then r(δ) = r(ε), and there is a unique
z ∈ Td such that ε = z · δ.

Proof. Fix δ, ε ∈ Σ such that q(δ) = q(ε). Then q(r(δ)) = r(q(δ)) = r(q(ε)) = q(r(ε)),
and hence r(δ) = r(ε), because q restricts to a homeomorphism of unit spaces. Thus
q(εδ−1) = q(ε)q(ε)−1 = r(q(ε)) ∈ G(0), so there is a unique element z ∈ Td such that
εδ−1 = i

(
r(q(ε)), z

)
. By identifying Σ(0) with G(0), we obtain ε = i(r(ε), z) δ = z · δ. �

Notice that in the case where Σ is the twist G×σ Td described in Example 4.5, we can
check Lemma 4.7 directly. Identifying Σ(0) = G(0) × {1} with G(0), we have

z · (α,w) = i(r(α), z)(α,w) = (r(α), z)(α,w) = (α, zw),

for all z ∈ Td and (α,w) ∈ Σ. If q(δ) = q(ε) for some δ, ε ∈ Σ, then δ = (α,w1) and
ε = (α,w2) for some α ∈ G and unique w1, w2 ∈ Td. Clearly there is a unique z ∈ Td
such that zw1 = w2, and hence z · δ = (α, zw1) = ε.



TWISTED STEINBERG ALGEBRAS 13

Our key tool in what follows will be a (continuous) global section; that is, a continuous
map P : G → Σ, such that q ◦ P = idG and P (G(0)) ⊆ Σ(0) = i(G(0) × {1}). Our next
result shows that every discrete twist admitting a continuous global section is isomorphic
to a twist coming from a locally constant 2-cocycle, as described in Example 4.5. Parts of
this result are inspired by the analogous non-discrete versions in [12, Section 4] and [26,
Chapter 5].

Proposition 4.8. Let G be a Hausdorff étale groupoid, and (Σ, i, q) be a discrete twist
over G. Suppose that Σ is topologically trivial, in the sense that it admits a continuous
global section P : G→ Σ. Then the following conditions hold.

(a) The continuous global section P preserves composability, and induces a continuous
2-cocycle σ : G(2) → Td satisfying

P (α)P (β)P (αβ)−1 = i
(
r(α), σ(α, β)

)
,

for all (α, β) ∈ G(2).
(b) For all (α, β) ∈ G(2), we have

P (α)P (β) = σ(α, β) · P (αβ) and P (α)−1 = σ(α, α−1) · P (α−1).

(c) Let (G ×σ Td, iσ, qσ) be the twist from Example 4.5. The map φP : G ×σ Td → Σ
defined by φP (α, z) := z ·P (α) gives an isomorphism of the twists G×σ Td and Σ.

Proof. For (a), fix (α, β) ∈ G(2). Since q ◦ P = idG and q is a groupoid homomorphism
that restricts to a homeomorphism of unit spaces, we have

q(s(P (α))) = s(q(P (α))) = s(α) = r(β) = r(q(P (β))) = q(r(P (β))),

and hence (P (α), P (β)) ∈ Σ(2). We have

q
(
P (α)P (β)P (αβ)−1

)
= q(P (α)) q(P (β)) q(P (αβ))−1 = r(α) = q

(
P (r(α))

)
,

and so Lemma 4.7 implies that there is a unique value σ(α, β) ∈ Td such that

P (α)P (β)P (αβ)−1 = σ(α, β) · P (r(α)) = i
(
r(α), σ(α, β)

)
. (4.1)

Therefore, σ(α, β) = (π2◦i−1)
(
P (α)P (β)P (αβ)−1

)
, where π2 is the projection of G(0)×Td

onto the second coordinate. Noting that i is an open map by Lemma 4.3, we deduce that
σ is continuous because it is a composition of continuous functions.

To check that σ satisfies the 2-cocycle identity, we fix (α, β, γ) ∈ G(3) and show that

σ(β, γ) = σ(α, β)σ(αβ, γ)σ(α, βγ).

Since the image of i is central in Σ, we have

i
(
r(α), σ(β, γ)

)
P (α) = P (α) i

(
s(α), σ(β, γ)

)
= P (α) i

(
r(β), σ(β, γ)

)
. (4.2)

Using Equation (4.2) for the first equality below and Equation (4.1) for the second and
fourth equalities, we obtain

i
(
r(α), σ(β, γ)

)
= P (α) i

(
r(β), σ(β, γ)

)
P (α)−1

= P (α)P (β)P (γ)P (βγ)−1P (α)−1

=
(
P (α)P (β)P (αβ)−1

)(
P (αβ)P (γ)P (αβγ)−1

)(
P (αβγ)P (βγ)−1P (α)−1

)
= i
(
r(α), σ(α, β)

)
i
(
r(αβ), σ(αβ, γ)

)
i
(
r(α), σ(α, βγ)

)−1

= i
(
r(α), σ(α, β)σ(αβ, γ)σ(α, βγ)

)
.

Thus, by the injectivity of i, we deduce that σ satisfies the 2-cocycle identity.
To see that σ is normalised, first note that for all α in G,

q
(
i
(
r(α), σ(r(α), α)

))
= q
(
i
(
r(α), σ(α, s(α))

))
= q
(
i(r(α), 1)

)
= r(α), (4.3)
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and i(r(α), 1) ∈ Σ(0). Moreover, by Equation (4.1), we have

i
(
r(α), σ(r(α), α)

)
= P (r(α))P (α)P (r(α)α)−1 = P (r(α)) ∈ Σ(0),

and, since P (s(α)) ∈ Σ(0),

i
(
r(α), σ(α, s(α))

)
= P (α)P (s(α))P (αs(α))−1 = P (α)P (α)−1 = r(P (α)) ∈ Σ(0).

Since q restricts to a homeomorphism of unit spaces and i is injective, we deduce from
Equation (4.3) that

σ(r(α), α) = σ(α, s(α)) = 1,

for all α ∈ G.
For (b), fix (α, β) ∈ G(2). Then Equation (4.1) implies that

P (α)P (β) = i
(
r(αβ), σ(α, β)

)
P (αβ) = σ(α, β) · P (αβ),

and also that

P (α)P (α−1)P (αα−1)−1 = i
(
r(α), σ(α, α−1)

)
.

Since P (αα−1)−1 = P (r(α)) ∈ Σ(0), we deduce that

P (α)−1 = P (α−1) i
(
r(α), σ(α, α−1)

)−1
= P (α−1) · σ(α, α−1) = σ(α, α−1) · P (α−1).

