DESIGN AND CONVERGENCE ANALYSIS OF NUMERICAL
METHODS FOR STOCHASTIC EVOLUTION EQUATIONS WITH
LERAY-LIONS OPERATOR

JEROME DRONIOU, BENIAMIN GOLDYS, AND KIM-NGAN LE

ABSTRACT. The gradient discretisation method (GDM) is a generic frame-
work, covering many classical methods (Finite Elements, Finite Volumes, Dis-
continuous Galerkin, etc.), for designing and analysing numerical schemes for
diffusion models. In this paper, we study the GDM for a general stochastic evo-
lution problem based on a Leray—Lions type operator. The problem contains
the stochastic p-Laplace equation as a particular case. The convergence of the
Gradient Scheme (GS) solutions is proved by using Discrete Functional Anal-
ysis techniques, Skorohod theorem and the Kolmogorov test. In particular,
we provide an independent proof of the existence of weak martingale solutions
for the problem. In this way, we lay foundations and provide techniques for
proving convergence of the GS approximating stochastic partial differential
equations.
KEYWORDS: p-Laplace equation, stochastic PDE, numerical methods, gradient discretisa-

tion method, convergence analysis

1. INTRODUCTION

The parabolic p-Laplacian problem occurs in many mathematical models of physical
processes, such as nonlinear diffusion [1] and non-Newtonian flows [32]. However,
in practical situations with large scales, rapid velocity and pressure fluctuations,
the motion of flow becomes unsteady and it is described as being turbulent [34].
Turbulence is a combination of slow oscillating (deterministic) component and fast
oscillating component that can be modelled as a white noise perturbation of regular
fluid velocity field. Therefore, in order to investigate turbulence in the parabolic p-
Laplacian problem, the first step is to develop the theory and numerical algorithms
for the stochastic parabolic p-Laplacian problem. Motivated by this problem, we
study in this paper a more general stochastic partial differential equation based on
a Leray—Lions type operator with homogeneous Dirichlet boundary condition. The
model reads
du — div(a(u, Vu))dt = f(u)dW; in (0,T) x O,

u(0,:) =up in O, (1)

0 on (0,T) x 00O,

where T > 0, © is an open bounded domain in R%, d = 1,2,3, and the ini-
tial data ug € L%(©). Here, f is a continuous function of linear growth acting
between appropriate Banach spaces, see Section 2 for details. We assume that
W = {W(t),t € [0,T]} is a K-valued Wiener process with a trace class covariance

u
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operator Q, for a certain Hilbert space K. Particular choices of a include the p-
Laplace operator corresponding to a(u,v) = |v|P~'v for some p € (1,+c0), and
some nonlinear and nonlocal diffusion operators corresponding to a(u,v) = A(u)v
for w in a given functional space. If f = 0 then the noise term vanishes, hence our
stochastic model (1) includes deterministic equation as a special case.

The existence and uniqueness theory for equation (1) is well developed at present,
see [8, 15, 25,26, 33], but our assumption that a(u, Vu) may be a nonlinear function
of both variables is more general than in the aformentioned papers. The methods
of proof used in those works do not provide convenient numerical algorithms, while
we provide a proof of the existence of weak martingale solutions via a converging
sequence of numerical approximations.

Numerical methods of the deterministic version of model (1) (i.e. f =0) and their
proofs of convergence are studied in [6,12,20,29] and the references cited therein.
However, there is no numerical approximation of the stochastic model (1) due to
difficulties arising in the nonlinear term and the infinite dimensional nature of the
driving noise processes.

There are an increasing number of numerical methods for the solution of stochas-
tic evolution equations mentioned in the literature [30, 31, 35], where unique mild
solutions are required and the approximate schemes are treated in terms of the semi-
group approach. However, these assumptions are not applicable for a class of sto-
chastic equations involving strongly nonlinear terms, such as Navier—Stokes, magne-
tohydrodynamics (MHD), Strodinger, Landau-Lifshitz—Gilbert, Landau-Lifshitz—
Bloch and nonlinear porous media equations. In recent works, the stochastic
Navier-Stokes equation [10,11] and the stochastic Landau-Lifshitz—Gilbert equa-
tion [4,5,23,24] are investigated by using the conforming finite element method
to approximate their solutions. Furthermore, the convergence of the approximate
solutions is also proved which implies the existence of weak martingale solutions.
All these previous work, however, only deal with conforming approximations, which
use for the spatial discretisation a subspace of the Sobolev space appearing in the
weak formulation of the continuous problem. This usually imposes restrictions on
the types of mesh that can be considered — typically, triangular/tetrahedral or
quadrangular/hexahedral meshes. Moreover, conforming methods are know to be
ill-suited in some applications, e.g. when mesh locking appears, when inf-sup stabil-
ity is sought, or when some physical properties of the model must be respected (such
as balance and conservativity of approximate fluxes). In such circumstances, non-
conforming methods might be better suited; such methods include non-conforming
finite elements and finite volume methods, and also recent high-order methods for
polytopal meshes with cell and face unknowns — such as Hybrid-High Order schemes
and Virtual Element Methods. We refer the reader to [2,7,13, 16, 18] and reference
therein for detailed presentations of these methods.

In this work, we approximate (1) by using the Gradient Discretisation Method
(GDM) [19]. The GDM is a generic convergence analysis framework for a wide
variety of methods (conforming or nonconforming) written in discrete variational
formulation, and based on independent approximations of functions and gradients
using the same degrees of freedom. Several well-known methods fall in the GDM
framework, in particular:

e Galerkin methods, including the conforming Finite Element methods,
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e Nonconforming Finite Element methods, including the nonconforming Py
scheme,

Symmetric Interior Penalty Galerkin (SIPG) methods,

Mixed Finite Element methods,

Hybrid Mimetic Mixed methods and Mimetic Finite Difference methods,
Hybrid High-Order and Virtual Elements Methods.

By writing numerical schemes for (1) and performing their analysis in the GDM
framework, we provide a unified convergence result for all these methods. We refer
to [17,19, 21, 22] for details of the GDM and the methods it covers.

Our convergence analysis is based on Discrete Functional Analysis techniques, Sko-
rohod theorem and the Kolmogorov test; we show the convergence of the Gradient
Scheme (GS) solutions to a weak martingale solution of (1). In particular, we
provide an independent proof of the existence of weak martingale solutions for
the problem. In this way, we lay foundations and provide techniques for proving
convergence of the GS approximating stochastic partial differential equations.
The paper is organised as follows. In Section 2 we recall the notations of the
gradient discretisation method and propose the GS for approximating the stochastic
model (1). Weak martingale solutions to (1) are defined and our main result is
stated in this section. Section 3 provides priori estimates of approximated solutions
and the noise term added at each step of the scheme in various norms. In Section 4,
we first show the tightness of the sequence including the GS solutions and then prove
the almost sure convergence to a certain limit, up to a change of probability space.
The continuity of the limit and the martingale part are also proved in this section.
Section 5 is devoted to the proof of the main theorem. Finally, in the Appendix we
prove necessary results that are used in the course of the proof.

2. GRADIENT SCHEME AND MAIN RESUTLS

Before introducing the GS for approximation of (1), we introduce notations and
assumptions used in the rest of the paper.

Notations: We let p’ = % be the conjugate exponent of p. To alleviate the for-
mulas, when written without specifying the space, the Lebesgue spaces we consider
are those on ©; so, most of the time, we write L7 instead of L9(0). Correspond-
ingly, |- ||L« is the norm in L(©), {-,-)» 1, is the duality product between LP,(@)
and LP(©), and {-,-)rz the inner product in L?(©); we use the same notations
in vector-valued Lebesgues spaces L4(0)¢ for e > 2. We will use the notation
Or := (0,7) x ©. In proofs of theorems and lemmas, C will stand for a generic
constant that depends only on the data above, and on any constant appearing in
the statement of the corresponding theorem or lemma.

Assumptions: The following Leray—Lions type standing assumptions will not be
enunciated again:

e the initial condition uy belongs to L2,

e the function a : R x R? - R? is continuous,

e for p e (1, +00) there exist constants c;, ¢y such that for all (z,y) € R x R4
and z € R?

a(z,y) -y = clyl’ (2)
la(z,y)| < c2(1 + [y[P™") (3)



4 JEROME DRONIOU, BENIAMIN GOLDYS, AND KIM-NGAN LE

(a(z,y) —a(z,2)) - (y — 2) 2 0, (4)

e the function f: L? n L? — L(K, L?) is continuous with linear growth, i.e.,
there exist constants Iy, F, > 0 such that for any v € LP n L? and any
sequence {wy, }n>0 which converges to w in LP

[f @) 2,22y < Fillvf72 + F2  and

f(wy) — f(w) in £(K, L?). (5)

e T'> 0is a given constant and (2, F,F = (F)seq0,77, P) is a stochastic basis,
that is (Q, F,P) is a probability space, F is a filtration.

2.1. Gradient scheme. We recall here the notions of the gradient discretisation
method. The idea of this general analysis framework is to replace, in the weak
formulation of the problem, the continuous space and operators by discrete ones;
the set of discrete space and operators is called a gradient discretisation (GD), and
the scheme obtained after substituting these elements into the weak formulation
is called a gradient scheme (GS). The convergence of the obtained GS can be es-
tablished based on only a few general concepts on the underlying GD. Moreover,
different GDs correspond to different classical schemes (finite elements, finite vol-
umes, etc.). Hence, the analysis carried out in the GDM directly applies to all these
schemes, and does not rely on the specificity of each particular method.

Definition 2.1. D = (XDO,HD,VD,ID, (t(”))n:O N) is a space-time gradient
discretisation for homogeneous Dirichlet boundary cénditions, if its elements satisfy
the following properties
(i) Xpo is a finite dimensional vector space of functions of discrete argument
and Xp o encodes homogeneous Dirichlet boundary conditions.
(i1) the function reconstruction IIp : Xpog — L* is a linear mapping that
reconstructs, from an element of Xp o, a function over ©,
(iii) the linear mapping Vp : Xpo — (LP)¢ gives a reconstructed discrete gra-
dient. It must be chosen in such a way that |Vop - ||Lr is a norm on Xp g,
(iv) Ip : L?> — Xp g is an interpolation operator,
(v) t© =0 <t < ... <t®) =T is a uniform time discretisation in the
sense that dp =t — () s o constant time step.

For any (U(”))n:O . n S Xpyo, we define piecewise-constant-in-time functions
Hpv : [0,T] — L*, Vpv : (0,T] — (LP)? and dpv : (0,T] — L*® by: For
n=0,---,N —1, for any t € (t™),t(**D], for a.e. z€ O

Hpv(0,2) = pvV(z),  Hpu(t,z) := Tpv ™™ (x),
Vpu(t, ) := Vpu+ (x), dpu(t) = dgw%)v = Mpo™ Y — TIpu™.
We now describe the scheme.

Algorithm 2.2 (Gradient scheme for (1)). Set u(®) := Tpug and take random
variables u(-) = (u™(w, -))":O . n € Xpo such that:

o u is adapted to the filtration (Fy)o<n<n defined by
no= o {W(tH),0 < k < n}.
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e for any function ¢ € Xp o and any w €

Ay P uTIpg),, + dpla(lpu®™) Vpu™D), Vo),
= (f(Mpul) AW, TIpg) .. (6)
Here ATDW .= W (D) — W (t™).

In order to establish the stability and convergence of GS (6), sequences of space-
time gradient discretisations (D,,)men are required to satisfy consistency, limit-
conformity and compactness properties [19]. The consistency is slightly adapted
here to account for the non-linearity we consider. In the following, we let p =
max{2,p'}.

Definition 2.3 (Consistency). A sequence (Dp)men of space-time gradient dis-
cretisations in the sense of Definition 2.1 is said to be consistent if

e for all g € LP(O) n WP(0), letting
5p,,(¢) == min (|lp,w = ¢|Ls + |Vp,,w = V|Ls),

we have Sp,, (¢) — 0 as m — 0,
e forallpe L? Np Ip, ¢ — ¢ in L? asm — o
o dp, — 0 asm — .

It follows from the consistency property that there exists a constant C,, > 0 not
depending on m such that

I, w2 < Cup- (7)

Definition 2.4 (Limit-conformity). A sequence (D )men of space-time gradient
discretisations in the sense of Definition 2.1 is said to be limit-conforming if, for
all p € WP () := {p e LV (©)¢ : divg e LP (O)} letting

' JQ (mev(w) ~o(x) + HD,,,Lv(a:)divqb(w))dw
= max

veXp,, \{0} IVop, vz

Wo,,(®)

)

we have Wp_ (¢) — 0 as m — co.

Definition 2.5 (Compactness). A sequence (Dp)men of space-time gradient dis-
cretisations in the sense of Definition 2.1 is said to be compact if

lim sup Tp, (&) =0,

£—0 meN
where
ITip,, v(- + &) —Tp,, v| Lr(ga) d
T ‘= max = = , VEeRY,
o (8) veXp,, \(0} VD, vlLe ¢

with Ilp, v extended by 0 outside O.

Remark 2.6. The definition we use here is often considered as a characterisation
of the compactness of GDs, see [19, Lemma 2.21].

A sequence of GDs that is compact also satisfies another important property: the
coercivity [19, Lemma 2.10].
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Lemma 2.7 (Coercivity of sequences of GDs). If a sequence (Dy,)men of space-
time gradient discretisations in the sense of Definition 2.1 is compact, then it is
coercive: there exists a constant Cp, such that

IHp,,v|Le

< (), VmeN.
veXp,, \{0} HVDm’UHLp P

Finally, we will need sequences of GDs that satisfy the following discrete Sobolev
embeddings. As shown in [19], and especially in Appendix B therein, such embed-
dings are known for all classical gradient discretisations.

Definition 2.8 (Discrete Sobolev embeddings). A sequence of gradient discreti-
sations (Dpm)men Satisfies the discrete Sobolev embeddings if there exists p* > p
and C = 0 such that, for all m € N and all v, € Xp,, o, it holds |IIp,,v| .+ <
CHVDM’U”LP.

2.2. Main results. We first define a weak martingale solution to (1).

Definition 2.9. Given T € (0,0), a weak martingale solution (Q, F,F,P, W, u)
to (1) consists of
(a) a filtered probability space (2, F,F,P) with the filtration satisfying the usual
(normal) conditions [14, page 71],
(b) a K-valued F-adapted Wiener process with the covariance operator Q,
(c) a progressively measurable process u : [0,T] x  — LP
such that
(1) There is a ball By, of L?, endowed with the weak topology, such that, P-a.s.
we Q, u(-,w) e C([0,T]; By).

(2) E (suprepo.zy lu(®) 3 ) < oo

(3) B (10l 0 r309) <
(4) for every t € [0,T], for all » € WyP(©) n LP(O), P-a.s.:

Cult): )2 = o)+ |l Vu(9), V)0,

= f F(u)(s, ) AW (5), 8 .

Remark 2.10 (Continuity of the solution). The weak continuity of u(w,-) : [0,T] —
By, implies its continuity [0,T] — H~Y(©) for the standard mnorm topology on
H~Y(0).

The main result of this paper is the following theorem, which states the existence
of a solution to the GS and its convergence, up to a subsequence, towards a weak
martingale solution of the continuous problem.

Theorem 2.11. Assume that we are given an initial data ug € L*(©) and T > 0.
Let (Din)men be a sequence of gradient discretisations that is consistent, limit-
conforming, compact, and satisfies the discrete Sobolev embeddings. For every m =
1, there exists random process u,, solution to the gradient scheme (Algorithm 2.2
with D := Dy, ).