For (c), define φP : G ×σ Td → Σ by φP (α, z) := z · P (α) = i(r(α), z)P (α). Then φP
is continuous, because it is the pointwise product of the continuous maps i ◦ (r× id) and
P ◦π1 from G×σ Td to Σ, where π1 is the projection of G×σ Td onto the first coordinate.
To see that φP is injective, suppose that (α, z), (β, w) ∈ G(2) satisfy φP (α, z) = φP (β, w).
Then

α = q(i(r(α), z)) q(P (α)) = q(φP (α, z)) = q(φP (β, w)) = q(i(r(β), w)) q(P (β)) = β.

Therefore,

i(r(α), z) = φP (α, z)P (α)−1 = φP (β, w)P (α)−1 = i(r(β), w)P (β)P (α)−1 = i(r(α), w),

and since i is injective, we have z = w. Thus φP is injective. To see that φP is surjective,
fix ε ∈ Σ. Then q(ε) = q

(
P (q(ε))

)
, and so by Lemma 4.7, there exists a unique zε ∈ Td

such that

φP
(
P (q(ε)), zε

)
= zε · P (q(ε)) = i(r(ε), zε)P (q(ε)) = ε.

Thus φP is surjective, and we have zε = π2

(
i−1(ε P (q(ε))−1)

)
, where π2 is the projection

of G(0) × Td onto Td. Since φ−1
P (ε) =

(
P (q(ε)), zε

)
and Lemma 4.3 implies that i−1 is

continuous, we deduce that φ−1
P is continuous, because it is a composition of continuous

maps. Hence φP is a homeomorphism.
To see that φP is also a homomorphism, fix (α, β) ∈ G(2) and z, w ∈ Td. Then, using

part (b) for the third equality, we have

φP (α, z)φP (β, w) = (z · P (α))(w · P (β))

= (zw) · (P (α)P (β))

= (zw) ·
(
σ(α, β) · P (αβ)

)
=
(
σ(α, β)zw

)
· P (αβ)

= φP
(
αβ, σ(α, β)zw

)
= φP

(
(α, z)(β, w)

)
.

Hence φP is a groupoid isomorphism.
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Recall from Example 4.5 that iσ : G(0) × Td → G ×σ Td is the inclusion map and
qσ : G ×σ Td → G is the projection onto the first coordinate. Fix α ∈ G and w ∈ Td.
Then

(φP ◦ iσ)(r(α), w) = φP (r(α), w) = i(r(α), w)P (r(α)) = i(r(α), w) i(r(α), 1) = i(r(α), w),

and

(q ◦ φP )(α,w) = q
(
i(r(α), w)P (α)

)
= r(α)α = α = qσ(α,w).

Therefore, Σ and G×σ Td are isomorphic as twists over G. �

As one might expect, all twists constructed from locally constant 2-cocycles (as in
Example 4.5) are topologically trivial, as we now prove.

Lemma 4.9. Let G be a Hausdorff étale groupoid and σ : G(2) → Td be a continuous
2-cocycle. The twist (G ×σ Td, i, q) described in Example 4.5 is topologically trivial, and
the map S : γ 7→ (γ, 1) is a continuous global section from G to G×σ Td that induces σ.

Proof. It is clear that S is a continuous global section, and so G ×σ Td is topologically
trivial. By Proposition 4.8, S induces a 2-cocycle ω : G(2) → Td satisfying

S(α)S(β)S(αβ)−1 = i
(
r(α), ω(α, β)

)
= (r(α), ω(α, β)),

for all (α, β) ∈ G(2). To see that S induces σ, fix (α, β) ∈ G(2). Then

(r(α), ω(α, β)) = S(α)S(β)S(αβ)−1

= (α, 1)(β, 1)(αβ, 1)−1

= (αβ, σ(α, β))
(
(αβ)−1, σ(αβ, (αβ)−1)

)
=
(
r(αβ), σ(αβ, (αβ)−1)σ(α, β)σ(αβ, (αβ)−1)

)
= (r(α), σ(α, β)).

Therefore, σ = ω, and so S induces σ. �

Together, Proposition 4.8 and Lemma 4.9 give us a one-to-one correspondence between
discrete twists over a Hausdorff étale groupoid G which admit a continuous global section
and twists over G arising from locally constant 2-cocycles on G.

As we shall see in Theorem 4.10, it turns out that all twists over a second-countable,
ample, Hausdorff groupoid G admit a continuous global section. We are grateful to
Elizabeth Gillaspy for alerting us to this folklore fact, citing conversations with Alex
Kumjian. Because we know of no proofs in the literature, we give a detailed proof here
in the discrete setting.

Theorem 4.10. Let G be a second-countable, ample, Hausdorff groupoid, and (Σ, i, q) be
a discrete twist over G. Then Σ is topologically trivial.

In order to prove Theorem 4.10, we need the following lemma.

Lemma 4.11. Let G be a second-countable, ample, Hausdorff groupoid, and suppose that
U is an open cover of G. Then U has a countable refinement {Bj}∞j=1 of mutually disjoint
compact open bisections that form a cover of G.

Proof. Let U be an open cover of G. By possibly passing to a refinement, we may assume
that U consists of compact open bisections. Since G is second-countable, it is Lindelöf,
and so we may assume that U = {Dj}∞j=1, where each Dj is a compact open bisection of

G. Define B1 := D1, and for each n ≥ 2, define Bn := Dn\ ∪n−1
i=1 Bi. Then each Bj is a

compact open bisection contained in Dj, and {Bj}∞i=j forms a disjoint cover of G. �
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Proof of Theorem 4.10. Since Σ is a twist over the ample groupoid G, for each α ∈ G,
there exists a compact open bisection Dα ⊆ G and a continuous local section Pα : Dα → Σ
such that the map φα : Dα×Td → q−1(Dα) given by φα(β, z) := i(r(β), z)Pα(β) = z·Pα(β)
is a homeomorphism. By Lemma 4.11, {Dα}α∈G has a countable refinement {Bj}∞j=1

consisting of mutually disjoint compact open bisections that form a cover of G. For each
j ≥ 1, choose αj ∈ G such that Bj ⊆ Dαj , and define Pj := Pαj |Bj . For each β ∈ G,
there is a unique jβ ≥ 1 such that β ∈ Bjβ , and hence the map P : G → Σ given by
P (β) := Pjβ(β) is well-defined. Since q(P (β)) = q(Pjβ(β)) = β = idG(β) for all β ∈ G, and

Pj(G
(0) ∩Bj) ⊆ Σ(0) for each j ≥ 1, P is a global section. We claim that P is continuous.