Moreover, there exists a weak martingale solution (ﬁ,]?, (.}N't)te[o,T],f”, W,ﬁ) to (1)
in the sense of Definition 2.9, and a sequence {t,,} of random processes defined on
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QO with the same law as U, SO that up to a subsequence, the following convergences
hold

Ip, U — U, P— a.s. in LP(©7)

Vo, tim — Vi, P—as. in (LP(Or))

Remark 2.12. The existence of a weak solution to (1) is obtained as a by-product of

the convergence analysis. This existence is not assumed a priori, and no regularity
property is required on the continuous solution to get the convergence of the GDM.

3. A PRIORI ESTIMATES

We first provide a priori estimates for the solution u to (6) and then deduce its
existence in the following lemma. For legibility, we drop the index m in sequences
of gradient discretisations, and we simply write D instead of D,,.

Lemma 3.1. There exists at least one up solution to the Algorithm 2.2 and there
exists a constant C¢ o 1,0,u, > 0 depending only on f,a,T,Q and uy such that

1<n<N Or

N-1
E[ max [Tpu™ |7 + [Voull, e, + Y, [Tpu nDu<n>|iQ]
n=0

< Crar.0m (8)

We also have for any integer number q = 1
q 2¢—1
E [gﬂxN Tpul™ |25 + VDu|’L’p(®T)] < Cfa,1,0u0.4- 9)

Proof.

A priori estimates on IIpu in (8).

We first prove a priori energy estimates of solution u. We choose the test function
¢ =u"Y e Xp, in (6) and use the following fundamental identity

(a—b)a = %(aQ—b2)+ %(a—b)2, Va,be R, (10)

to write
ST D[, o+ 2 Mpu ) — Mot
+ &D<a(HDu(”+1), Vpu("+1)), Vpu(”H)>Lp,,LP
_ %HHDU(H) 2. + (F(put™)ACHDW, T (u D — M)y
+ (f(Mpu™)ACTIW, TIpu™y . (11)

By taking the sum in the above equation from n = 0 to n = k, for an arbitrary k €
{0,..., N —1}, and using (2), Cauchy—Schwarz inequality and the Young inequality
ab < a® + % for the second term in the right hand side, we obtain

k k
1 1
5||1-[Du(k+1)Hi2 + i 2 HHDu("+1) — Tpu™ H2L2 T Z &DHVDU("“)H}EI)

n=0 n=0

k
1 n n
< SMIpu® 3e + 3 £ (o) |2 o) JATHOW R
n=0
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k
+ 3 fAIpu™) AW, Tpu™) . (12)
Note that the last term on the right hand side of (12) vanishes when taking its

expectation since pu™ is Fin measurable, and thus independent with Al+Dyy
which has a zero expectation. We obtain from (12)

k
1 1
fE[HHDu(kH)HQLQ + < . [pu ) — Tput™ ||%2]
2 14

k
+Eler 3} p|Vou® VI, |
k
< SIpu® e + 3 B[ (MTpu™) 2 o] AIWE] (13)
n=0

By the tower property of the conditional expectation, the independence of the
increments of the Wiener process, and assumptin on f we find for the last term

]E[Hf(HDU(n))HQL()c,LZ’) HA(HH)WH?C]
— B[ B[/ (Tpu™) 2 e, 12 | AW [} Foco ]|
— E[1/@ou™)|2 e 12 E[JAT W | Fo ]|

= dp(TrQ)E[| f Mpu'™)|Z (i 12]
< &p(TrQ) (ME[|Hpu™|2.] + ). (14)

Together with (13), this implies

k
E[[Tpu®* V7] < [Hpu®|7. + 2(TxQ) BT + 2(TrQ)Fy Y| dpE[[Tpul™|3,].

n=0
By applying the discrete version of Gronwall’s lemma to the above inequality and
using (7), we obtain

max E[|Tpu™|3.] < Crar.0u0- (15)

1<n<N

It follows from (13)—(15) that

N-1
E[|[Voul, e, + D) Mpul™ —Tlpu™|72] < Crr,0.u,-
n=0

By taking the maximum of (12) over 0 < k < N — 1 and appying the expectations,
we get

N—
B[ max [Tpu™[3:] < [Tpu® |3 + 28] Z (o ™) 1 |A W]

+ 2]E[ ogﬁaﬁ_l nz::o <f(HDu("))A("“)W, HDU(”)>L2]-

(16)
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To bound the last term in the right hand side, we treat the sum as the stochastic
integral of a piecewise constant integrand and use the Burkholder-Davis—Gundy
inequality: [9, Theorem 2.4]

k
E[Oécnéajii{fl HZJO <f(HDu(n))A(n+1)VV, HDu(")>L2]

N—-1
< CE[(Y] ol f(pul™) |3 o) Tpu™32) |
n=0

2

T T 1/2
gC}E[Ogg?ﬁ T2 Z o (F [Tpu™ |2, + F)) ]

N—

1
< B[ max [Tput™|7.] + g E[|Tpu™|3:] + C*F>T
1 2 2 2 2
< ZE[og&XN HHDu(") HLQ] +C FlTog}?SXNE[”HDU(n)HLQ] +C*F,T. (17)

We use (14) to bound the second term in the right hand side of (16).

N—-1
E| Y 1/ Mou®™) e 1) |ATHOWE |

n=0
N—
Z DE ‘HDU(TL) HLQ] (TI‘Q)FQT
=0
< (TrQRT max E[|Tpul™|Z:] + (TrQ)FoT. (18)

By using (15), (17) and (18), we deduce from (16) that
E[ 12,52(]\] HHD'LL(H) H%Q] < Cf,a,T,Q,uUa

which completes the proof of the a priori estimates (8).
The existence of at least one solution to the Algorithm 2.2 is then done as in the
proof of [19, Theorem 2.44].

Higher moments bound (9).

We adapt the ideas from [10], where different type of difficulties had to be dealt
with.

We will use induction to proof this result. First, from (8) we have the assertion for
g = 1. We assume therefore that (9) holds for any integer number g € [1,q — 1],
that is,

E[ max HHDu(n)H ]<Cf,a,T,Q,uo,§~ (19)

1<n<N

In what follow, we will prove that (19) holds for ¢ = ¢q. We begin by multiplying
identity (11) by [Ipu™*Y|2, and use the positive-definiteness (2) of a to obtain

1
2 HHDu(n+1) ||2L2 (HHDu(n+1) H2L2 _ ||Hpu(") H%?)

1
+ 4 Mpu™ V3 [Upul™*D —Tpu™ i < L+ L, (20)
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where
I = |[Tpu |2, f (Mpu™) ATIW, TIp (w1 — u("))>L2,
IQ = HHDU(TH_l)H%2<f<HD’U/(n))A(n+1)VV7 HD’U,(n)>L2.