Let U be an open subset of Σ. Then P−1(U) = ∪∞j=1 P
−1
j (U) = ∪∞j=1

(
P−1
αj

(U) ∩ Bj

)
.

Since each Pαj is continuous and each Bj is open, P−1(U) is open in G. Hence P is a
continuous global section, and Σ is topologically trivial. �

4.2. Twists and 2-cocycles. In this section we restrict our attention to twists arising
from locally constant 2-cocycles, and we investigate the relationships between such twists.
In particular, we prove the following theorem.

Theorem 4.12. Let G be a Hausdorff étale groupoid, and σ, τ : G(2) → Td be continuous
2-cocycles. The following are equivalent:

(1) G×σ Td ∼= G×τ Td;
(2) σ is cohomologous to τ ; and
(3) σ is induced by a continuous global section P : G→ G×τ Td.

We will split the proof of this theorem up into three lemmas. This proof has notable
overlap with [12, Section 4], particularly the equivalence of (2) and (3). However, the two
formulations are sufficiently different to warrant independent treatment here.

The following lemma expands on an argument given in [26, Remark 5.1.6] showing that
the cohomology class of a continuous 2-cocycle σ : G(2) → Td can always be recovered
from the twist G×σ Td.

Lemma 4.13. Let G be a Hausdorff étale groupoid and τ : G(2) → Td be a continuous
2-cocycle. Suppose that P : G→ G×τ Td is a continuous global section, and σ : G(2) → Td
is the induced continuous 2-cocycle satisfying

i
(
r(α), σ(α, β)

)
= P (α)P (β)P (αβ)−1

for all (α, β) ∈ G(2), as in Proposition 4.8. Then σ is cohomologous to τ .

Proof. To see that σ is cohomologous to τ , we will find a continuous function b : G→ Td
such that b(x) = 1 for all x ∈ G(0), and

σ(α, β) = τ(α, β) b(α) b(β) b(αβ)

for all (α, β) ∈ G(2). For each γ ∈ G, let b(γ) be the unique element of Td such that
P (γ) = (γ, b(γ)). Since P (G(0)) ⊆ G(0) × {1}, we have b(x) = 1 for all x ∈ G(0). Since
b = π2◦P , where π2 is the projection of G×τTd onto the second coordinate, b is continuous.
For all (α, β) ∈ G(2), we have

i
(
r(α), σ(α, β)

)
= P (α)P (β)P (αβ)−1

= (α, b(α)) (β, b(β)) (αβ, b(αβ))−1

=
(
αβ, τ(α, β) b(α) b(β)

)(
(αβ)−1, τ(αβ, (αβ)−1) b(αβ)

)
=
(
r(αβ), τ(αβ, (αβ)−1) τ(α, β) b(α) b(β) τ(αβ, (αβ)−1) b(αβ)

)
=
(
r(α), τ(α, β) b(α) b(β) b(αβ)

)
.
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Thus, noting that i : G(0) × Td → G×σ Td is the inclusion map, we deduce that

σ(α, β) = τ(α, β) b(α) b(β) b(αβ),

as required �

We now show that cohomologous locally constant 2-cocycles give rise to isomorphic
twists.

Lemma 4.14. Let G be a Hausdorff étale groupoid and σ, τ : G(2) → Td be continuous
2-cocycles. If σ is cohomologous to τ , then the discrete twists G ×σ Td and G ×τ Td are
isomorphic.

Proof. If σ is cohomologous to τ , then there is a continuous function b : G→ Td such that
b(x) = 1 for all x ∈ G(0), and

b(αβ)σ(α, β) = τ(α, β) b(α) b(β) (4.4)

for all (α, β) ∈ G(2). Define φ : G ×σ Td → G ×τ Td by φ(α, z) := (α, b(α)z). Then φ is

bijective, with inverse given by φ−1(α, z) := (α, b(α)z). Since φ(α, z) = (r(α), b(α))(α, z),
φ is continuous, because it is the pointwise product of the continuous map (r × b) ◦ π1

and the identity map, where π1 is the projection of G×σ Td onto the first coordinate. A
similar argument shows that φ−1 is continuous, and thus φ is a homeomorphism.

To see that φ is a homomorphism, fix (α, β) ∈ G(2) and z, w ∈ Td. Using Equation (4.4)
for the third equality, we obtain

φ((α, z)(β, w)) = φ(αβ, σ(α, β) zw)

= (αβ, b(αβ)σ(α, β) zw)

= (αβ, τ(α, β) b(α) b(β) zw)

= (α, b(α)z) (β, b(β)w)

= φ(α, z)φ(β, w),

as required.
Let iσ : G(0) × Td → G×σ Td and iτ : G(0) × Td → G×τ Td be the inclusion maps, and

qσ : G×σTd → G and qτ : G×τ Td → G be the projections onto the first coordinate. Since
b(x) = 1 for all x ∈ G(0), we have

φ(iσ(x, z)) = (x, b(x)z) = (x, z) = iτ (x, z),

and
qτ (φ(α, z)) = qτ (α, b(α)z) = α = qσ(α),

for all x ∈ G(0), α ∈ G, and z ∈ Td. Therefore, φ is an isomorphism of the twists G×σ Td
and G×τ Td. �

Finally, we show that if σ and τ are locally constant 2-cocycles on G giving rise to
isomorphic twists G×σ Td and G×τ Td, then G×τ Td admits a continuous global section
that induces σ.

Lemma 4.15. Let G be a Hausdorff étale groupoid and σ, τ : G(2) → Td be continuous
2-cocycles. If (G ×σ Td, iσ, qσ) and (G ×τ Td, iτ , qτ ) are isomorphic as twists, then σ is
induced by a continuous global section P : G→ G×τ Td.

Proof. Suppose that φ : G×σ Td → G×τ Td is an isomorphism of twists. By Lemma 4.9,
the map S : γ → (γ, 1) is a continuous global section from G to G×σ Td that induces σ,
in the sense that

S(α)S(β)S(αβ)−1 = iσ
(
r(α), σ(α, β)

)
, (4.5)

for all (α, β) ∈ G(2).
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Define P := φ◦S : G→ G×τ Td. We claim that P is a continuous global section. Since
S is a continuous global section and φ is a groupoid isomorphism, P is continuous and
P (G(0)) ⊆ G(0)×{1}. Recall from Example 4.5 that qσ : G×σTd → G and qτ : G×τTd → G
are the projections onto the first coordinate. Since φ is an isomorphism of twists, we have

qτ ◦ P = qτ ◦ (φ ◦ S) = (qτ ◦ φ) ◦ S = qσ ◦ S = idG .

Hence P is a continuous global section.
We now show that P induces σ. By Proposition 4.8(a), P induces a continuous 2-cocycle

ω : G(2) → Td satisfying

P (α)P (β)P (αβ)−1 = iτ
(
r(α), ω(α, β)

)
, (4.6)

for all (α, β) ∈ G(2). Together, Equations (4.6) and (4.5) imply that

iτ
(
r(α), ω(α, β)

)
= P (α)P (β)P (αβ)−1

= φ
(
S(α)S(β)S(αβ)−1

)
= φ

(
iσ
(
r(α), σ(α, β)

))
= iτ

(
r(α), σ(α, β)

)
,

for all (α, β) ∈ G(2). Since iσ and iτ are both injective, we deduce that σ = ω, and hence
σ is induced by P . �

We now combine these three lemmas to prove our main theorem for this section.

Proof of Theorem 4.12. Lemma 4.15 gives (1) =⇒ (3), Lemma 4.13 gives (3) =⇒ (2), and
Lemma 4.14 gives (2) =⇒ (1). �

We conclude this section with a corollary of Theorem 4.12.

Corollary 4.16. Let G be a Hausdorff étale groupoid and Σ be a topologically trivial
discrete twist over G. Suppose that σ1, σ2 : G(2) → Td are continuous 2-cocycles induced
by two different continuous global sections P1, P2 : Σ→ G, as in Proposition 4.8(a). Then
σ1 is cohomologous to σ2.

Proof. By Proposition 4.8(c), we have G×σ1 Td ∼= Σ ∼= G×σ2 Td, and hence Theorem 4.12
implies that σ1 is cohomologous to σ2. �

4.3. Twisted Steinberg algebras arising from discrete twists. In this section we
give a construction of a twisted Steinberg algebra A(G; Σ) coming from a topologically
trivial discrete twist Σ over an ample Hausdorff groupoid G. We prove that if two such
twists are isomorphic, then they give rise to isomorphic twisted Steinberg algebras. We
also prove that if Σ ∼= G ×σ Td for some continuous 2-cocycle σ : G(2) → Td, then the
twisted Steinberg algebras A(G; Σ) and A(G, σ) are ∗-isomorphic.

Definition 4.17. Let G be an ample Hausdorff groupoid and (Σ, i, q) be a topologically
trivial discrete twist over G. We say that f ∈ C(Σ,Cd) is Td-equivariant if f(z ·ε) = z f(ε)
for all z ∈ Td and ε ∈ Σ, and we define

A(G; Σ) := {f ∈ C(Σ,Cd) : f is Td-equivariant and q(supp(f)) is compact}.

We first show that A(G; Σ) is a vector space under the pointwise operations inherited
from C(Σ,Cd).

Lemma 4.18. Let G be an ample Hausdorff groupoid and (Σ, i, q) be a topologically trivial
discrete twist over G. Then A(G; Σ) is a linear subspace of C(Σ,Cd).
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Proof. Fix f, g ∈ A(G; Σ) and λ ∈ C\{0}. Then λf + g is continuous and Td-equivariant.

Since q
(

supp(λf+g)
)

is contained in the compact set q(supp(f))∪q(supp(g)), we deduce

that q
(

supp(λf + g)
)

has compact closure. Hence λf + g ∈ A(G; Σ). �

Since we are assuming that the twist Σ is topologically trivial, it necessarily admits a
continuous global section P : G→ Σ. We now show that Definition 4.17 can be rephrased
in terms of any such P .

Lemma 4.19. Let G be an ample Hausdorff groupoid and (Σ, i, q) be a topologically trivial
discrete twist over G. Let P : G→ Σ be any continuous global section. Then

A(G; Σ) = {f ∈ C(Σ,Cd) : f is Td-equivariant and f ◦ P ∈ Cc(G,Cd)}.

Proof. Fix f ∈ C(Σ,Cd). Then f ◦P is continuous. It suffices to show that q(supp(f)) =

supp(f ◦ P ), because then q(supp(f)) is compact if and only if f ◦ P ∈ Cc(G,Cd). By
Proposition 4.8(c), we know that Σ = {z · P (α) : (α, z) ∈ G× Td}. Therefore, we have

q(supp(f)) = {q(ε) : ε ∈ Σ, f(ε) 6= 0}
= {q(z · P (α)) : (α, z) ∈ G× Td, f(z · P (α)) 6= 0}
= {α : (α, z) ∈ G× Td, z f(P (α)) 6= 0}
= {α ∈ G : (f ◦ P )(α) 6= 0}
= supp(f ◦ P ),

as required. �

Remarks 4.20.

(1) It is crucial here that we are dealing with discrete twists. Suppose that σ is a 2-
cocycle on an ample Hausdorff groupoid G that is continuous with respect to the
standard topology on T, and consider the classical twist G×σ T over G. Suppose
that f ∈ C(G ×σ T) is a T-equivariant function that is locally constant. Then,
for any α ∈ G, there is an open subset V of G containing α and an open subset
W of T containing 1 such that f is constant on V ×W . Since W is open in the
standard topology on T, we have W 6= {1}. For each z ∈ W\{1}, we have

f(α, 1) = f(α, z) = f(z · (α, 1)) = z f(α, 1),

and hence f |G×{1} ≡ 0. But this implies that f(β, w) = 0 for all (β, w) ∈ G×σ T,
because f is T-equivariant. In other words, if singleton sets are not open in T, then
the only locally constant T-equivariant function on G×σ T is the zero function.

(2) Suppose that G is an ample Hausdorff groupoid and σ : G(2) → Td is a continuous
2-cocycle. Since Td has the discrete topology, nonzero functions in A(G; G×σ Td)
are not compactly supported. To see this, fix f ∈ A(G; G ×σ Td) such that
f(α,w) 6= 0 for some (α,w) ∈ G×σ Td. Then, for all z ∈ Td, we have

f(α, z) = f(α, z w w) = f
(
(z w) · (α,w)

)
= z w f(α,w) 6= 0.

Thus {α}×Td is a closed subset of supp(f) which is not compact, and hence f is
not compactly supported.