By using the Cauchy—Schwarz and Young inequalities, we estimate I; and I as
follow

Iy < F (™) 2 oy JAC W o™V
+ 4 ITou ) — Tpu® [ [ Tpu™+ V.
— | F T ™) 2 oy |ACOWR [T [ + [T ]2, — [Tou™3 ]
+ 4 ITou™ ) Tl [Tlpu D
< IFTTpu™) 2 1oy |ACOW R TtV
44 F(TTpu) e |AC WL + o (T D[, — [Tpu]3,)

+ iHHDu(”“) — Tpu®™ |72 [Tpul™* V|72,
and
I = {f(Mpu™) AOW, Tipul™) L [[Tpu™ |72 + [Tpu™ V|7 — [Tpu™]7.]
< (f(Mpu™) AW, Tpu™) [ Tpul™|3,
+ 4 F(Tpul™) |7 2y [ATDW R Tput™ 7.2

1 2
+ 75 (Imput 12, = [Tpu . )

By using the above estimates together with (10), we infer from (20) that
1 n 1 n n n n
a1 — [ Tpu™ (72 < 5] f [pu™) |2k p2) | AW IR Tpu™ |72
+ 41 Mpu™)| e oy AW
+ {f(Mpu™) AW, Tpu™) , [Hpu™|3,. (21)

Using (10) and (21), it is easily proved by induction on ¢ (the inductive step from
q to g + 1 consisting in multiplying this estimate by [Ipu(™+1|2}) that

o Mo 3% — L ipu ™ 3}
< 5| (Mpu™)| 7 e,y [ATTDWR [ Tput™ 7572
+ 4 £ (Tpul™) [ 2 e g2y AT TDW [ [ Tput™ | 7574
+ (f(Mpu™)APTIW, Tpu™) , [Tpu™|2,72. (22)

Then, proceeding as in (14), the first two terms in the right hand side of (21) are
estimated as follow

E[[f(Tpul™) |2 .12 [A DWW [Tpu™| 772
< dp(TrQ)E[(Fy | pu™ |22 + Fy)|[pu™ 2572, (23)

E[[f(Tpul™)| 4 .12 [ACTOW[{ [ Tpu™ 2,74
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< 3 (TrQ)°E[(F[Upul™|Za + F2)*|Hpu™ |77, (24)

We note that last term on the right hand side of (22) vanishes when taking expecta-
tion. Hence, summing (22) from n = 0 to n = k (for an arbitrary k = 0,..., N —1),
taking the expectations and using (15), the above estimates, and the discrete ver-
sion of Gronwall lemma, we obtain

q
1gla<xN]E[HHDu(") I72] < Crar.uoa (25)

By summing (22) from n = 0 to n = k (for an arbitrary k = 0,...,N — 1), and
taking the maximum over k and then applying E, we get
B max [TTpu™) (%] < [Tpu® |3
N-1
+20E| 3 1F@put™)2 e oy [T DW [ Tput™ 2572
n=0
N-1
+16E[ Y 1F[out™)[E e o) |AT W o™ 2574

n=0

k
+4E[0<ﬁa§71§:]<f(npu<">) APOW, Tpu™  [Tput™ |75 2]. (26)

Proceeding as in (17), the last term of the right hand side is estimated as follow

(n) Aln+1) (n) (n))29-2
[0<Ikn<aﬁ[< ) Z<f Ipu W, pu'™ >L [Tpu'™ |7, ]

1
(n) (n))2?
< 2q+1E[OI<1’1a<XN ITpu™|3 ] + CFlTOglaSXNE[HHDU HLz]

+ CF,T max E[HHDU qu 2].
0<n<N
By using the above inequality, (23)—(25) and (15), we obtain from (26) that
IE[ | max ITIpu™ H%z] < Cfa,7,0,u0,95 (27)

which completes the proof of the inductive step.

A priori estimates on Vpu in (9).
By using Jensen’s inequality, we obtain from (12) with k = N — 1 that

IVpul? e,y < Callpul® |2

29—1

N-—-1

C <Z If(HDu("))Ii<;c,Lz>|A("“)Wl?c>
n=0

21-1

N—-1
c, (Z fIpu™) AT+, npu<n>>L2> . (28)
n=0

We estimate the second term in the right hand side of (28) by using, for v > 1,

N-1 N-1

(> an)7 <N Y ag, (29)

n=0 n=0
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which can be proved using Jensen’s inequality on the sum. Applying the above
inequality, arguments used in the proof of (14) and invoking (27), we have

N-1 ot
B[ (Y 1 Tou™)|2c )| AT DWIR)* |

n=0
N—-1

< CroN* " 1a3 ™ Y E[|Ipu™ |2 + [Hpu™ 2]
n=0

< Cfa,1,Q,u0,90 (30)

where we have used the inequality E[(|A™+DW|2.)"] < Cg.,.(dp)" for all integer
r =1, see [27, Corollary 1.1]. Proceeding as (17) and using (29), (27), we estimate
the third term in the right hand side of (28):

N-1

E[( Z <f(HDU(n))A(n+1)VV7 HDu(n)>L2)2‘1* ]
n=0
N-1 -
< CE[( D] dp|f(Mpul™)|Z e oy [Tpu™[2)" ]
n=0

0s<n<N-1

_ N—-1 a2
< CE[ | max |Hpu™|3 (Y] dp(Fi|lpu™ 3. + F2) ]
n=0

N—1 .
E[ max [Tpu®™ (2] + C262 B[( Y A|lpu™ |2 + F5)” ]

os<n<N

N

N N

n=0

(n) 2 2 (n) |29 2 2¢7 !
E[ max [Hpu'™|7.]+C FlTllsnnastE[HHDu 7]+ C*F5 T

0<n<N

N

< Cfa1,Qu00
where we have used the Burkholder-Davis—Gundy inequality in the second line, a
Young inequality in the fourth line, and (29) in the fifth line. Together with (28)
and (30), this implies
q—1
E[IVoul?ig,)] < Crat,0una:
which completes the proof of this lemma. [
In order to estimate the time-translate of Ilpu, we will need the following relation.
Lemma 3.2. Let u be a solution of the Algorithm 2.2. Then, for alll e {1,...,N—
1},

N—¢
Eldp ) [Opul™™ —Hpu™|i2] < Cp 1.0 pjipuoy,, 1
n=1
Proof. For any function ¢ € Xp o, we deduce from (6) that

-1
<HDu(n+€) _ Hpu(")7 H’D¢>L2 = —8p Z <a(HDu("+i+1), VDU(n+i+1)), VD¢>L1)/ o
=0
{—1 , ]
+ ), (fTpu TN ACTHIW TIngy L. (31)
=0
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Choosing ¢ = dp(u™*) — u(™) and taking the sum over n from 1 to N — £, we
have
N—¢
(Stp Z HHD’LL(n-M) - HDU(n) H%z
n=1
N—C¢—1 ) )
7% Z Z <a(HDu(n+z+1)’ VDu(nJerrl))’vD(u(nM) o u(n))>Lp/ i
n=11i=0
N—£(—-1 ) )
+ &p 2 Z <f(HDu(n+z))A(n+z+1)W’ HDu(n-M) _ H’Du(n)>L2
n=1 =0
=0 + 5. (32)

We now estimate the expectation of I; by using (3), Holder inequality, and Lemma 3.1.

N—L1—-1

E[I] < CQE[ ST+ [Vpul DL 9w+ \>L2]
n=1 3=0

N—

< CtYE[& Z w0 — (M) 1]
n=
N—/¢ -1 ]

+ CE[#5 3} Vo (™ = u) 1 35 [Vou™ V1|

n=1 =0

< ONME[J IVpu(t)|: dt]
0
$(n+0)

N—¢
+ C]E[(Stp Z HVD(U(TH_Z) - u("))HLp J‘

t(n)

IVou(t) ;" dt]
n=1
1/p
< CtOR([|Vpult, e, |

£(nt0)

N—¢ 1/p'
OO PE[8p 3 (Vo™ —u™)w( [ 1Voult)lgdr) "]
n=1 tin

(33)
The second term in the right hand side is estimated as follows:
OV g5, ST (n+8) _ () o i
1/p n+l) n P
Ot B[ 3 Vo) —ul) s |, 1vuora) ]
N—
£ 1/pE[ ( Z w0 _ W)n’;,,)l/p
N—¢ t(n+£) 1/17/
(2], Ivouola) "]
<O(t9) 7 (ap0)' M E [HVDUII’ZP(@T)} (34)

where the conclusion follows by noticing that, in the last sum of integrals term in
the second line, each interval [t(”), t("“)] appears at most ¢ times.
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To estimate the expectation of Is, we use the Young inequality and write

= dp Z [ J ]l[t(n),t(n-uf)](t)f(HDu(t))dW(t)7HDu(nJrl)7HDu(n)>L2]

N—
Z HHDU(TH—Z) Hpu(") H%2]

»&M—‘

N— 2
+ i 2 | [ 1o e ons i o) (3)

By using the It6 isometry, (5) and Lemma 3.1, we bound the last term in the right
hand side:

2

2

T
< (TQE | 1w osop (O Wpu(t) e,z 1

E|| j e sy OF (o) awv (1)

T

< (TrQ)E” Ly givsn) (8) (Fy [Tpu(t)| 22 + Fa) dt]
0

< (TrQ)tWE[Fy max ITpu™ |2, + ]

¢
S Cf,T,Q,mIHDu(") [l 22 t©.