Note that Definition 4.17 differs from the C∗-algebraic analogue defined in [26,
Definition 5.1.7 and Theorem 5.1.11], which is the completion of the subalgebra of
continuous compactly supported T-equivariant functions on a (non-discrete) twist
over G with respect to a C∗-norm.
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Proposition 4.21. Let G be an ample Hausdorff groupoid and (Σ, i, q) be a topologically
trivial discrete twist over G. There is a multiplication on A(G; Σ) given by

(f ∗Σ g)(ε) :=
∑

(δ,η)∈Σ(2),
δη=ε

f(δ) g(η) =
∑

ζ∈Σs(ε)

f(εζ) g(ζ−1), (4.7)

and an involution given by
f ∗(ε) := f(ε−1).

Under these operations, along with pointwise addition and scalar multiplication, A(G; Σ)
is a ∗-algebra.

We call A(G; Σ) the twisted Steinberg algebra associated to the pair (G,Σ).

Proof. By Lemma 4.18, A(G; Σ) is a vector space. To see that A(G; Σ) is a ∗-algebra, we
will just show that it is closed under the involution and convolution, as it is routine to
check that the multiplication and involution satisfy all of the other necessary properties.

We first prove that A(G; Σ) is closed under the involution. Fix f ∈ A(G; Σ) ⊆ C(Σ,Cd).
Then f ∗ is a composition of continuous maps, so f ∗ ∈ C(Σ,Cd). For all z ∈ Td and ε ∈ Σ,
we have

f ∗(z · ε) = f((z · ε)−1) = f(z · (ε−1)) = z f(ε−1) = z f ∗(ε),

and so f ∗ is Td-equivariant. Since supp(f ∗) = (supp(f))−1 and q is a continuous ho-

momorphism, we have q(supp(f ∗)) ⊆
(
q(supp(f))

)−1
, and hence q(supp(f ∗)) is compact

because it is a closed subset of a compact set. Thus f ∗ ∈ A(G; Σ).
We now prove that A(G; Σ) is closed under the convolution. To see this, first note

that since Σ is topologically trivial, it admits a continuous global section P : G → Σ.
Moreover, by Proposition 4.8, P induces a continuous 2-cocycle σ : G(2) → Td such that
the map φP : G×σ Td → Σ given by φP (α, z) := z ·P (α) is an isomorphism of twists. Fix
f, g ∈ A(G; Σ), and define fP := f ◦ P and gP := g ◦ P . By Lemma 4.19, fP and gP are
elements of Cc(G,Cd), which is equal (as a vector space) to A(G, σ), by Lemma 3.1. We
will express f ∗Σ g in terms of fP ∗ gP , which we know is in A(G, σ) by Proposition 3.2.
Fix (α, z) ∈ G×σ Td. Then

Σs(z·P (α)) = {ε ∈ Σ : r(ε) = s(z · P (α))}
= {w · P (β) : (β, w) ∈ G× Td, r(w · P (β)) = s(z · P (α))}
= {w · P (β) : (β, w) ∈ Gs(α) × Td}.

Using Td-equivariance and Proposition 4.8(b) for the fourth equality below, we obtain

(f ∗Σ g)(z · P (α)) =
∑

ζ∈Σs(z·P (α))

f
(
(z · P (α)) ζ

)
g(ζ−1)

=
∑

(β,w)∈Gs(α)×Td

f
(
(z · P (α))(w · P (β))

)
g
(
(w · P (β))−1

)
=

∑
(β,w)∈Gs(α)×Td

f
(
(zw) · (P (α)P (β))

)
g
(
w · P (β)−1

)
=

∑
(β,w)∈Gs(α)×Td

z w f
(
σ(α, β) · P (αβ)

)
w g
(
σ(β, β−1) · P (β−1)

)
=

∑
β∈Gs(α)

z σ(α, β) f
(
P (αβ)

)
σ(β, β−1) g

(
P (β−1)

)
= z

∑
β∈Gs(α)

σ(α, β)σ(β, β−1) fP (αβ) gP (β−1). (4.8)
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We also have

(fP ∗ gP )(α) =
∑

β∈Gs(α)
σ(αβ, β−1) fP (αβ) gP (β−1). (4.9)

Since σ is normalised and satisfies the 2-cocycle identity, we have

σ(α, β)σ(αβ, β−1) = σ(α, ββ−1)σ(β, β−1) = σ(β, β−1),

and hence

σ(α, β)σ(β, β−1) = σ(αβ, β−1), (4.10)

for each β ∈ Gs(α). Together, Equations (4.8), (4.9), and (4.10) imply that

(f ∗Σ g)(φP (α, z)) = (f ∗Σ g)(z · P (α)) = z (fP ∗ gP )(α). (4.11)

Define ψf,gP : G×σTd → Cd by ψf,gP (α, z) := z (fP ∗ gP )(α). Since fP , gP ∈ A(G, σ), we have

fP ∗gP ∈ A(G, σ) ⊆ C(G,Cd). Thus ψf,gP is continuous. Since φP is a homeomorphism and

f ∗Σ g = ψf,gP ◦ φ
−1
P , we deduce that f ∗Σ g ∈ C(Σ,Cd). Taking z = 1 in Equation (4.11)

shows that (f ∗Σ g) ◦ P = fP ∗ gP ∈ Cc(G,Cd), and Lemma 4.19 implies that this is

equivalent to showing that q(supp(f ∗Σ g)) is compact. Finally, to see that f ∗Σ g is Td-
equivariant, fix z ∈ Td and ε ∈ Σ. Then ε = w · P (β) for a unique pair (β, w) ∈ G×σ Td.
Thus, Equation (4.11) implies that (f ∗Σ g)(ε) = w (fP ∗ gP )(β), and hence

(f ∗Σ g)(z · ε) = (f ∗Σ g)
(
(zw) · P (β)

)
= z w (fP ∗ gP )(β) = z (f ∗Σ g)(ε).

Therefore, f ∗Σ g ∈ A(G; Σ), and so A(G; Σ) is a ∗-algebra. �

We now show that isomorphic twists give rise to isomorphic twisted Steinberg algebras.

Proposition 4.22. Let G be an ample Hausdorff groupoid, and (Σ1, i1, q1) and (Σ2, i2, q2)
be topologically trivial discrete twists over G. If φ : Σ1 → Σ2 is an isomorphism of twists,
then the map Φ: f 7→ f ◦ φ is a ∗-isomorphism from A(G; Σ2) to A(G; Σ1).