Together with (35), (34), (33) and (32), this implies
¢

N—
E[&D Z HHDu(nM) _ HDU(n)HQJp] < Cf,T,Q,p,\lHDu(")\|L2t(£)’
n=1

which completes the proof of the lemma. [

Remark 3.3. The result of Lemma 3.2 will be used to obtain compactness-in-time
of the approzimate functions. The approach used here based on this estimate fills
an apparent gap in [3,10] where the result of [3, Lemma 4.4] ([10, Lemma 3.2]) is
not sufficient for proving [3, Theorem 4.6] ([10, Lemma 4.1], respectively).

We can now estimate the time-translate of Ilpu. It follows from Lemmas 6.2
and 3.2, and estimate (76) that, for any p € (0,7),

T—p
B [ tputt + p) ~ Tou(9) 2 dt] < O, (36)
0
and
]E[HHDuH?{ﬁ(O,T;LQ)] < C, forany 8€(0,1/2). (37)

In the following lemma, we estimate the dual norm of the time variation of the
iterates {Ilpu™}N_,. The dual norm |- |4 p on IIp(Xp o) = L? is defined by: for
allve H’D(XDQ),

{ fgv@mm(m)dm . ¢ € X, ool 2 + [VoolLr < 1}.
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Lemma 3.4. For any ¢ € N let v = 29 and o« = min{1/2,1/p}. Then, for all
(=1,... N—1,

EHHDU(HM) - HDU(””:,D] < Cf.1,0,p.q,I0pu®| (). (38)
As a consequence, for any t,s € [0,T]
E[|TTpu(t) — Tpu(s)s p] < Cpr0painpuo],, ([t—s/+dp)"". (39
Proof. Tt follows from (31) that

E[[Ipu™™ —Tpu™[; 5]

-1 "
<2135 (sup 3 Calllpu™ 4, Tpul 440, ¥py, 0 Y|

PeA o
-1
r—1 (n+i)\ A (nti+1) "
+2 E[(jgg%@ﬁou JACHEDW Tpg) . ) |
=1 + Is, (40)

where we have set A := {¢ € Xpo, |lIpd|r2 + |[Vpo|rr < 1}. We estimate the
first term I; by using (3) and Lemma 3.1.

I < CapE| (§<1 +[Tpul DL Tng)), L) |
=0

sup
PpeA

-1 ;
< C(t(é))TE[sup IVooll7: ] + C&E]E[sup HVDd)Hzp(Z ”VDU("““)H’L’;l) ]
peA peA i=0
L(nt0)

r/p’
<cOy + ey E[([ ol dr)" ]
t(n)
< C(tO) + C(tO)PE[|Voul & o]

< O(HOY + CEO) P (E[IVoulT o, ) < CHO) . (41)

The last term I5 is estimated by using the Burkholder—Davis—Gundy inequality, (5)
and Lemma 3.1.

T
I < OE[HL Ly gy (6) (T (£)) AW ()]

T 9 r/2
< CE[( | 1gn oo O(F M- + F2) at) |
0

< C(tOYPE[F]? max |Upu™|;. + F3/%] < C@t?D)/2. (42)

1<n<N
The estimate (38) follows from (40)—(42). The bound (39) follows by noticing that,
if t < se[0,T] and n < r are such that ¢ € (t(,¢t("* D] and s e (t),¢t("+D] then
tr=m) < |s — t| + dp. .
For any ¢ € [0, T], there exists n € {0,--- , N — 1} such that ¢ € (t("),¢t("*1]. Using
this notation, we define

Mp(t) = M5 = 3 f(IIpul®) A+,
=0
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The term f(Ipu®)AC+DW corresponds to the noise term added at each time step
of the GS. The following lemma shows that Mp is bounded in various norms.

Lemma 3.5. For any 8 € (0,1/2), for any r = 2% with q € N, there exists C = 0
such that

E[HMDH?LIE(O,T;L?)] <C and E[”MDHTLOO(O,T;L?)] <C. (43)
Proof. It follows, in a similar way as (42), that
B[ — MgPl] < ). (44)

Together with Lemma 6.2, this implies the first estimate. The second estimate
follows from the uniform bound of E[”HDUHZoc(o T L2)] and the Burkholder-Davis—
Gundy. [

4. TIGHTNESS AND CONSTRUCTION OF NEW PROBABILITY SPACE AND
PROCESSES

In this section, we show that the sequence {(Ilp,,un, Vp,, Um, Mp,,, W)} is

meN
tight. To prove the tightness of Mp,_, we introduce the following space. For any
r = 2, let us consider

L"(0,T; L2) := the space of r-integrable functions v : [0, 7] — L?, endowed

m?

with the weakest topology such that, for all ¢ € L?, the mapping
ve L"(0,T;L2%) — L"(0,T;R) 3 {v(-), ¢)r> is continuous.
In particular, v, — v in L"(0,T; L?) if and only if for all ¢ € L%
n(), 2 = (), @2 in L'(0,T;R).

Let (¢;)ien € C*(O) be a dense sequence in L? and equip the ball B of radius Cp
in L? with the following metric

dL2 (’U,IU) _ Z mln(lv |<U 7 w, ¢i>L2|)
w 4 21
€N
It is easily checked that bounded sets in L* (0, T'; L?) are metrisable for the topology
of L™(0,T; L?), with metric

for v,w € B.

T 1/r
dLT(LEV)('Uv w) = (J szw (v(s),w(s))" dS)
0
To prove the tightness of IIp,, uy,, we define the following norm on XngH: for any
U € Xg:“
lvmllp,, = IVD,, vmllLr©r) + D, Vmll g5 (0,7,2)-

By Lemma 3.1 and Estimate (37), we have

Elllum|%, | <C, with ¢ = min(2,p).

Since the norm | - |p,, changes with m, we need to use Lemma 6.4 to establish the
tightness of {IIp, um }men-
We now define the space £

£:=LP(0,T;L7) x (LP(0,T; LP)*)  x L™(0,T; L2) x C([0,T]; L?),
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where (LP(0,T;LP))  is the space LP(0,T; L) endowed with the weak topology.
The sequence {(Ilp,, tm, Vp,, Um, Mp,,, W)} . is proved to be tight in the fol-
lowing lemma.

m

Lemma 4.1. The measures of law of {(Ilp,, tm, Vp,, tm, Mp,, , W)}neN on & are
tight.