Proof. We first show that f ◦ φ ∈ A(G; Σ1) for each f ∈ A(G; Σ2). Let P1 : G → Σ1 be
a continuous global section, and define P2 := φ ◦ P1 : G → Σ2. Then P2 is continuous,

P2(G(0)) ⊆ φ
(
Σ

(0)
1

)
= Σ

(0)
2 , and

q2 ◦ P2 = q2 ◦ (φ ◦ P1) = (q2 ◦ φ) ◦ P1 = q1 ◦ P1 = idG .

Hence P2 is a continuous global section. Fix f ∈ A(G; Σ2) ⊆ C(Σ2,Cd). Since φ is
continuous, f ◦φ ∈ C(Σ1,Cd). By Lemma 4.6, φ respects the action of Td, and hence the
Td-equivariance of f implies that f ◦ φ is Td-equivariant. Moreover, Lemma 4.19 implies
that f ◦ φ ◦ P1 = f ◦ P2 ∈ Cc(G,Cd), and thus f ◦ φ ∈ A(G; Σ1).

Therefore, there is a map Φ: A(G; Σ2) → A(G; Σ1) given by Φ(f) := f ◦ φ. Routine
calculations show that Φ is a ∗-homomorphism. Furthermore, Φ is bijective with inverse
given by Φ−1(g) := g ◦ φ−1, and hence Φ is a ∗-isomorphism. �

By Proposition 4.8, we know that for every topologically trivial twist Σ over an ample
Hausdorff groupoidG, there is a continuous 2-cocycle σ : G(2) → Td such that Σ ∼= G×σTd.
Hence A(G; Σ) is ∗-isomorphic to A(G; G×σTd), by Proposition 4.22. We now prove that
A(G; Σ) is also ∗-isomorphic to A(G, σ).

Theorem 4.23. Let G be an ample Hausdorff groupoid and Σ be a topologically trivial
discrete twist over G. Let P : G→ Σ be a continuous global section and let σ : G(2) → Td
be the continuous 2-cocycle induced by P , as in Proposition 4.8(a). The map ψ : f 7→ f ◦ P
is a ∗-isomorphism from A(G; Σ) to A(G, σ).
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Proof. By Lemma 3.1(a), A(G, σ) and Cc(G,Cd) agree as sets, and hence Lemma 4.19
implies that

A(G; Σ) = {f ∈ C(Σ,Cd) : f is Td-equivariant and f ◦ P ∈ A(G, σ)}. (4.12)

Thus there is a map ψ : A(G; Σ)→ A(G, σ) given by ψ(f) := f ◦ P .
To see that ψ is injective, suppose that ψ(f) = ψ(g) for some f, g ∈ A(G; Σ). Fix

(α, z) ∈ G×σ Td. Since f and g are Td-equivariant, we have

f(z · P (α)) = z f(P (α)) = z ψ(f)(α) = z ψ(g)(α) = z g(P (α)) = g(z · P (α)). (4.13)

By Proposition 4.8(c), we have Σ = {z ·P (α) : (α, z) ∈ G×σ Td}, and so Equation (4.13)
implies that f = g, and thus ψ is injective.

To see that ψ is surjective, fix h ∈ A(G, σ), and recall from Proposition 4.8(c) that the
map φP : G×σ Td → Σ given by φP (α, z) := z · P (α) is an isomorphism of twists. Define

f : Σ → Cd by f(z · P (α)) := z h(α), and f̃ : G ×σ Td → Cd by f̃(α, z) := z h(α). Since

h ∈ C(G,Cd), we have f̃ ∈ C(G ×σ Td, Cd), and hence f = f̃ ◦ φ−1
P ∈ C(Σ,Cd) because

φ−1
P is continuous. For all α ∈ G and z, w ∈ Td, we have

f
(
z · (w · P (α))

)
= f

(
(zw) · P (α)

)
= z w h(α) = z f

(
w · P (α)

)
,

and so f is Td-equivariant. We also have f ◦ P = h ∈ A(G, σ), and thus Equation (4.12)
implies that f ∈ A(G; Σ). Since ψ(f) = f ◦ P = h, ψ is surjective.

It is clear that ψ is linear. We claim that it is a ∗-homomorphism. Fix f, g ∈ A(G; Σ)

and α ∈ G. By Proposition 4.8(b), we have P (α)−1 = σ(α, α−1) · P (α−1), and hence

ψ(f ∗)(α) = f ∗(P (α)) = f
(
P (α)−1

)
= f

(
σ(α, α−1) · P (α−1)

)
. (4.14)

We also have

ψ(f)∗(α) = σ(α, α−1)ψ(f)(α−1) = σ(α, α−1) f
(
P (α−1)

)
= f

(
σ(α, α−1) ·P (α−1)

)
. (4.15)

Together, Equations (4.14) and (4.15) imply that ψ(f ∗) = ψ(f)∗. In the notation de-
fined in the proof of Proposition 4.21, we have ψ(f) = fP and ψ(g) = gP , and hence
Equation (4.11) implies that for all α ∈ G, we have

ψ(f ∗Σ g)(α) = (f ∗Σ g)(P (α)) = (ψ(f) ∗ ψ(g))(α).

So ψ(f ∗Σ g) = ψ(f) ∗ ψ(g), and thus ψ is a ∗-isomorphism. �

Corollary 4.24. Let G be an ample Hausdorff groupoid and σ : G(2) → Td be a continuous
2-cocycle. There is a ∗-isomorphism ψ : A(G; G ×σ Td) → A(G, σ) such that ψ(f)(γ) =

f(γ, 1) for all γ ∈ G.

Proof. By Lemma 4.9, the map S : γ 7→ (γ, 1) is a continuous global section from G to
G×σ Td that induces σ, so the result follows from Theorem 4.23. �

Remark 4.25. If G is an ample Hausdorff groupoid, then G×σTd is also an ample Hausdorff
groupoid for any continuous 2-cocycle σ : G(2) → Td, and hence there is an associated
(untwisted) Steinberg algebra A(G×σ Td). As a set, A(G×σ Td) is equal to

{f ∈ C(G×σ Td, Cd) : supp(f) is compact},
and is dense in C∗r (G×σ Td), by [6, Proposition 4.2] and [28, Proposition 5.7]. Moreover,
by Theorem 4.23, we have A(G; G×σ Td) ∼= A(G, σ), and we know from Proposition 3.2
that A(G, σ) is dense in C∗r (G, σ). We saw in Remarks 4.20(2) that the only compactly
supported function in A(G; G×σ Td) ⊆ C(G×σ Td, Cd) is the zero function, and hence

A(G; G×σ Td) ∩ A(G×σ Td) = {0}.
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However, this does not preclude C∗r (G, σ) from embedding into C∗r (G×σ Td). It would be
interesting to know how these two C∗-algebras are related.