Proof. Let us first establish a (deterministic) compactness result. Consider, for
a fixed constant C, the sets

K, (C):= {v ellp, Xp,. 0 : Jwm € Xp,, o satisfying Hp, wm = v, |wn|p, <C

T—p
and f lo(t+p) —v(t)|F2dt < Cp, VYpe (0,T)}
0

and define

K(C) = (U Km<c>> A (o e L0, T3 12) ol peore < O}
meN
Each K,,(C) is relatively compact in L*(0,T; L') since it is bounded in the finite-
dimensional space IIp,, Xp,, 0. Moreover, by the compactness of (Dy,)men (Def-
inition 2.5), [19, Proposition C.5] shows that any sequence {v.,}men satisfying
Vm € Ky (C) for any m € N is relatively compact in L(0,7T; L'). Hence, Lemma 6.4
shows that |, Km(C), and thus K(C) is relatively compact in L'(0,7; L'). The
bound on |jwy,|p,, stated in K,,(C) and the discrete Sobolev embeddings (Defini-
tion 2.8) ensure that K(C) is bounded in L?(0,T; L™ for p* > p. Together with
the bound in L®(0,T; L?) and standard interpolation results, this proves that K(C')
is bounded in LP(0,T; LP) for some p > p. Using again interpolation inequality,
this proves that the relative compactness of X(C) not only holds in L*(0,T; L'),
but also in LP(0,T; LP).
This compactness of K(C), Lemma 6.3 and the bounds on {IIp,, tm }men, {VD,, Um }men
and {Mp,, }men stated in Lemma 3.1, (36), (37) and Lemma 3.5 imply the tightness
law of {(HD U, VD, Um, Mp,, , W)}meN in £. (]

m

By using Jakubowski’s version of the Skorohod theorem [28, Theorem 2], we show
the almost sure convergence of {(Hpmum, Vo, Um,Mp,,, W)} up to a change
of probability space, in the following lemma.

meN’

Lemma 4.2. There exists a new probability space (Q, F,F, @)7, a sequence of ran-
dom variables (ﬁm,Mm, Wm) and random wvariables (w, M, W) on this space
such that

o Uy € Xp, o for each meN,
. (HDm Uy Vo, Uy Mo, Wm) takes its values in space € with the same laws,
for each m e N, as (HDm Um, VD,, Um, Mp,, , W))

o (@, M, W) takes its values in L (0, T; W, *(©))x L" (0, T; L%) x C([0, T]; L?),
e up to a subsequence as m — o0,

p, Uy — T a.s. in LP(0,T;LP), (45)

Vp, lim — VT a.s. in (LP(0,T5LP)%) (46)

M, - M as. in L"(0,T;L2), (47)

Wy — W as. in C([0,T]; L?), (48)

meN
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® U, is a solution to the gradient scheme (Algorithm 2.2 with D = D,,) in
which W is replaced by W,,.

Furthermore, up to a subsequence as m — o, for almost all t,s € (0,T), for all
r=1,
Hp, Uy (t) — p,, tm(s) — u(t) —u(s) in LP(Q x ©), (49)
M,,(t) — M,,(s) — M(t)—M(s) in L"(Q;L32). (50)
Proof. By using Jakubowski’s version of the Skorohod theorem [28, Theorem 2],
we find a new pEbaﬂility space (2, F,F, P), a sequence of random variables on this
space (Em,zm, M,,, Wm) taking its values in space £ with the same laws, for each
m € N, as (Hpmum,vpmum,MDm,W), and random variables (%,z, M, W) in &,
so that up to a subsequence as m — o0,
Uy — U a.s. in LP(0,T; LP), (51)
Zm — % as. in (LP(0,T;LP)%) (52)
and the convergences (47), (48) hold.
Since (U, Zm) has the same law as (Ilp, um, Vp,, tnm), there exists u,, € Xp, o
such that
U = H’Dm ﬁm7 Zm = vaﬁm
and @y, is a solution to the gradient scheme (Algorithm 2.2 with D = D,;) in which
W is replaced by W,,. More precisely, for any n € {0,--- ,N,,, —1} and ¢ € Xp_, 0,
U, satisfies, P a.s.,

)~ ~(n ~(n
<dg:_ 2)um7 HDm¢>L2 + &D<a(HDmu£n+1)u V'Dmu7(n+1))7 VDm¢>Lp/7Lp

= {f(Up, aHAIW,, Tp, ¢),,. (53)

Furthermore, applying [19, Lemma 4.8] and the a.s. convergences (51) and (52),
the limit-conformity of (D;,)men ensures that

Z=Vu, Vp,lm— Vi as. in (LP(Or)?) , and we LP(0,T;WyP(0)). (54)

From (51)—(54) we obtain the first part of the lemma including (45) and (46).
We now prove (49) and (50) as the second part of the lemma. We obtain, from (8)—
(9), the coercivity of (D, )men and (43), for any ¢ > 1

SU%E[HHDnﬁquLp(@T) + HHDmﬂmH%W(O,T;Lz) + ”vaﬁmHip(@T)]
me

+ sup E||M.

meN

<C. (55)

q
T

From (45), (47) and (55), we obtain the following result by applying the Vitali
theorem

p, Uy, —u in LP(Q x (0,T) x ©) as m — oo, (56)

M,, > M in L"(Q x (0,T);L2) as m — o0. (57)

Hence, up to a subsequence, one has (49) for almost all ¢,s € (0,T). The conver-

gence (50) can be obtained from (57) using the classical a.e. extraction in L"(0,T)
on the function ¢ — {5 dr2 (M, (t) — M(t),0)"dP. "

The continuity of the stochastic processes @ and M is showed in the following
lemma.
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Lemma 4.3. The stochastic processesu and M have continuous versions in C([0,T], L2)
and C([0,T], L?), respectively.

Proof. The continuity of u will be proved using Kolmogorov’s test [14, Theorem
3.3]. Let (¢;)ien © CX(©)\{0} be a dense sequence in L? and define the metric

O w¢zL
ZK )|

€N

with ¢; := 1;/(|¥il s + | Vil L» ), where we recall that p = max{2,p’}. This metric
defines the weak topology of L? on its closed balls, which are compact and thus
complete for this topology. To estimate the continuity of u, we start by estimating
JL\QV (Ip,, um(s), Ip,, um(s)) for 0 < s < s’ < T.

We first define the interpolator Pp,, : Wy ?(©) n LP — Xp_ ¢ by

Pp, ¢ = argmingex, (0o, w— o[ + Vo, w —V|Lr). (58)
We have, for r > 1,
]E[ J (Hpmﬂm(s',m) - Hpmﬁm(s,af:)>¢i(m)dm ]
e
<2"'E f (Hpmﬂm(s’, x) —p, Upm (s, :1:)) p,, Pp,, ¢i(x)dx
LI Je
?|

sz v, W) for v, w e L2,

|

[ (11005 2) = 1, 05,2 ) (110, P, () = ) )

—

+ 2"

|

] (T, Pp, é4ll12 + [V, Py, é4l10)

T

<2"'E ‘Hpmﬂm(s’, x) —p, Un(s,x)

%D
; 2T—1E[|Hpm am&m(o,m] Tip, Po,, é: — il (50)

It follows from (58) and ||¢;||zs + |Vl < C that

Mp,, Pp,, ¢i — ¢i|r: < CSp,, (¢:) < C, and
|Up,, Pp,,¢ilc> + |V, Pp,, ¢i|zr < C

Note that the bound Sp_ (¢;) < 1 is obtained selecting w = 0 in the definition
of this quantity. We then estimate the right hand side of (59) using Lemmas 3.1
and 3.4 to obtain

|| [ (1o, 0l 2) = 1o, 25,3 ) o
Q
C(|s' — s| + dp,, )" + CSp,, (¢:)

<
< C|s' —s|*" + Cdpl 4+ CSp,, ().

Recalling the definition of d, r2 and using Jensen’s inequality to write

sz (u,v)" (ZKUU)W> ZM

ieN ieN
we infer

EI:JLgJ (H’D7”’l~1/m< ) H'D,,Lum(s/))r] < C|S

Slar+cz Cap! +SD (¢z‘).

ieN



20 JEROME DRONIOU, BENIAMIN GOLDYS, AND KIM-NGAN LE

Since dp,, — 0 and Sp_ (¢;) — 0 for all i € N, while being uniformly bounded
as seen above, we can apply the dominated convergence theorem ont the last sum
to see that it tends to 0 as m — o0. Together with (49) and Fatou’s lemma, this
implies, for a.e. s, s’,

E JLgv (u(s),u(s’))r] < Cls —s|*".