5. Examples of twisted Steinberg algebras

In this section we discuss two important classes of examples of twisted Steinberg alge-
bras: twisted group algebras and twisted Kumjian–Pask algebras.

5.1. Twisted discrete group algebras. Suppose that G is a topological group. (That
is, G is a group endowed with a topology with respect to which multiplication and inversion
are continuous.) Then G is an ample groupoid if and only if G has the discrete topology,
in which case any Td-valued 2-cocycle on G is locally constant. One defines a twist over
a discrete group G via a split extension by an abelian group A, as in [4, Chapter IV.3].
When A = Td, the twist gives rise to a Td-valued 2-cocycle on G, with which one can
define a twisted group algebra over Cd. The twisted convolution and involution defined in
Proposition 3.2 generalise those of classical twisted group algebras over Cd, and hence our
twisted Steinberg algebras generalise these twisted (discrete) group algebras. Interesting
questions still exist about this class of algebras, even for finite groups. See, for example,
[20]. Moreover, twisted group C∗-algebras (as studied in [21]) have featured prominently
in the study of C∗-algebras associated with groups and group actions; in particular, they
have proved essential in establishing superrigidity results for certain nilpotent groups (see
[8]).

5.2. Twisted Kumjian–Pask algebras. For each finitely-aligned higher-rank graph (or
k-graph) Λ, there is both a C∗-algebra C∗(Λ) called the Cuntz–Krieger algebra (see [23])
and a dense subalgebra KP(Λ) called the Kumjian–Pask algebra (see [7]). Letting GΛ

denote the boundary-path groupoid defined in [30], we have

C∗(Λ) ∼= C∗(GΛ) and KP(Λ) ∼= A(GΛ).

Twisted higher-rank graph C∗-algebras were introduced and studied in a series of papers
by Kumjian, Pask, and Sims [15, 16, 17, 18]. Twisted higher-rank graph C∗-algebras
provide a class of (somewhat) tractable examples that can be used to demonstrate more
general C∗-algebraic phenomena. See also [1, 11, 27]. We introduce twisted Kumjian–
Pask algebras for row-finite higher-rank graphs with no sources using a twisted Steinberg
algebra approach.

Let Λ be a row-finite higher-rank graph with no sources and c be a continuous T-valued
2-cocycle on Λ, as defined in [17, Definition 3.5]. Then C∗(Λ, c) is the C∗-algebra generated
by a universal Cuntz–Krieger (Λ, c)-family, as defined in [17, Definition 5.2]. In [17,

Theorem 6.3(iii)], the authors describe how Λ and c give rise to a 2-cocycle σc : G
(2)
Λ → T

such that
C∗(Λ, c) ∼= C∗(GΛ, σc).

By the last two sentences of the proof of [17, Lemma 6.3], the 2-cocycle σc is normalised
and locally constant. We define

KP(Λ, c) := A(GΛ, σc),

and call this the (complex) twisted Kumjian–Pask algebra associated to the pair (Λ, c).
By Proposition 3.2, KP(Λ, c) is dense in C∗(Λ, c).

In [17, Definition 5.2], Kumjian, Pask, and Sims construct C∗(Λ, c) using a generators
and relations model involving the same generating partial isometries {tλ : λ ∈ Λ} as
C∗(Λ), but with the relation tµtν = tµν replaced by tµtν = c(µ, ν) tµν . We expect that
there is a similar construction of KP(Λ, c) using these generators and relations, but we
do not pursue this here.
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6. A Cuntz–Krieger uniqueness theorem and simplicity of twisted
Steinberg algebras of effective groupoids

In this section we extend the Cuntz–Krieger uniqueness theorem and a part of the
simplicity characterisation for Steinberg algebras from [3] to the twisted Steinberg algebra
setting. Throughout this section, we will assume that G is an effective, ample, Hausdorff
groupoid.

Theorem 6.1 (Cuntz–Krieger uniqueness theorem). Let G be an effective, ample, Haus-
dorff groupoid, and σ : G(2) → Td be a continuous 2-cocycle. Suppose that Q is a ring and
π : A(G, σ) → Q is a ring homomorphism. Then π is injective if and only if π(1V ) 6= 0
for every nonempty compact open subset V of G(0).

Proof. It is clear that if π is injective, then π(1V ) 6= 0 for every nonempty compact open
subset V of G(0). Suppose that π is not injective. Then there exists f ∈ A(G, σ) such that
f 6= 0 and π(f) = 0. We aim to find a nonempty compact open subset V of G(0) such that
π(1V ) = 0. Since σ is locally constant, we can use Lemma 3.1(b) to write f =

∑
D∈F aD1D,

where F is a finite collection of disjoint nonempty compact open bisections of G such that
σ(α−1, α) is constant for all α ∈ D, and aD ∈ C\{0}, for each D ∈ F . Let g := 1D−1

0
f for

some D0 ∈ F . Then g ∈ ker(π), because π is a homomorphism. Fix α ∈ D0, and define
cD0

:= σ(α−1, α) aD0 6= 0. Then

g(s(α)) = g(α−1α) = σ(α−1, α) 1D−1
0

(α−1) f(α) = σ(α−1, α) aD0 = cD0 6= 0.

Let g0 := g|G(0) , and define H := supp(g − g0) ⊆ G\G(0). The calculation above implies
that s(α) ∈ supp(g0). Since G is ample and effective, [3, Lemma 3.1] implies that there is
a nonempty compact open subset V of supp(g0)∩ s(D0) such that V HV = ∅. Therefore,
since supp(1V (g − g0)1V ) ⊆ V HV , we have 1V (g − g0)1V = 0, and hence

1V g 1V = 1V g0 1V = cD0 1V . (6.1)

Thus, using that π(g) = 0, we deduce from Equation (6.1) that

π(1V ) = c−1
D0
π(cD0 1V ) = c−1

D0
π(1V )π(g) π(1V ) = 0,

as required. �

Given a groupoid G, one calls a subset U ⊆ G(0) invariant if, for any γ ∈ G, we have

s(γ) ∈ U ⇐⇒ r(γ) ∈ U.

One says that G is minimal if G(0) has no nontrivial open invariant subsets. Equivalently,
G is minimal if and only if s(r−1(x)) = G(0) for every x ∈ G(0).

Theorem 6.2. Let G be an effective, ample, Hausdorff groupoid and σ : G(2) → Td be a
continuous 2-cocycle. Then G is minimal if and only if A(G, σ) is simple.