By choosing r such that ar > 1, we obtain the desired continuity of @ by applying
the Kolmogorov test.

We now prove the continuity of M. It follows from (44) and the fact that M,, has
the same law as M, that

E[|Mon(s") = Mu(s)|32] < C(ls' = s + &p,,)"%, (60)
and E[HHmHEO@(O,T;L%] < C, which implies HHmHTLOO(O,T;LT(ﬁ;LQ)) < C. Esti-
mate (60) and the discontinuous Ascoli-Arzela theorem [19, Theorem C.11] imply

M,, — M uniformly on [0,T] in (L"(%; L?)), as m — oo,

and M € C([0,T]; (L"(Q; L?))w). It follows from this convergence, (60), the weak
lower semicontinuity of norms and Fatou’s lemma that

E[|M(s') = M(s)|7] < Cls" — s["/2.

The continuity of M follows immediately by choosing » > 3 and applying the
Kolmogorov test. u

5. IDENTIFICATION OF THE LIMIT

In this section, we first find a representation of the martingale part M. Since M is
continuous from [0,7] to L?, the representation theorem in [14, Theorem 8.2] can
be used. We will check conditions of [14, Theorem 8.2] in the following lemma.

Lemma 5.1. The process t € [0,T] — M (t,w) € L? is a square integrable contin-
nuous martingale, with quadratic variaton defined for all a,b e L? by

(M (t)))(a,b) = L (@ Q") (a), (F(@)Q"2)" (b))x ds, (61)
for anyt = 0.

Proof. It follows from the fact that Mp, is piecewise constant and the same laws
that M,, is piecewise constant for any m € N. Furthermore, for all ¢t € [0, T] and P
a.e., M, satisfies

Moty = Y f(llp, @) ACT,,
Ogi&pm’<t

Since U, is a solution to the gradient scheme (Algorithm 2.2 with D = D,,), Uy, is
adapted to
Fistp,, = 0{Wn(kdp

and the process Y

)7k=1a"'ai}7

m

= M,,(idp,) defines a martingale with respect to this
filtration. In particular, we have the following identity

E[(Ca, 2y — Ca, Mo 12 )b (Won(dp,, ), Won(i8p,))] =0 (62)
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for all 0 < i < j < N, and any bounded continuous function % : (L?)" — R.
Furthermore, we obtain

[((a M 20, 9N 1o — (a, TS 12(b, TS 1

- 2 a0, (W, @) QY2) (@), (f (I, () Q%) ( >,<)

i+1<k<)

S(Won(lip, ) Wi &Dm))] ) (63)

Proof that M is a martingale: We have to show that for almost all 0 < s <t < T,

all K € N, any bounded continuous function ¢ defined on (L?)%, and for any choice
of times 0 < 571 < 89 < -+ < sg < s, the following relation holds

E[ (¢a, M ()12 — (a, M (s))12) (W (s1), - - W(SK))] —0. (64)

Let |z| denote the floor of x for any = > 0. For all 0 < i < K we have

[&51 J&Dm — s as m — .
D

It follows from (48) and the continuity of ¢ that

o (Wl o) W55 dp,) ) = 0T (o) Ws)  (65)

as m — o, P-a.s. in (L?)X. For any m € N and &p, > 0 there exist I1,la €
{0,...,N,, — 1} such that s e (t(1) t(i+D] and t e (t(2),¢t(2+D]. From (62) we
obtain that

E[(Ca, M (t))r2 — {as M (8))r2) 0 (Win(dp,.), -+, Win(li dp,.))] =0, (66)
for any bounded continuous function ¢ defined on (L?)"*. Since |32~ | < Iy, we can
choose 9 in (66) such that

STl ). Wnlt180,) = 6 (Wl 52, )+ Wl |2, ) )

m m

We obtain (64) by taking limit of (66) as m tends to infinity and using the conver-
gences (50) and (65).

Proof of (61): From the definition of the quadratic variation [14, page 75], in order
to prove (61), we have to show that

E| (< TT0)100 3022 — 0, TT(6) 20 TT(5)
j (@)’ @, (H@Q ) 0 o (s1) -+ Wsio) | = 0. 67

The above identity can be obtained by using the same arguments as in the proof
of (64) with the continuity of f, (56) and (63).
The continuity and square integrability of M follows from Lemma 4.3 and (55).

n

We now apply the continuous martingale representation [14, Theorem 8.2]. We
have showed that the limit process M satisfies its hypotheses. Hence, there exists

~

an enlarged probability space ((NZ,IF‘, I?’), with @ = Q and a O-Wiener process W
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defined on (Q,IF‘,]F’) such that M, @ can be extended to random variables on this
space and, for every t > 0,

- j £(@) (5, )W (s). (68)

We are ready to prove the main theorem.

Proof of Theorem 2.11.

For any t € [0,T], there exists k € {0,--- , N,,, — 1} such that ¢ € (t(®) +(*+1]. For
any ¢ € WP (0) n LP(0), we take the sum of (53) from n = 0 to n = k with test
function ¢ := Pp, ¢ (recall the definition (58) of Pp,,) to obtain, P a.s.,

(p,, @m(t),Ip,, Pp, ). — <HD u® Tp,, Pp, ), ,
+ Z (Stp<a HDMU%H_D mea?(ﬁ“)) vaPme>L2

= <M ), Ip,, Pp, ), - (69)

By consistency of (Dy,)men (Definition 2.3) we have Ilp, Pp,_ ) — ¢ in LP. Hence,
Equations (49) and (50) show that, for almost every ¢,

(Mp,, U (t),p,, Pp,, by, , — {u(t),¢),, in LP(Q)
<M HDmPsz/J>L2 — <M(t),¢>L2 in L"(Q

Moreover, we also have
(Mp, u® Tp, Pp, ) 0 — (o, ), (71)

It remains to prove the convergence of the last term in the left hand side of (69).
We first note that

(70)

Z dp{a(Mlp, W), Vp, 45, Vp, Pp, ),

f <a Hpmum VD um( ))’V'DmPme>LP’7LP dS

[t/dtD 10D,
+ (alllp,, m(5), Vi, lon(5)): Vi, Pyt 1, ds. (72)
t

Since Vp, Pp, ¥ — Vi in LP, the a.s. convergences (45) and (46) enable us to
apply the standard Minty argument (as in, e.g., [19, Proof of Theorem 5.19 (Step
3)]) to get the a.s. convergence of the first term in the right hand side of (72): for
any t € [0,T], P-a.s.,

¢

— | {a(u(s), Vu(s V1/1>Lp e d (73)

The expectation of the last term in the right hand side of (72) tends to zero as
m — . Indeed, by using (3), Holder inequality and (55) we obtain

[t/&Dnl ] &Dnz
]| J (alLp,, i (5), Vo, (), V0 P ), 1, 5]
t
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[t/étD,, 10tD,,
f (1+ |V, AV T, Pp, | da ds]

< C]E[J

t

< Cip,,

e
Vo, Pp,¥|Ls
[t/0tp,, 10D,
+cul | V5,285 V7, [V, Po, ¥lun ds]

m M
t

< Cép,

[t/dtp,, 16D,

+ CE[(L Hvaa%H)Hip ds) (p—1)/p (L

[t/dtD,, 18D,
Do, |0t ds)l/P]

/682 1001 -1/
< Clip,, + C(dp, )7E] j [V, @+ 0|2, ds] @~

m Mm
t

T
< Cit,, + C(tn, ) B[ | IV, (o)1, 5]
0

< C(dp,, + (dp,)""),

which implies

[t/dtD,, |0tD _
J {a(Mp,, Um (), VD, Uim(5)), VD, Pp, ), v, ds =0 in L'(Q)
, :

(74)
Using (70)—(74) and (68), we pass to the limit in (69) to see that u satisfies (4) in

~

Definition 2.9, with W instead of W. m

6. APPENDIX

Lemma 6.1. Let « > 0, ¢ > 0 and (E,dg) be a metric space. Assume that
g : [0,T] = E is piecewise constant with respect to the partition (t("))nzo,_“71\z
and that, for all ¢ = 1,...,N — 1, denoting by ¢\ the constant value of g on
(t("),t("+1)],

N—¢

dp Y de(g™t?, M) < C)e. (75)

n=1

Then, there exists a constant C' not depending on g or dtp such that

j dnlglt + ). g(0)7 dt < C'o(p, ),

0
for any p € [0,T], where
pe if a € (0,1]
,0p) =
o(p:dp) {pa + (&p)* " 1p if > 1.

Proof. (i) pe (0,dp].

For any t € [0,T — p], there exists n € {1,--- , N} such that t e (¢~ ¢(™]. If
te (=D ¢t —p] then t + pe (t=D (0] and g(t + p) = g(t) = ¢\, so that
de(g(t+p),g(t)) = 0. Ift e (t™) —p, t(™], then t+p e (t™),t+D] and g(t) = g™,
g(t+p) = g™V so that dg(g(t+p), g(t)) = de(g™+V), g™). Therefore, from (75)
with ¢ = 1 we have

T—p N—-1
|| detate o) gt dt = p X (™) < o)y~ Cot

0 n=1
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Cp® if a € (0,1]

cap~'p if o > 1.
Above, in the case a < 1, we have concluded by writing pda ' = (p/dp)'~*p® <
p<, since p < dp.
(11) p > dp.
In this case, we can find 1 < { < N —1 and € € (O 1) such that p = d&p(¢ + €).
For any ¢ € [0,T — p], there exists n € {1,- — ¢} such that t e (t=1 (V)]
If t e (t1 t0) — dpe], then t + dtpe € (t(” 3 t(”)] and t + p e (tn~1+0 t””)]
If t € (t(") — dpe, t(™], then t + dtpe € (¢ <”>,t<”+1>] and t + p e (t0F0 ¢ "M“)]

Therefore, from (75) we have

T—p N—£—1 At _gre
j du(g(t + p),g()1dt = 3 [f dp(g™, g™ dt
t

0 n—1 (n—1)
t(n)
+ f (g™t HY, g dt]
£ —ipe
(N=0_g e
+ J dp(g™), g N =) dt
H(N—£—1)

< dp(1 — )Cay ()™ + SpeCayt (1)
<O +2%)t9)
< C(1+2%)p%,

which concludes the proof of this lemma. -

The following lemma is a consequence of Lemma 6.1.

Lemma 6.2. Let 0 < a < 1,¢>0and 0 < 8 < afq. Let g: [0,T] —> E be
piecewise constant with respect to the partition (t(n))nzo,.._7N, and let g(") be its
constant value on (t0 "], Assume that, for all £ =1,...,N — 1,

N—¢
E[ap Y] g+ - ™1, | < ce®)e.
n=1
Then, there exists a constant C' not depending on g neither on dp such that

E[HQH%{/B,q([O’T];L2)] < O/-

Proof. Using the same arguments as in Lemma 6.1 and adding the expectation
on estimates, we also obtain from the assumption on g that

E”OT_p lg(t + p) — g(t)] 72 dt] < Cp”. (76)

This implies that

T T—p d
Ellalynagomin] =E[[ (| lots+0) — (o)1t ds) 5

T
<C f poBI1q, = CTO R,
0
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Lemma 6.3. Let 5 € (0,1). For any r = 1, the following embedding is compact:
HP(0,T; L) A L*(0,T; L?) <5 L"(0,T; L?)
where the space L"(0,T; L2) and its topology are defined in Section 4.

Proof. For any bounded sequence {w,, }men in H?(0,T; L?) n L*(0,T; L?), there
exists w e HA(0,T;L?) n L®(0,T; L?) such that

wy, — w  weakly in H?(0,T; L?) n L?(0,T; L?)

up to a subsequence. Let v, = w,, —w. It is sufficient to prove that {v,}men
converges to zero in L"(0,T; L2).
For any L € N, let np := T'/L. We define the picewise constant function v}, by

1 E+Dn
7 -
Um|[12n,(é+1)n) Ty Ln vm(s) ds

We note that {v,,}men is bounded in H?(0,T;L?). By using the Minkowski’s
integral inequality, we deduce
2

L 1 ~(l+1)n (e+1)n
o — vaLQ 0.T;L2) = J J J Um (8, @) — v (t,x)ds | dxdt
£=0

L 1 ~(e+1)n pE+1)n
J J- |03 (8) — Uy () ||32 ds dt
on

(+1)n p(L+1)n Hv ( )H
28 m L2
<Ty E J L s|2ﬁ+1 ds dt

< Ty HUmHHﬁ(QT;p) <Cn*

Using the boundedness of v)l, — v, in L*(0, T} L2) and an interpolation inequality
of L"(0,T) between L*(0,T) and L?(0,T), we infer
28
lvg, = vmlLr 0,752y < Cnv . (77)
On the other side,

T L—-1

drr(r2y(v],,0)" =J dpz (v],(5),0)"ds = ) ndzz (WLl 41y 07 (T8)
£=0

0

and, for any 0 </ < L — 1 and ¢ € L?, by weak convergence of v,, in L2(0,T; L?),

1 T
L) e @) 90) s = L J@ ot )] iy (D) dtda — 0

as m tends to infinity. Plugged into (78), this implies, for all 7,
dLT(La,)(U:]nJO) —0 asm — 0. (79)
Using (77), we obtain
28
drrr2)(Vm, 0) < dpr(p2) (Vm, ) +dprz2y(v7,0) < O +dprz2) (v, 0).

We first take the superior limit as m tends to infinity of the above inequality,
use (79) and then let 7 tend to zero to obtain dpr(z2)(vm,0) — 0 as m — o, which
completes the proof. =
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Lemma 6.4. Let A be a complete metric space and {K,}men be a sequence of
compact sets in A. Then |, o Km is relatively compact in A if and only if, for
any sequence {Tm }tmen such that x,, € K,, for all m, the set {z,, : m € N} is
relatively compact in A.

Proof. Let Z :=J,,cy Km. If Z is relatively compact in A, then {x,, : m € N}
is also relatively compact in A since it is included in Z. We now prove the converse
statement, by way of contradiction.

Let € > 0 and assume that Z is not covered by a finite number of balls of radius ¢.
Since each K, is compact it has a finite covering K, < |J,. 1,, Bi by balls of radius
e. Let my = 1 and take z,,, € Kp,,. By assumption, Z is not covered by  J;c;, Biv
B(z1,¢) so there is ma € N and @, € Ky, such that @, ¢ U;c;, Bi U B(Tm,,€);
in particular, ©,,, ¢ K, so ma > my = 1 and d(2y,, Tm,) = €. Still using the
assumption Z & (J;2 Ujes, Bi © B(Tm,,€) U B(&m,,€) so we can find m3 € N and
Ty € Ky, such that z,,, ¢ (J,2) B; U B(xy,,,€) U B(xy,,€); since each K,
for £ =1,...,my, is contained in | J,.;, Bi, we infer that z,,, ¢ [ J,2%, K¢, and thus
that ms > me; additionally, d(@m,,, Tm,) = € and d(Tmy, Tms) = €.

Continuing the construction, we design a strictly increasing sequence (my)gen of
natural numbers and a sequence (%, )ken such that x,,, € K, for all k € N, and

d(Tmy, Tm;) = € Yk £ j. (80)

1€lp

The sequence (z,, )ken is incomplete, but can easily be completed into a sequence
(Zm)men With z,,, € K, for all m € N. The assumption then tell us that {z,,,

k e N} < {z,, : m e N} is relatively compact. We should then be able to extract
from (@, )ken & converging subsequence, which contradicts the property (80) and
completes the proof. =
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