Proof. Suppose that G is minimal, and let I be a nonzero ideal of A(G, σ). Then I is
the kernel of some noninjective ring homomorphism of A(G, σ), so Theorem 6.1 implies
that there is a compact open subset V ⊆ G(0) such that 1V ∈ I. We claim that the
ideal generated by 1V is the whole of A(G, σ). Since the twisted convolution product of
characteristic functions on the unit space is the same as the untwisted convolution product,
the proof follows directly from the arguments used in the proof of [3, Proposition 4.5].

For the converse, suppose that G is not minimal. Then there exists a nonempty open
invariant subset U ( G(0). The set

GU := s−1(U) = {γ ∈ G : s(γ) ∈ U} = {γ ∈ G : r(γ) ∈ U}
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is an open subgroupoid of G, so we can view I := A
(
GU , σ|G(2)

U

)
as a proper subset of

A(G, σ). Since U is a nonempty open set and G is ample, we can find a nonempty compact
open bisection B of U , and thus I 6= {0}, because 1B ∈ I. We claim that I is an ideal of
G. Since the vector-space operations are defined pointwise, it is straightforward to show
that I is a subspace. To see that I is an ideal, fix f ∈ I and g ∈ A(G, σ). Since U is
invariant, we have

supp(fg) ⊆ supp(f) supp(g) ⊆ GU G ⊆ GU ,

and so fg ∈ I. Similarly, gf ∈ I, and thus I is an ideal. (Note that I is also a ∗-ideal.) �

Remark 6.3. By [3, Theorem 4.1], the untwisted Steinberg algebra A(G) is simple if and
only if G is minimal and effective. Note that Theorem 6.2 does not give necessary and
sufficient conditions on G and σ for simplicity of twisted Steinberg algebras. This is a
hard problem. We expect, as in the C∗-setting of [17, Remark 8.3], that there exist simple
twisted Steinberg algebras for which the groupoid G is not effective.

7. Gradings and a graded uniqueness theorem

In this section we describe the graded structure that twisted Steinberg algebras inherit
from the underlying groupoid, and we prove a graded uniqueness theorem. The arguments
are similar to those used in the untwisted setting (see [6]). Let Γ be a discrete group and
suppose that c : G→ Γ is a continuous groupoid homomorphism (or 1-cocycle). Then we
call G a graded groupoid, and we define Gγ := c−1(γ) for each γ ∈ Γ. Since c is continuous
and Γ is discrete, each Gγ is clopen. Since c is a homomorphism, we have

G−1
γ = Gγ−1 and Gγ Gδ ⊆ Gγδ

for all γ, δ ∈ Γ. Note that all groupoids are graded with respect to the groupoid homo-
morphism into the trivial group.

Proposition 7.1. Let G be an ample Hausdorff groupoid and σ : G(2) → Td be a con-
tinuous 2-cocycle. Let Γ be a discrete group and c : G → Γ be a continuous groupoid
homomorphism. For each γ ∈ Γ, define the set of homogeneous elements by

A(G, σ)γ := {f ∈ A(G, σ) : supp(f) ⊆ Gγ}.
Then A(G, σ) is a Γ-graded algebra.

Proof. It is clear that A(G, σ)γ is a C-submodule of A(G, σ), for each γ ∈ Γ. Since A(G, σ)
and A(G) agree as vector spaces, [6, Lemma 3.5] implies that every f ∈ A(G, σ) can be
written as a linear combination of homogeneous elements. Thus, to see that

A(G, σ) =
⊕
γ∈Γ

A(G, σ)γ,

it suffices to show that any finite collection

{fi ∈ A(G, σ)γi : 1 ≤ i ≤ n, and each γi is distinct from the others}
is linearly independent. But this is clear, because supp(fi) ∩ supp(fj) = ∅ when i 6= j.
Finally, we have

A(G, σ)γ A(G, σ)δ ⊆ A(G, σ)γδ,

because supp(fg) ⊆ supp(f) supp(g) and Gγ Gδ ⊆ Gγδ. �

As in the untwisted case [6, Theorem 5.4], the graded uniqueness theorem follows from
the Cuntz–Krieger uniqueness theorem. Note that if e is the identity of Γ, then Ge is a
clopen subgroupoid of G, and so we can identify A(G, σ)e with A(Ge, σ), just as we can
identify A(Ge) with A(G)e.
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Theorem 7.2 (Graded uniqueness theorem). Let G be an ample Hausdorff groupoid and
σ : G(2) → Td be a continuous 2-cocycle. Let Γ be a discrete group with identity e, and
let c : G → Γ be a continuous groupoid homomorphism such that the subgroupoid Ge

is effective. Suppose that Q is a Γ-graded ring and π : A(G, σ) → Q is a graded ring
homomorphism. Then π is injective if and only if π(1K) 6= 0 for every nonempty compact
open subset K of G(0).

Proof. It is clear that if π is injective, then π(1K) 6= 0 for every nonempty compact open
subset K of G(0). Suppose that π is not injective. We claim that there exists f ∈ A(Ge, σ)
such that f 6= 0 and π(f) = 0. To see this, fix g ∈ ker(π) such that g 6= 0. By the proof
of Proposition 7.1, g can be expressed as a finite sum of homogeneous elements; that is,
g =

∑
γ∈F gγ, where F is a finite subset of Γ, and gγ ∈ A(G, σ)γ for each γ ∈ F . Thus∑

γ∈F

π(gγ) = π
(∑
γ∈F

gγ

)
= π(g) = 0.

Since π is graded, we have π(gγ) ∈ Qγ for each γ ∈ Γ. Thus each π(gγ) = 0, because
elements of different graded subspaces of Q are linearly independent. Since g 6= 0, we can
choose γ ∈ F such that gγ 6= 0. Since gγ is locally constant and Gγ is open, there exists
a compact open bisection B ⊆ Gγ such that gγ(B) = {k}, for some k ∈ Cd\{0}. Define

f := 1B−1 gγ ∈ A(Ge, σ)∩ ker(π).

For all α ∈ B, we have

f(s(α)) = f(α−1α) = σ(α−1, α) 1B−1(α−1) gγ(α) = σ(α, α−1) k 6= 0,

and hence f 6= 0. Thus the restriction πe of π to A(Ge, σ) is not injective.
Since G(0) ⊆ Ge and we have assumed that the groupoid Ge is effective, we can apply

Theorem 6.1 to the restricted homomorphism πe to obtain a nonempty compact open
subset K ⊆ G(0) such that π(1K) = 0, as required. �
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